
 

  

Abstract—Ultra-wideband (UWB) signals are susceptible to 

multipath effects and non-line-of-sight (NLOS) propagation in 

indoor environments, necessitating the simultaneous capture of 

the signal's temporal dynamic changes and spatial structural 

characteristics. To improve the localization accuracy and 

real-time tracking capability, a novel UWB indoor localization 

algorithm is proposed that integrates ResNet and LSTM neural 

networks, fusing the spatiotemporal characteristics of UWB 

signals. Initially, the distance data collected by the UWB device 

is transformed into the time series, then, the ResNet is employed 

to extract high-dimensional features and suppress the impact of 

noise and multipath effects, and the LSTM network is 

integrated with ResNet to capture temporal dependencies, 

thereby enhancing positioning accuracy. Simulation results 

indicate that the proposed ResNet-LSTM algorithm 

outperforms traditional BP neural networks and LSTM 

networks in terms of localization accuracy, error stability, and 

noise immunity, effectively improving the performance of UWB 

indoor positioning. 
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I. INTRODUCTION 

Ultra-wideband (UWB) technology is a carrierless 

communication method, utilizing nanosecond narrow 

non-sinusoidal pulses to transmit data. By measuring the 

distance or angle between the base station and the tag, the 

tag's position can be determined using various geometric 

measurement approaches, including Angle-of-Arrival (AOA) 

[1], Received Signal Strength (RSSI), Time of Arrival (TOA) 

[2-3], Time Difference of Arrival (TDOA), Time of Flight 

(TOF) [4], etc. However, in indoor environments, the 

captured UWB information is disturbed by noise, multipath 

effect and signal attenuation during transmission, which can 

degrade the location accuracy [5]. Several algorithms have 

been proposed to improve the performance of tag localization 

in UWB systems. Deep learning, with its powerful pattern 

recognition and learning capabilities, excels in feature 
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extraction and other related fields, and has obtained approved 

application in UWB localization by learning key features of 

the UWB signal [6]. Convolutional neural networks (CNN) 

are employed for extracting spatial features, and then to 

estimate the tag's position using a fully connected layer based 

on these spatial features. These extracted features can 

improve the localization accuracy and mitigate the noise to 

some extent during the extraction process. Bregar K et al. [7] 

adapt CNN to process the raw channel impulse response (CIR) 

data of the signals and propose the ranging error regression 

method to reduce NLOS error by weighting the individual 

distance contributions based on the estimated ranging error. 

Jiang C et al. [8] propose an invertible transform method to 

denoise CIR data and classify the signals using CNN. 

Specifically, the CIR data undergo a leftward cyclic shift, 

after which the processed data is summed with the initial data 

to generate the transformed CIR data. This transformation 

increases the signal-to-noise ratio (SNR) of the new CIR data. 

The denoised CIR dataset is then obtained by applying an 

anti-convolution operation using Lucy-Richardson function. 

Besides spatial features, temporal features of ranging are also 

incorporated to improve the accuracy of positioning A 

variety of recurrent neural networks (RNN), for instance long 

short-term memory (LSTM), are employed to capture 

temporal features from the obtained signal datasets. J. Shen et 

al. [9] input the CIR data of UWB into a Convolutional 

Neural Network-Long Short-Term Memory Network 

(CNN-LSTM) model. The CNN extracts features, which are 

the input into LSTM network. Experimental results 

demonstrate that the spatial-temporal features are capable of 

enhancing the performance of UWB positioning in NLOS 

scenarios. Yalin Tian et al. [10] propose the KF-LSTM 

algorithm, which introduces the Kalman filter to mitigate the 

effects of noise in UWB data and employs the LSTM 

network to learn temporal features, thereby enhancing 

precision in tag location estimation. However, the KF-LSTM 

is complex, and the Kalman filter shows limited performance 

in high-noise environments.  

