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Abstract—To address the challenges posed by the irregular
boundaries and varying sizes of thyroid nodules, an improved
U-Net encoder incorporating residual convolutional blocks and
multi-scale attention modules is proposed. This modification
aims to improve the U-Net model’s ability to accurately segment
thyroid nodules with diverse features and sizes. In particular,
the paper focuses on refining the skip connections within the
U-Net model to better handle the complex boundary structures
of thyroid nodules and their fusion with surrounding tissues.
A multi-level feature fusion module is proposed to enhance
the skip connections, allowing the model to capture boundary
details more precisely. To mitigate the risk of overfitting
introduced by these enhancements, an auxiliary supervisory
branch mechanism is integrated into the decoder. Furthermore,
given the class imbalance inherent in thyroid ultrasound images,
a joint loss function incorporating Focal loss is employed to
facilitate pixel-level predictions and ensure overall structural
consistency of the target.

Comprehensive experiments were conducted on a real-world
dataset to evaluate the performance of the improved U-Net
model. The results demonstrated its effectiveness in thyroid
nodule segmentation. Compared with six other state-of-the-art
segmentation models, the improved U-Net achieved superior
performance with a Dice coefficient of 89.05%, a Jaccard index
of 83.61%, pixel accuracy of 98.29%, sensitivity of 94.69%, and
specificity of 98.41%, indicating that the improved model can
effectively assist thyroid ultrasonographers in clinical diagnoses.

Index Terms—U-net, thyroid nodules, multi-scale attention
module, multi-feature fusion, deep supervision.

I. INTRODUCTION (RELATED RESEARCH)

ACCURATE segmentation of thyroid nodule contours
not only provides precise localization but also facilitates

the extraction of shape, size, and other features of the nodule.
These features can then be used to assess the nature of
the nodule, which plays a critical role in personalized and
intelligent treatment [1]. Nodule segmentation methods in
thyroid ultrasound images are conventionally classified into
three principal methodological frameworks: (i) contour-based
techniques employing edge detection paradigms, (ii) region-
based strategies utilizing intensity thresholding mechanisms,
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and (iii) machine/deep learning-based architectures incorpo-
rating CNN.

Early investigations in thyroid nodule segmentation
predominantly emphasized contour-based methodologies.
Maroulis et al. [2] introduced the Variable Background
Active Contour (VBAC) model for ultrasound-based thy-
roid nodule segmentation. Subsequently, Iakovidis et al. [3]
enhanced this framework through their Genetic Algorithm-
VBAC (GA-VBAC) model. Gui et al. [4] innovatively inte-
grated level set theory with isoperimetric constraints, replac-
ing traditional contour length regularization in the ACWE
model with a compact shape prior derived from isoperi-
metric inequality. This modification helps address bound-
ary ambiguities in sonographic imaging. Savelonas et al.
[5] developed the Joint Echogenicity-Texture (JET) model,
which accurately segments thyroid nodules by leveraging
their echogenicity and texture features. Although contour-
based methods have shown some utility in thyroid nodule
segmentation, they often perform poorly when segmenting
nodules with weak boundaries and are sensitive to the initial
manual placement of contours, making automated segmen-
tation of thyroid nodules challenging.

Poudel et al. [6] explored thyroid nodule segmentation
using a graph-based method. In their approach, the thyroid
ultrasound image is represented as a graph, and the segmenta-
tion result is determined by defining connection weights and
performing a minimum cut. However, this method requires
manual labeling to obtain prior information, which introduces
significant subjectivity and limits the potential for fully au-
tomated segmentation. Alrubaidi et al. [7] devised a method
for thyroid nodule segmentation leveraging the Variance
Reduction Statistic (VRS). This method first identifies the
region of interest (ROI) containing the nodule, then calculates
the variance of each pixel within the ROI using VRS,
which serves as the segmentation criterion. An appropriate
threshold is then selected to separate pixels with significantly
different variances, thereby segmenting the nodule region.
The selection of this threshold requires the involvement
of medical experts, making fully automated segmentation
challenging.

The proliferation of machine learning techniques, par-
ticularly deep learning architectures, has established deep
learning-based medical image segmentation as a predominant
research focus. Chang et al. [8] implemented a decision tree
(DT) model for thyroid nodule segmentation. This method
can automatically learn rules and conditions from image
features to segment nodules and background regions. How-
ever, this method is sensitive to noise and incompleteness
in the data, which limits the model’s generalization ability.
With the rise of deep learning, many researchers have pro-
posed deep learning-based semantic segmentation methods
for thyroid nodule segmentation. Ying et al. [9] proposed
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a cascade convolutional neural network-based method for
thyroid nodule segmentation. This network first locates the
region of interest (ROI), generates candidate nodule regions,
and then manually labels these regions. Finally, CNN is used
for more refined segmentation of the nodules within the
ROI. However, this method requires physician involvement
and has difficulty in accurately segmenting nodules with
complex edge details. Ding et al. [10] introduced resid-
ual connections into the U-Net architecture, improving the
model’s performance in nodule segmentation. However, this
network performs poorly on low-contrast thyroid ultrasound
images and cannot handle multi-nodule segmentation. Chen
et al. [11] incorporated an attention mechanism into the
semantic segmentation model, generating attention weights
for feature maps to enhance the network’s sensitivity to lesion
regions and improve segmentation accuracy. Wang et al. [12]
integrated residual structures and multi-scale convolutions
into the encoder path of U-Net and added an attention module
to the long-range skip connections, preserving edge contours
in the feature tensors and achieving more accurate nodule
segmentation.