To address these issues, a method that combines a residual 

neural network (ResNet) with LSTM is proposed, referred as 

the ResNet-LSTM. ResNet, a deep convolutional neural 

network, is primarily used to extract features from images 

and videos. The introduction of residual connectivity can 

effectively alleviate the problem of gradient vanishing in 

deep neural networks, allowing the network to be trained 

with deeper layers to extract deep signal features, providing 

richer input information for the subsequent LSTM network 

and improving the overall model performance [11]. This is 
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because residual blocks of ResNet can capture complex 

features of the input data and stably extract effective features 

under varying noise levels, ensuring that the ResNet-LSTM 

model maintains high localization accuracy and robustness in 

different noise conditions and complex environments. The 

spatial features extracted by ResNet are then input to the 

LSTM network for time series prediction and localization 

computation. 

By integrating ResNet and LSTM networks and taking 

advantage of their advantages, the UWB indoor positioning 

performance can be effectively improved. In summary, the 

contributions of this paper include: 

1) The residual module of ResNet is commonly employed 

for extracting the spatial distribution features of the signal, 

while the deep network enhances the expressive power of 

complex nonlinear relationships. Design the integration of 

multiple convolutional layers and residual blocks that allow 

the network to efficiently learn deeper features, and the 

residual module is able to capture subtle changes in the signal 

by adding input data directly to the transformed output. The 

extracted features are then fed to an LSTM network, which 

processes the time series features to further improve 

positioning accuracy and stability. 

2) LSTM networks play a key role in extracting temporal 

features from time series data, using their gating mechanism 

to extract relevant information from signals while 

suppressing irrelevant or noisy data, leading to improved 

accuracy and prediction stability in location prediction. 

Additionally, the LSTM layer captures the temporal 

dependencies of UWB signals in the time series, addressing 

the continuity issue of the movement trajectory of mobile 

terminals. 

3) The double-sided two-way ranging (DS-TWR) 

technique is used to effectively mitigate the clock 

synchronization error, provide more accurate ranging data for 

the algorithm, and improve the accuracy of the whole 

positioning system. 

II. DOUBLE-SIDED TWO-WAY RANGING 

To obtain the data for localization, the Double-sided 

Two-way Ranging (DS-TWR) [12] method is employed to 

measure the distance between the tag and the base station 

(BS). In UWB positioning technology, the DS-TWR method 

is extensively utilized to attain high-accuracy ranging by 

calculating the round-trip time of signal propagation. The 

ranging process is illustrated in Fig. 1. The distance between 

the tag and the base station is calculated by capturing the time 

difference between the two timestamps before and after the  

UWB signal travels from one transceiver to the other, 

respectively. Specifically, the anchor transmits the initial 

round of messages to initiate the ranging request. When the 

tag receives the response message, it generates and sends 

back the response after a certain period, which includes the 

time interval from the reception of the signal to the 

generation of the new signal. The time for the tag to 

communicate with BS can be determined by 

               ( )prop

1

2
round replyT T T



= −                             (1) 

where roundT  is the time taken from tag initiating the 

transmission of a signal until it receives a response; replyT  is 

the reply time, which refers to the duration for the BS to send 

a response after receiving the signal. 

In practical applications, the issue of clock 

synchronization is unavoidable. Consequently, DS-TWR can 

effectively mitigate clock drift errors by enhancing the 

number of signal propagation paths [13]. Subsequently, by 

the DS-TWR method, the time for the tag to communicate 

with BS can be computed by  

                    1 2 1 2

1 2 1 2

round round reply reply

prop

round round reply reply

T T T T
T

T T T T

 − 
=

+ + +
                  (2) 

where 1roundT  represents the time interval between device Tag 

transmitting data and BS receiving the response. 2roundT  

represents the duration from when the BS transmits data to 

when the Tag acknowledges its reception. 1replyT  also denotes 

the corresponds to time of device BS in processing 

information from device Tag. 2replyT  represents the response 

time of device Tag in processing information from device 

BS. 

According to Equation (2), the fundamental ranging data 

can be obtained by measuring the round-trip propagation 

time of the signal. The data will subsequently be input into 

the ResNet-LSTM network for deep feature extraction and 

time series prediction, thereby further enhancing positioning 

accuracy. 

III. UWB LOCALIZATION BASED ON RESNET-LSTM 

NETWORK  

The network structure of ResNet-LSTM is illustrated in 

Fig. 2. LSTM is a deep learning model specifically designed 

for processing time series data, enabling it to capture 

dependencies within the sequences. The data utilized in 

UWB ranging and positioning are inherently time-dependent. 

 

Fig. 1. UWB ranging process 
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Fig. 2. ResNet-LSTM Network Structure 

ResNet efficiently extracts complex and high-level 

features from the input UWB signals, enabling the model to 

capture intricate spatial patterns and representations. While 

LSTM captures the temporal dependencies in these features, 

thus leveraging the strengths of both models. This integration 

provides more comprehensive input information, ultimately 

improving the precision of predictions and robustness of the 

positioning model. 

A. ResNet Network 

ResNet is a widely utilized deep neural network 

architecture in computer vision, including image 

classification, object detection, and semantic segmentation. 

UWB signal transmission can be adversely affected by 

multipath effects and complex environments, leading to 

diminished positioning accuracy.  

To enhance feature extraction from input data, it is often 

necessary to increase the number of layers in the deep neural 

network, thereby improving its capacity to fit the data. 

However, with an increasing number of layers, network 

performance may degrade as the network depth increases. To 

address this challenge, ResNet is introduced in the literature 

[14], incorporating residual connections within neural 

networks. This innovation facilitates more effective gradient 

propagation back to the earlier layers, mitigating 

performance degradation associated with increased network 

depth. In this paper, we design a deep neural network built 

upon the core principles of ResNet. By leveraging its feature 

extraction and representation capabilities, the network is 

capable of extracting useful features from UWB signals for 

indoor positioning. Furthermore, to mitigate the vanishing 

and exploding gradient problems in the process of training 

deep networks, we introduce the residual network [15] to 

extract features from UWB signals.  

In this residual unit, X and H(X) represent the input and 

output of the residual unit, respectively. The input X 

undergoes a series of transformations to produce H(X). In 

ResNet, the residual block introduces an identity mapping, 

yielding the output H(X)=F(X)+X, where F(X) denotes the 

residual function. 

ResNet exhibits superior performance in handling noise in 

UWB signals due to its distinctive residual connections. The 

integration of multiple convolutional layers and residual 

blocks facilitates the extraction of high-dimensional spatial 

features from complex signal transmission paths. These 

residual connections enable the network to effectively learn 

deeper features without encountering the vanishing gradient 

problem. Additionally, by directly adding the input data to 

the transformed output, residual blocks are able to capture 

subtle variations in the signal. These deeply extracted 

features are subsequently fed into the LSTM network, which 

processes the time series features to further enhance 

positioning accuracy and stability. A common residual unit is 

illustrated in Fig. 3. 

 
Fig. 3. Residual Unit 

 

Fig. 4. LSTM Network Structure 

B. Indoor Positioning Based on LSTM 

LSTM, developed from recurrent neural networks (RNNs), 

is primarily designed to mitigate the gradient vanishing 

problem inherent in RNNs [16]. Compared to traditional 

backpropagation (BP) neural networks and other general 

neural networks, LSTM introduces an additional temporal 

dimension at the input and incorporates feedback loops, 

thereby enabling more effective connections when 

processing time series data.  

The core concept of LSTM is to control the flow of 

information by the introduction of "gate" structures [17-18]. 

Each gate functions as a neural network layer that determines 

whether the information can be transmitted [19]. The LSTM 

network structure, illustrated in Fig. 4, primarily comprises 

three gates and a cell state: Input Gate: Regulates the impact 

of new input information on the current cell state; Forget 

Gate: Decides whether the information in the current cell 

state should be forgotten; Output Gate: Regulates how the 

cell state influences the output result. 