In summary, while contour-based and region-based seg-
mentation methods have made some progress in addressing
thyroid nodule segmentation in ultrasound images, they still
require manual intervention, leading to certain subjectivity
and limitations. In contrast, machine learning and deep
learning-based methods have achieved significant advance-
ments in automation and segmentation accuracy. However,
due to the unclear contours, varying sizes, and frequent
fusion with surrounding tissues of thyroid nodules in ul-
trasound images, existing deep learning-based methods for
thyroid nodule segmentation often have a single receptive
field scale for feature extraction, which hinders the effective
capture of multi-scale features. Although encoder-decoder-
based semantic segmentation models improve resolution and
mitigate the gradient vanishing problem through hierarchical
connection between the decoder and encoder via skip con-
nections, they still fail to fully capture multi-scale features at
different levels in the decoder. This limitation restricts their
ability to comprehensively capture edge features at various
scales.

Based on the aforementioned research findings and chal-
lenges, U-Net is selected as the baseline model following
comparative experiments. To optimize semantic feature ex-
traction in thyroid nodule ultrasound imaging and improve
segmentation performance, enhancements are made to the en-
coder and skip connection components of the U-Net model.
Additionally, a strategy is proposed to incorporate auxiliary
branches for providing extra supervision at different levels
of the decoder. This approach reduces model overfitting
while simultaneously guiding the network to learn feature
representations more effectively at multiple levels, thereby
improving its ability to segment nodules. Furthermore, a joint
loss function is designed by linearly combining the Focal loss
function and the Dice loss function, which is integrated with
the auxiliary branches to jointly supervise model parameter
updates.

II. U-NET ARCHITECTURE

The U-Net architecture, as shown in Fig. 1, is a fully
convolutional neural network based on an encoder-decoder

structure. It consists of an encoder and a decoder connected
by skip connections. In the encoder, each feature map under-
goes two 3×3 convolutional operations for feature extraction,
followed by a non-linear transformation using the ReLU
activation function. The resulting feature map is then passed
to the corresponding decoder layer via a skip connection.
Additionally, max pooling is applied between each encoder
layer to reduce the size of the feature map and extract
higher-level features. The decoder serves to progressively
reconstruct feature representations toward original spatial
dimensions throughout the hierarchical architecture. This
restoration process utilizes transposed convolutional opera-
tions for feature map upsampling. Unlike traditional encoder-
decoder networks, the U-Net architecture implements cross-
hierarchical skip connections during decoding. At each stage,
encoder-derived features are concatenated with upsampled
features through these connections, enabling hierarchical
integration of global contextual patterns and localized struc-
tural details. Finally, a 1×1 convolutional layer coupled with
a sigmoid function generates the probabilistic segmentation
output.

As shown in the network architecture diagram, the struc-
ture of the network is relatively simple. In the encoder, the
network’s limited feature extraction capability stems from the
use of a single-size convolution operation, making it difficult
to capture multi-scale information of nodules. Additionally,
some thyroid nodules have complex edge structures, and their
boundaries often merge with surrounding tissues. Although
U-Net improves resolution and mitigates the gradient van-
ishing problem through skip connections, the decoder fails
to fully encode multi-scale semantic information at different
levels. This limitation prevents the model from comprehen-
sively capturing boundary features at various levels, thus
affecting the nodule segmentation performance.

Therefore, to achieve accurate segmentation of thyroid
nodules, this paper takes U-Net as the basic structure and
proposes a variety of optimization strategies to address the
common issues faced by this network and existing segmen-
tation methods. These strategies aim to better tackle the
difficulties and challenges in thyroid nodule segmentation.

Input Output

conv3×3,BN,ReLU

conv1×1

MaxPool2×2

Upconv2×2

copy

Fig. 1. U-Net architecture
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III. METHODS

A. U-net encoder with residual convolutional blocks and
multiscale attention modules

Comprehensive and effective extraction of semantic fea-
tures from thyroid nodules in ultrasound images is cru-
cial for improving segmentation performance. Due to the
irregular shapes of thyroid nodules and their often fused
boundaries with surrounding tissues, an encoder that can
fully capture morphological and environmental features of
nodules is essential. However, the traditional U-Net encoder
struggles to effectively extract the features, necessitating
further optimization. To address this, a residual network
is introduced to enhance the model’s feature extraction
capability. Additionally, given the significant variation in
thyroid nodule sizes, a feature extraction network based on
a single receptive field can not adequately capture multi-
scale information, leading to suboptimal segmentation re-
sults. Therefore, inspired by [13], we propose a multi-scale
attention module to enhance the model’s feature extraction
capabilities and improve segmentation accuracy for nodules
of varying sizes. The encoder structure combining residual
blocks and multi-scale attention is shown in Fig. 2.