In Fig. 4, tX  represents the input to the LSTM network, 

which encompasses tag coordinates, base station location 

information, and the tag coordinates predicted in the previous 

time step. th  represents the output of the network, which 

consists of the optimized predicted tag coordinates. 

A. ResNet-LSTM Algorithm 

The data utilized for UWB ranging and positioning 

exhibits temporal dependencies. LSTM networks excel at 

capturing long-term dependencies in sequential data, 
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rendering them highly effective for processing indoor 

positioning signals. In UWB indoor positioning, the LSTM 

network is pivotal in extracting temporal features from time 

series data by leveraging its gating mechanisms to extract 

relevant information from the signal while suppressing 

irrelevant or noisy data, thereby enhancing the accuracy and 

robustness of position predictions.  

The ResNet network introduces residual connections, 

enabling each layer not only to learn new features but also to 

retain and propagate information from preceding layers. The 

integration of ResNet and LSTM networks harnesses the 

strengths of both, improving the accuracy of tag positioning. 

The algorithm involves three steps: establishing a time series 

dataset, constructing the ResNet network, and building the 

LSTM neural network. 

In an ideal scenario, when there are three or more base 

stations, the tag position can be uniquely determined. In the 

experiment, four UWB base stations are utilized. Consider a 

tag within the UWB positioning system, and the distance 

from the tag to each base station at time t is recorded as 

1 2 3 4

t t t tD D D D   , where t=1, 2, 3, 4,…, N. Assuming the 

required length of the time series in the dataset is N, a 

segment of data from the dataset can be recorded as 
1 1 1 1

1 2 3 4

2 2 2 2

1 2 3 4

3 3 3 3

1 2 3 4

1 2 3 4

N N N N

D D D D

D D D D

D D D D

D D D D

 
 
 
 
 
 
 
   

This represents the distances from the tag to each of the 

four base stations over a time series of length T. A residual 

block is composed of two convolutional layers and two 

normalization layers, with an activation function applied 

between each pair of layers, along with a shortcut connection 

that adds the input to the output. This structure is repeated 

three times, with each subsequent input being the output from 

the preceding residual block. The specific steps of the 

algorithm are as follows: 

Input: Store the input as part of the shortcut connection, 

which will be directly added to the transformed output later. 

First convolutional layer: Perform convolution operations 

through Conv1D to extract features. This layer utilizes a 

specified number of filters and kernel size; Subsequently, 

apply Batch Normalization to the output of the convolutional 

layer to stabilize the training process; Finally utilize the 

Rectified Linear Unit (ReLU) [20] activation function for 

non-linear transformation. 

Second convolutional layer: Perform convolution, batch 

normalization, and activation operations again. The results of 

these two convolutions constitute the residual component. 

Residual connection: Add the input from the residual 

connection to the output of the second convolutional layer. 

This establishes the residual connection, enabling the 

network to learn the residual function. 

Activation function: Finally, apply a ReLU activation 

function to the result of the residual connection prior to 

generating the output. 

In the entire residual module, residual blocks are stacked 

multiple times. The initial feature extraction is performed 

with a single convolution, followed by deepening the 

network through the stacking of multiple residual blocks. 

This structure enables the network to capture more complex 

features while preserving the original input features. 