resBlock1

MSA

resBlock3

resBlock2

resBlock4

resBlock5

MSA

MSA

resBlock MSAResidual Block Multi-scale Attention Block

Fig. 2. Network encoder with residual blocks and multi-scale attention

1) Residual convolutional block: In the residual network
structure, given an input x where the learned residual map-
ping is represented as F(x), such that the final output becomes
F(x) + x. Therefore, the network can adaptively deacti-
vate the residual component F(x) when it adversely affects
model performance, enabling the network to continually
learn additional residual information at deeper levels and
improve performance. In this work, we replace the original
encoding layers with residual blocks, adopting ResNet-50 as
the backbone architecture. Five cascaded residual blocks are
implemented to extract discriminative features from thyroid
nodule ultrasound images.

2) Multi-scale attention module: By replacing the encod-
ing layers of the original U-Net with residual convolutional
blocks, the feature extraction capability of the network’s en-
coder is enhanced. However, due to the considerable variation

in the sizes of nodules in thyroid ultrasound images, the U-
Net segmentation network’s single receptive field scale is
insufficient for effectively capturing multi-scale features. Fur-
thermore, when aggregating multi-scale information, meth-
ods such as simple concatenation or element-wise summation
are often used, which overlook the correlation and differing
importance of features from various receptive fields. To
optimize the utilization of multi-scale features, we introduce
an attention-driven multi-scale module that dynamically se-
lects discriminative features across varying receptive fields,
thus enhancing segmentation performance for nodules with
diverse dimensions. The proposed architecture is depicted in
Fig. 3.

Fin

Multi-scale

 Feature

Extraction

3 × 3

5 × 5

rate = 3

F3

F5

FD

FC
Global

Pooling
Conv Fout

Fc

Fig. 3. Multi-scale attention module

In Fig. 3, the input image is first processed through three
parallel convolutional layers to generate feature maps with
three distinct receptive fields. These layers employ a 3×3
convolution, a 5×5 convolution, and a dilated convolution
with a dilation rate of 3, respectively. The multi-scale feature
extraction process is shown in (1), (2) and (3):

F 3 = conv3(Fin) (1)

F 5 = conv5(Fin) (2)

FD = convD(Fin) (3)

Where Fin denotes the input feature map, F3 and F5

denote the feature maps captured by the 3×3 and 5×5
convolutions, respectively. FD denotes the feature maps cap-
tured by the dilated convolution layer. Convolution kernels
of different sizes provide distinct receptive fields, allowing
focus on different spatial ranges.

Concatenation of multi-scale feature maps. The feature
maps from the three different receptive fields are concate-
nated along the channel dimension to obtain a multi-scale
feature map, as shown in (4):

Fc = concat(F 3, F 5, FD) (4)

Feature aggregation. The concatenated multi-scale fea-
ture map undergoes feature aggregation to capture long-
range dependencies. The multi-scale feature map is initially
processed through a 1×1 convolutional layer for channel
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compression and feature integration. Subsequently, the resul-
tant feature map undergoes parallel global max-pooling and
average-pooling, to model spatial long-range dependencies.
This process is shown in (5) and (6):

Favg = Avg(conv(Fc)) (5)

Fmax = Max(conv(Fc)) (6)

Where Avg(·) denotes global average pooling and Max(·)
denotes global max pooling.

Attention weight generation. The sum of Favg and
Fmax is fed into a fully connected module consisting of
two cascaded fully connected layers. After passing through
an activation function, the multi-scale attention weights are
generated. The weight generation process is shown in (7):

weights = σ(conv(δ(conv(Favg + Fmax)))) (7)

Where σ(·) denotes the sigmoid loss function and δ(·)
denotes the ReLU loss function.

Finally, the generated attention weights are multiplied by
the multi-scale feature vector to obtain a feature vector
Fout with multi-scale information weights, addressing multi-
scale attention challenges and enhancing the model’s ability
to adapt to features at varying scales. This improvement
ultimately enhances segmentation performance for nodules
of different sizes.

In this paper, the multi-scale attention module is incor-
porated only into the final three layers of the encoder to
improve the model’s ability to segment nodules of varying
sizes while reducing the number of model parameters.

B. Multi-level feature fusion module for optimizing U-Net
skip connections

Enhancing the U-Net encoder allows the model to capture
nodule features more effectively, improving segmentation
performance for nodules of various sizes. However, this
optimized model exhibits poor performance in segmenting
the edges of thyroid nodules in scenarios where the edge
structures are complex and boundaries merge with adjacent
tissues. Two primary factors may contribute to this lim-
itation. The conventional U-Net architecture progressively
downsamples feature maps in its encoding pathway to extract
features. However, this hierarchical resolution degradation
inevitably compromises critical boundary preservation during
global semantic feature handling. Second, the model lacks
integration and effective utilization of multi-level features,
which hinders its ability to capture long-range dependencies
and accurately delineate the edges of complex nodules,
thereby affecting overall segmentation accuracy.

Based on the above analysis, to address this problem,
first, in the feature extraction stage of the encoder, high-
resolution feature maps containing rich image details can be
upsampled to capture sufficient semantic information, thus
enhancing the accuracy of the final segmentation results.
Second, multi-level feature fusion is applied to the outputs of
each encoder layer to extract the complex semantic features
of nodules with intricate structures, further improving seg-
mentation performance. To this end, we propose a multi-level
feature fusion module to augment U-Net’s skip connections,
as depicted in Fig. 4.

Upsampling with feature maps from different levels.
The outputs of each encoder layer, denoted as F1, F2, F3, and
F4, are fed into the multi-level feature fusion module. Each
level of features is upsampled using transposed convolution
to match the size of the highest-resolution feature map in the
network. Simultaneously, to reduce model complexity, the
number of channels is reduced during upsampling. Notably,
the feature map F1 from the first layer undergoes only
channel compression without upsampling. After this process,
high-resolution feature maps F

′

1, F
′

2, F
′

3, and F
′

4 of identical
size are obtained.

Aggregating multi-level feature maps. These feature
maps are then concatenated along the channel dimension,
resulting in a preliminary aggregated multi-level feature map
F

′

S , as calculated in (8):

F
′

S = concat(F
′

1, F
′

2, F
′

3, F
′

4) (8)

Where concat(·) denotes the concatenation operation along
the channel dimension.

Encoder Decoder
Transposed
Conv

F1

F2

F3

F4

F1'

F2'

F3'

F4'

Conv

FS' FMS

FA

Fig. 4. Multi-level feature fusion module

Following feature concatenation, the multi-level feature
map F

′

S undergoes channel reduction through a convolutional
layer to generate the fused multi-scale representation FMS .
This process integrates cross-scale contextual information.
Through this design, FMS simultaneously captures both low-
level structural patterns and high-level semantic concepts
acquired through distinct network stages. The generation
process of FMS is shown in (9):

FMS = conv(F
′

S) (9)

Upsampled feature maps of each layer fusing global
and local features. To further integrate the global features
obtained from the encoder with the local feature of each
layer, FMS is concatenated with F

′

1, F
′

2, F
′

3, and F
′

4 along the
channel dimension, respectively. A convolution operation is
then applied to aggregate the multi-level feature information,
resulting in the fused feature map FA, as calculated in (10):

FAi = conv(concat(F
′

i , FMS)) (10)

Where FAi denotes the multi-level feature map for the ith
layer and F

′

i denotes the upsampled feature map for the ith
layer.
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Finally, FA is downsampled to match the scale of the
corresponding feature map in the decoder and then passed
to the respective decoder layer to participate in the decoding
process.

C. Deep supervision as auxiliary branches to prevent over-
fitting

To enhance the model’s ability to segment nodules, the
U-Net was optimized. However, this also increased the num-
ber of network parameters, potentially leading to degraded
convergence performance and overfitting. To address this
issue, a deep supervision mechanism is introduced. Deep
supervision is a training strategy that introduces additional
supervisory signals by adding extra supervision tasks to
intermediate layers of a deep neural network [14]. In the task
of segmenting thyroid nodules in ultrasound images, utilizing
information from various levels of the decoder to supervise
the network during training enables the segmentation net-
work to better learn feature representations at different levels,
further improving its segmentation capability. Additionally,
deep supervision branches can prevent the network from en-
countering gradient vanishing and slow convergence during
training. As illustrated in Fig. 5, deep supervision branches
are added to the decoder section of the segmentation network
to enhance nodule segmentation performance.

Label

Loss1

Loss2

Loss3

Loss4

Conv Block in Decoder 1 × 1 Conv Upsampling Activation Function

Loss of Main Supervision Branch

Loss of Auxiliary Supervision Branch

Fig. 5. Design of deep supervision branch

In Fig. 5, auxiliary branches are appended to each layer of
the decoder to more fully utilize the feature representations
at various levels. The decoder’s output feature map first
undergoes dimensionality adjustment through a 1×1 con-
volution, serving dual purposes of channel reduction and
parameter optimization while extracting more representative
feature information. Subsequently, the compressed feature
map is upsampled to match the size of the ground truth
label map. Next, the full-size feature map is mapped to a
range between 0 and 1 via a sigmoid function, resulting in a
pixel-wise binary classification prediction. Finally, the pixel-
wise classification errors between these auxiliary branch
predictions and the ground truth labels are calculated, and

these errors are backpropagated along with the loss of the
main branch output layer.

D. Joint loss function incorporating Focal loss

Loss functions quantify the discrepancy between a model’s
predictions and the ground truth labels, directly influenc-
ing training efficacy and model performance. In semantic
segmentation tasks, a joint loss function combining cross-
entropy loss and Dice loss is often employed. While cross-
entropy loss primarily focuses on individual pixels, neglect-
ing the overall structural information of the target, Dice
loss places more emphasis on the overall structure. There-
fore, combining the cross-entropy loss and the Dice loss
allows consideration of both pixel-level accuracy and the
consistency of the target structure. However, in ultrasound
images of thyroid nodules, nodules typically occupy only a
small portion of the image, while normal tissues dominate,
resulting in a severe class imbalance problem. Cross-entropy
loss assumes that all class samples are of equal importance,
and thus, for imbalanced datasets like ultrasound images of
thyroid nodules, using the cross-entropy loss can lead the
model to focus more on the majority class (normal tissue) and
ignore the minority class (nodule regions). Additionally, in
nodule segmentation tasks, easily classifiable samples dom-
inate, meaning that gradients are primarily determined by
these samples. Meanwhile, pixels along nodule boundaries,
which are more challenging to distinguish from surrounding
tissues, require greater attention.