The output of ResNet, the initially predicted tag 

coordinates 1th − , and the cell state tC value (determined by 

the forget gate and input gate functions in the LSTM network) 

are input to the LSTM network. The output of the LSTM 

network is expressed as: 

                                         ,t t th x y=                           (3) 

here, tx  and t
y  are the predicted tag coordinates at time t 

after passing through the LSTM network. The computation 

process of the forget gate is expressed as:  

                         ( )1 ,,t f t xt yt ff W h D b −
 =  +                   (4) 

here,   represents the ReLU of the LSTM network, 
fW  is 

the weight matrix, and 
fb  is the bias term. The computation 

process of the input gate function is expressed as: 

                          ( )1 ,,t g t xt yt gg W h D b −
 =  +             (5) 

here, gW  denotes the weight coefficient of the input gate, and 

gb  is the bias term. The input tC and output tC of the cell 

state at time t are given as: 

      ( )1 ,tan [ , ]t C t xt yt CC h W h D b−=  +             (6) 

                       1t t t t tC g C f C −=  +                            (7) 

The long-term memory in the LSTM network is updated 

iteratively, and the output function tO  is expressed as: 

  ( )1 ,[ , ]t O t xt yt OO W h D b −=  +                  (8) 

The final output of the LSTM, which represents the tag's 

position coordinates x and y, is determined by the output gate 

and the cell state, which can be expressed as: 

tanh( )t t th O C=                (9) 

The LSTM network constructs a regression model through 

an iterative process and the initialization of weights.  

Compared to traditional BP models, it demonstrates faster 

convergence. The positioning algorithm of the 

ResNet-LSTM network is summarized in Table Ⅰ. 

TABLE Ⅰ 

POSITIONING ALGORITHM BASED ON RESNET-LSTM NETWORK 

Algorithm 1: Positioning Algorithm Based on ResNet-LSTM Network 

Input: ( , )xt ytD , the true coordinates of the tag at time t. 

Output: predicted position coordinates ( ),x y  

1. Obtain the distance data from the anchors to the target position and the true 

coordinates. 

2. Construct the ResNet module to extract spatial features from the distance 

data through multiple convolutional layers and residual blocks. 

3. Adjust the output shape of the ResNet module to conform to the input 

format required by the LSTM. 

4. Utilize the LSTM layer to process the features extracted by ResNet, 

capturing long-term dependencies in the time series. 

5. Convert the LSTM output into two-dimensional positional coordinates 

using a fully connected layer.                                                     

6. Compile and train the ResNet-LSTM model by utilizing an optimizer and 

the mean squared error loss function. 

7. Employ the trained model to make predictions on the test set and compute 

the error for evaluation.                                         

II.  EXPERIMENTS AND RESULTS 

To evaluate the prediction accuracy and stability of the 

proposed ResNet-LSTM model, the python 3.90 simulation 
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environment is employed along with its built-in tools. The 

simulation encompasses the UWB base stations and tag 

positioning environment. The simulated TOF distance model 

estimates the distances of all tag positions from each base 

station within the experimental area, which are used as the 

training data. Four UWB base stations are employed, labeled 

A, B, C, and D, with their coordinates denoted 

as ( ),A Ax y , ( ),B Bx y , ( ),C Cx y and ( ),D Dx y , respectively. 

The tag coordinates is O ( ),O Ox y . The true distance from A 

to O is calculated as 

( ) ( )
2 2

AO A O A Od x x y y= − + −           (10) 

The predicted result is ( ),t tx y , leading to a positioning 

error calculated as 

  ( ) ( )
2 2

t O t OE x x y y= − + −                 (11) 

To thoroughly assess the positioning performance of the 

proposed ResNet-LSTM, four commonly used evaluation 

metrics are employed: Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

and Mean Absolute Percentage Error (MAPE). These metrics 

are well-established tools for evaluating model performance, 

as they quantify the divergence between model predictions 

and truth data from different perspectives, providing insights 

into the model's accuracy, stability, and sensitivity to outliers. 

1) MSE: MSE is a frequently employed metric for 

assessing regression models. It represents the mean of the 

squared differences between the predicted and observed 

values. The formula is expressed as follows: 

( ) ( )
2 2

1

1 N

t O t O

t

MSE x x y y
N =

 = − + −
           (12) 

 2) RMSE: RMSE is derived by taking the square root of 

MSE. As a crucial and intuitive metric in model evaluation, it 

provides valuable reference that aid in optimizing and 

improving the model during both training and testing phases. 