To better segment nodule regions, the Focal loss function is
incorporated into the aforementioned joint loss function, aim-
ing to address the class imbalance and hard example mining
problems in segmentation while preserving the advantages
of Dice loss.

Focal loss was originally introduced to address class im-
balance in object detection tasks, with the goal of enhancing
detection accuracy. Its mathematical expression is shown in
(11):

LFL =

{
−α(1− P )γ log(P ), y = 1

−(1− α)P γ log(1− P ), y = 0
(11)

where P represents the model’s prediction, y represents
the ground truth label (1 for nodule regions and 0 for
other tissues), α is a balancing factor between 0 and 1 that
regulates the influence of positive and negative samples, and
γ is a modulating factor that adjusts the weights of easy and
hard examples. When γ is greater than 0, Focal Loss assigns
higher weights to hard examples, allowing the model to focus
more on these samples. As verified by the experiments in this
paper, the model achieves better segmentation performance
when α is set to 0.35 and γ is set to 2.0. The joint loss
function designed in this paper is shown in (12):

L = LFL + LDice (12)

With the addition of auxiliary deep supervision branches,
the losses generated by these branches also contribute to the
model’s parameter updates. Therefore, based on the joint loss
function, the final loss function is further designed, as shown
in (13):

Lfinal = L+ η
∑
d∈D

Ld (13)
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Where L denotes the loss of the final layer of the decoder,
Ld denotes the loss at decoder layer level d, D denotes the
set of layer level indexes, and η is the depth supervision
coefficient that gradually decays during training.

IV. EXPERIMENTAL FINDINGS AND DISCUSSION

A. Experimental setup and parameterization

All experiments were executed on an Ubuntu 20.04 sys-
tem utilizing an Intel Xeon Skylake processor (8 vCPUs
with IBRS) paired with an NVIDIA Tesla T4 GPU (16GB
VRAM). The implementation leveraged Python 3.8 with
PyTorch 2.0.0 for architectural development and experimen-
tal procedures. CUDA 11.8 was utilized to leverage the
GPU’s parallel computing capabilities for model training.
The segmentation framework employed standardized input
images of 448×448 pixels, trained across 200 epochs with
a batch size of 4. Network optimization utilized the Adam
algorithm following an adaptive learning schedule: initialized
at 0.005, reduced to 0.0005 at epoch 50 (×0.1 scale), and
further decreased to 0.00005 at epoch 150 (×0.01 scale).
The loss function employed was the joint loss function from
Section III-D, where α is set to 0.35 and γ is set to 2.0.

B. Experimental dataset and performance evaluation metrics

The experimental dataset was sourced from real-world
clinical ultrasound examinations conducted at the Depart-
ment of Ultrasound in a hospital in Nanchang. It comprised
375 patients’ ultrasound images of thyroid nodules. All ex-
periments utilized a preprocessed ultrasound image dataset,
which was partitioned into three distinct subsets: a training
set containing 8,168 images (80% of total data), a validation
set of 681 images (10%), and a test set comprising 681
images (remaining 10%). Segmentation performance was
validated on the validation set every 5 epochs during train-
ing. To ensure the stability and reliability, each experiment
was repeated 4 times, with identical parameter settings and
datasets but different random seeds and the mean value of
the results was taken as the final evaluation outcome.

Five evaluation metrics were employed for assessment:
Dice similarity coefficient, pixel accuracy, sensitivity, speci-
ficity, and Jaccard index. Their definitions are as follows:

Dice =
2× |P ∩G|
|P |+ |G|

(14)

PA =
TP + TN

TP + TN + FP + FN
(15)

SE =
TP

TP + FN
(16)

SP =
TN

TN + FP
(17)

Jaccard =
|P ∩G|
|P ∪G|

(18)

Where P represents the model’s predicted result, while G
represents the ground truth. Among these, TP denotes true
positive, TN denotes true negative, FP denotes false positive,
and FN denotes false negative.

TABLE I
PERFORMANCE OF BASELINE NETWORKS

Model Jaccard PA Dice SE SP

FCN 64.63 91.16 72.50 79.79 92.69
U-Net 69.10 95.79 77.42 86.56 96.25

DeeplabV3+ 67.24 94.56 74.89 84.24 97.16
SegNet 67.71 95.12 76.39 87.31 96.04

C. Baseline network selection and performance comparison

To select a suitable baseline semantic segmentation net-
work, four representative models-FCN, U-Net, DeepLabv3+,
and SegNet—were trained and tested on the thyroid nodule
ultrasound image dataset. Each model was tested under iden-
tical settings and dataset conditions across four experiments
but with different random seeds, as shown in Table I. The
experimental results presented are the averages of the four
experiments, and all data in the table are percentages. Bolded
values indicate the highest performance for each metric.

As shown in the table, U-Net demonstrated the high-
est segmentation performance among all models, achieving
the highest Jaccard index (69.10%) and Dice coefficient
(77.42%), both directly reflecting nodule segmentation ac-
curacy. Additionally, U-Net attained a pixel accuracy of
95.79%, which is also higher than other models. However,
the results indicate that U-Net’s nodule segmentation per-
formance remains suboptimal, likely due to the encoder’s
limited feature extraction capability, which hampers compre-
hensive nodule feature capture. Furthermore, U-Net’s lower
specificity and sensitivity scores suggest a degree of mis-
segmentation, indicating areas where improvement is needed.

D. Comparative study of encoder improvements

To address the insufficient feature extraction capability
of the original U-Net, we introduced residual networks to
replace the convolutional blocks in the encoder. Simultane-
ously, a multi-scale attention (MSA) module was developed
to improve segmentation performance across varying nodule
dimensions. To validate the proposed enhancements, four
comparative experiments were implemented using thyroid
nodule ultrasound image dataset, employing the U-Net archi-
tecture as the baseline. Quantitative results are presented in
Table II, with Backbone denoting the base network and MSA
indicating the proposed multi-scale attention module. All
values in the table are percentages, with bold font indicating
the highest value for each metric.

As shown in Table II, both the residual convolutional
blocks and the multi-scale attention module improved the
model’s ability to segment nodules. Moreover, the improve-
ment was more significant when both modules were in-
troduced to modify the encoder. Comparing the results of
the first and second experiments, ResNet50 as the encoder
achieved superior segmentation across all metrics relative to
the original model. Likewise, the comparison between the
first and third experiments shows that the proposed multi-
scale attention module also effectively improved the seg-
mentation performance of the model. Observing the second
and fourth experiments reveals that combining the multi-
scale attention module with ResNet50 provided further im-
provement across all metrics. These findings indicate that
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TABLE II
PERFORMANCE OF IMPROVED ENCODERS

Backbone MSA Jaccard PA Dice SE SP

1 × × 69.10 95.79 77.42 86.56 77.42
2 Resnet50 × 75.54 97.49 82.78 88.98 97.35
3 × ✓ 73.36 96.51 80.85 87.39 96.89
4 Resnet50 ✓ 78.02 97.86 85.26 91.57 97.76

TABLE III
PERFORMANCE OF MULTI-SCALE ATTENTION MODULES WITH DIVERSE

RECEPTIVE FIELDS

parameters Jaccard PA Dice SE SP

1 1×1;3×3;3×3,r=2 77.13 96.25 84.42 90.16 96.25
2 3×3;5×5;3×3,r=3 78.02 97.86 85.26 91.57 97.76
3 5×5;7×7;3×3,r=3 77.64 96.83 84.75 90.47 96.88

using ResNet50 as the network encoder and using deeper
convolutional blocks can enhance the segmentation model’s
feature extraction capability, improve nodule feature capture,
and enable more accurate nodule region segmentation.

Furthermore, by introducing a multi-scale convolutional
block and adaptively adjusting weights among feature maps
with different receptive fields, the obtained multi-scale fea-
ture maps enable the network to utilize multi-scale features
more effectively, enhancing segmentation accuracy for nod-
ules of varying sizes and improving overall performance on
the nodule dataset.

In this set of experiments, we explored the impact of
convolutional operations with different receptive field sizes
on the multi-scale attention module. To this end, three
different combinations of convolutional kernels with varied
receptive field sizes were evaluated. The first group con-
sisted of smaller-sized convolutions, including 1×1 and 3×3
standard convolutions, and a 3×3 dilated convolution with a
dilation rate of 2. The second group consisted of 3×3 and
5×5 standard convolutions, and a 3×3 dilated convolution
with a dilation rate of 3. The third group used larger-sized
convolutions, including 5×5 and 7×7 standard convolutions,
and a 3×3 dilated convolution with a dilation rate of 3.
Table III presents the comparative results. As shown in the
table, both smaller and larger receptive fields are detrimental
to nodule segmentation, indicating that the multi-branch
convolutional kernel size combination selected in this paper
is reasonable.

E. Comparative study of multi-level feature fusion module
and deep supervision branch

To further enhance the model’s ability to segment nodule
boundaries, a feature fusion module was proposed based
on previous improvements. Simultaneously, a deep supervi-
sion auxiliary branch was introduced to mitigate overfitting
and further improve the model’s segmentation performance.
Through comparative experiments, the impact of multi-level
feature fusion and deep supervision on the model’s seg-
mentation performance was explored. The baseline model
in this experiment employed the improved encoder. Table
IV presents the experimental results, where FFM indicates

TABLE IV
PERFORMANCE WITH/WITHOUT MULTI-LEVEL FEATURE FUSION

MODULE AND WITH/WITHOUT DEEP SUPERVISION BRANCH

FFM Supervise Jaccard PA Dice SE SP

1 × × 78.02 97.86 85.26 91.57 97.76
2 ✓ × 81.09 98.06 87.49 93.02 98.18
3 × ✓ 79.95 97.52 86.61 93.13 97.70
4 ✓ ✓ 83.61 98.29 89.05 94.69 98.41

TABLE V
PERFORMANCE OF DIFFERENT LOSS FUNCTION COMBINATIONS

Loss function Jaccard PA Dice SE SP

1 CE 81.73 98.06 87.26 92.79 98.60
2 DSC 82.91 97.48 88.78 91.13 97.87
3 CE+DSC 82.74 98.12 88.61 93.56 98.34
4 FL 82.51 98.37 88.43 94.05 98.23
5 FL+DSC 83.61 98.29 89.05 94.69 98.41

whether the multi-feature fusion module was added, Su-
pervise indicates whether the deep supervision branch was
added, and all data in the table are percentages. Bolded
values represents the highest performance for each metric.

Comparing the results of the first and second experimental
groups reveals that adding only the feature fusion mod-
ule improves all metrics, achieving higher pixel accuracy,
sensitivity, and specificity. This indicates that the feature
fusion module allows the segmentation model to more com-
prehensively capture the edge details of thyroid nodules in
ultrasound images, resulting in more accurate segmentation.
Similarly, the comparison between the first and third groups
shows that introducing only the deep supervision branch
also enhances performance. Notably, the model incorporating
both the feature fusion module and the deep supervision
branch achieves the highest performance across all metrics.
In conclusion, the combined addition of the feature fusion
module and deep supervision branch significantly enhances
the model’s segmentation capability.

F. Comparative study of different loss functions

To evaluate the effectiveness of the proposed loss function,
a comparative experiment was conducted. The final improved
model was used in the experiment. Quantitative comparisons
are presented in Table V, with CE, DSC, and FL denoting
cross-entropy loss, Dice loss, and Focal loss, respectively.
All table data are presented as percentages, with the highest
values in bold.

Comparing the results of the third group with those of the
first and second groups, it can be observed that combining
cross-entropy and Dice losses enhances the model’s segmen-
tation performance across several metrics compared to using
either loss alone. Similarly, observing the second, fourth, and
fifth groups shows that the combined loss function achieves
superior segmentation results compared to using Dice loss
or Focal loss independently.

The analysis above indicates that the combined loss func-
tion leverages the strengths of different loss functions to more
effectively supervise model training. Comparing the results
of the first and fourth groups, it can be found that the model
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TABLE VI
PERFORMANCE OF THE DESIGNED LOSS FUNCTION WITH DIFFERENT

PARAMETER SETTINGS

α γ Jaccard PA Dice SE SP

1 0.25 1.5 83.22 98.15 88.56 94.07 98.26
2 0.35 1.5 83.37 98.06 88.79 94.22 98.37
3 0.45 1.5 83.09 97.72 88.61 93.92 98.30
4 0.25 2.0 83.42 98.11 88.93 94.45 98.56
5 0.35 2.0 83.61 98.29 89.05 94.69 98.41
6 0.45 2.0 83.23 97.88 88.76 94.27 98.51

using the Focal loss outperformed the model using the cross-
entropy loss in all metrics except for specificity. Additionally,
comparing the third and fifth groups, it can be found that
combining Focal loss with Dice loss yielded improvements
in all metrics over the combination of cross-entropy and Dice
losses. These results demonstrate that training the model
jointly with Focal and Dice losses enhances segmentation
performance.

Next, the settings of parameters α and γ in the designed
loss function were explored. Six parameter combinations
were selected, and experiments were conducted with the final
improved model. The results are shown in Table VI, with all
values in percentages, and the highest values in bold.

Through the comparison of experimental results with dif-
ferent parameter settings in the above table, it can be found
that when α is 0.35 and γ is 2.0, the model outperforms
other parameter combinations in terms of Jaccard index, pixel
accuracy, Dice similarity coefficient, and sensitivity. The
results indicate that combining the Focal loss function with
the Dice loss function under this parameter configuration for
model training enhances the model’s focus on nodule regions,
thereby improving the accuracy of segmentation outcomes.

G. Comparative study of different segmentation networks

To validate the superiority of the proposed segmenta-
tion method, this section compares the nodule segmentation
model constructed in this paper with other state-of-the-
art segmentation models, including SA-Unet (2021) [15],
Unet3+ (2020) [16], Focus U-net (2021) [17], MA-Net
(2022) [18], TA-Net (2021) [19], CE-Net (2019) [20] and
Mask2Former (2022) [21]. All network models are based
on the ”encoder-decoder” structure. SA-UNet introduces a
spatial attention mechanism to enhance the network’s fo-
cus on specific spatial locations. Unet3+ modifies the U-
Net framework by introducing full-scale skip connections,
connecting each decoder stage to multiple encoder stages
to improve feature transfer and reconstruction. Focus U-net
introduces short-range skip connections and deep supervision
to increase feature diversity and provide additional paths
for propagating losses, better updating parameters. MA-Net
eliminates semantic ambiguity in skip connections through
attention gate integration, while incorporating a multi-scale
prediction fusion mechanism to effectively leverage global
contextual information across spatial resolutions. TA-Net de-
signs a multi-scale dilated convolution module to strengthen
feature extraction capability, integrating channel and spatial
attention mechanisms to improve focus on the target region.
CE-Net proposes the dense atrous convolution block and

TABLE VII
PERFORMANCE OF THIS PAPER’S METHOD AND OTHER SEGMENTATION

METHODS

Model Jaccard PA Dice SE SP

1 baseline 69.10 95.79 77.42 86.56 96.25
2 SA-UNet 74.23 96.01 81.19 87.80 96.51
3 U-Net3+ 76.50 97.23 83.34 89.42 97.54
4 Focus U-net 79.38 98.08 86.31 93.17 98.27
5 MA-Net 81.26 97.95 87.30 91.42 98.22
6 TA-Net 80.58 97.63 86.97 92.83 97.83
7 CE-Net 11.21 94.58 37.10 46.31 97.53
7 Mask2Former 75.05 88.53 85.75 88.53 98.77
8 method in this paper 83.61 98.29 89.05 94.69 98.41

residual multi-kernel pooling block to capture higher-level
abstract features and retain more spatial information. This
paper analyzes the segmentation performance of each method
using five metrics: Jaccard, PA, Dice, SE, and SP. The
experimental results are shown in Table VII, where the data is
the average of four experiments, expressed as a percentage,
with the bolded data indicating the highest value for each
metric.

The quantitative comparisonsin the table demonstrate that
our method surpasses comparative models across nearly all
evaluation metrics. Notably, CE-Net exhibited substantially
inferior Dice and Jaccard indices relative to other approaches;
in contrast, our framework achieved statistically significant
improvements, demonstrating a positive correlation between
prediction accuracy and regional overlap consistency. In
addition, our method outperforms other models in sensitivity
while slightly underperforming Mask2Former in specificity,
indicating that the proposed segmentation method based
on MSA and FFM can effectively predict foreground and
background while reducing erroneous segmentation. In terms
of the PA metric, our method achieved 98.29%, indicating
that the model is more accurate in pixel-level prediction of
the overall image.

Fig. 6 shows the qualitative comparisons, illustrating seg-
mentation results of our proposed method and other advanced
models across four thyroid nodules with varied sizes and
edge structures. The top row displays the original ultrasound
images, the second row shows the corresponding ground truth
masks, and the subsequent rows present segmentation outputs
from the comparison models and our method.

By comparing the segmentation results of the proposed
method with those of other models, it can be observed that
the segmentation masks generated by our method are closest
to the standard masks. As shown in the figure, whether
facing larger or smaller nodules, our method can accurately
identify the nodule region, while other methods show notable
mis-segmentation. Additionally, when facing nodules with
complex boundary structures (such as the second nodule),
our method still significantly outperforms other models,
providing more precise segmentation of edge details.

Comprehensive analysis of both the quantitative results
(see Table VII) and the qualitative segmentation results
(see Fig. 6) demonstrates that the proposed thyroid nodule
segmentation method, incorporating multi-scale attention and
feature fusion, surpasses the comparison methods in overall
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Fig. 6. Segmentation results of different models

performance.

V. CONCLUSION

Replacing the original network’s encoding blocks with
residual networks incorporating multi-scale attention mod-
ules effectively improves the encoder’s feature extraction
capability. By adaptively weighting feature maps with dif-
ferent receptive field sizes, the network can flexibly select
appropriate receptive field sizes to adapt to nodules of various
scales, thereby enhancing its nodule segmentation capability.
The multi-level feature fusion module effectively integrates
global and local information from the network’s encoder,
and transmits fused multi-scale global feature maps to the
corresponding decoder levels. This effectively addresses the
problem of difficult-to-obtain semantic information caused
by the complex structure of thyroid nodules and their inter-
mingling with surrounding tissues, enabling better capture of
spatial information at nodule boundaries and more accurate
segmentation of nodule regions. The strategy of using deep
supervision branches at multiple decoder levels mitigates
gradient vanishing and slow convergence during training,
guiding the network to better learn feature representations
at different levels, and further improving its nodule segmen-
tation capability. The combined loss function incorporating
the Focal loss function can better supervise model training,
enhance the model’s focus on nodule regions, and help to
solve the class imbalance problem. The optimized U-net
model achieves excellent results on real datasets in terms
of Jaccard index, Dice coefficient, pixel accuracy (PA),
sensitivity (SE), and specificity (SP) when compared with
state-of-the-art methods. Compared with current mainstream
semantic segmentation models, the optimized U-net model
can more accurately segment the contours of thyroid nodules
and accurately locate the position of nodules.

Future work includes: (1) Validation on multiple datasets
to evaluate the model’s performance under different data

sources and features, thereby enhancing its generalization
ability and stability. (2) Focusing on lightweight model
design to reduce complexity and parameter count, improv-
ing the model’s applicability and efficiency in resource-
constrained environments. (3) Research on semi-supervised
segmentation methods to leverage large amounts of unlabeled
data alongside limited labeled data, addressing the data anno-
tation challenges in thyroid ultrasound image segmentation.
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