The specific formula is as follows: 

( ) ( )
2 2

1

1 N

t O t O

t

RMSE x x y y
N =

 = − + −
             (13) 

3) MAE: Unlike MSE and RMSE, MAE uses the absolute 

value of the error rather than the squared value, providing a 

straightforward measure of the model's overall accuracy. The 

specific formula is as follows: 

1

1 N

t O t O

t

MAE x x y y
N =

=  − + −                 (14) 

4) MAPE: MAPE measures the percentage of the 

prediction error relative to the actual values, providing an 

effective assessment of relative accuracy. The specific 

formula is as follows: 

1

1
100

N
t O t O

t t t

x x y y
MAPE

N x y=

 − − 
=  + 

 
            (15) 

The experimental setup configured the locator coordinates 

as (0, 0), (0, 400), (400, 400), and (400, 0), with the 

coordinate unit expressed in centimeters. The data samples 

consist of 1000 distances, each including four distance 

measurements along with the user’s x and y position 

coordinates. Ninety percent of the data samples are utilized 

for training the model, while the remaining ten percent are 

reserved for testing. Noise is introduced to the generated true 

distances, which are time series required for the LSTM. Table 

II and Table Ⅲ separately present the positioning 

performance comparisons of different models (BP Neural 

Network, LSTM, and ResNet-LSTM) on the training set and 

test set, including their MSE, RMSE, MAE, and MAPE 

values. 

From Table II and Table Ⅲ, it can be observed that the 

ResNet-LSTM demonstrates superior performance on both 

the training set and the test set. On the training set, the MSE, 

RMSE, MAE, and MAPE values of ResNet-LSTM are all the 

lowest, indicating that it can better fit the data during the 

training process. On the test set, the MSE and RMSE of 

ResNet-LSTM are significantly lower than those of other 

models, suggesting that it has stronger generalization 

capability. Furthermore, the lower MAE and MAPE values 

further prove the advantages of the ResNet-LSTM model in 

terms of relative accuracy and stability. The comparison of  

the four metrics reveals that ResNet-LSTM achieves a lower 

prediction error. Compared to BP, the MSE, RMSE, MAE, 

and MAPE on the test set are reduced by 96.89%, 82.76%, 

85.93%, and 61.30%, respectively. When compared to 

LSTM, these metrics reduced by 89.26%, 67.22%, 72.58%, 

and 43.97%. These results suggest that the ResNet-LSTM 

model is well-suited for UWB indoor positioning 

applications that require higher precision. 

TABLE II 

COMPARISON OF POSITIONING PERFORMANCE ON THE TRAINING SET 

Evaluation 

metrics 
BP LSTM ResNet-LSTM 

MSE 4726.56 1499.42 192.38 

RMSE 68.75 38.72 13.87 

MAE 52.84 36.58 11.21 

MAPE (%) 30.62 19.82 10.62 

TABLE Ⅲ 

COMPARISON OF POSITIONING PERFORMANCE ON THE TEST SET 

The Fig. 5 illustrates the error curves for the proposed 

positioning algorithm, the LSTM positioning algorithm, and 

the BP positioning algorithm. From Fig. 5, the proposed 

positioning algorithm outperforms BP algorithms LSTM 

algorithms, exhibiting the lowest positioning error, minimal 

error fluctuation, and superior stability. In contrast, the BP 

exhibits the highest error and greatest fluctuation, resulting in 

the poorest performance. The LSTM performs at an 

intermediate level between the two. For the characterization 

of error distributions, the scatter plots in Fig. 6 depict 

positioning errors associated with the three algorithms, 

highlighting their differential performance. 

As Fig. 6, the proximity of the error distribution points to 

the origin is indicative of the accuracy of the predicted tag 

coordinates relative to the true coordinates. A tighter 

clustering near the origin suggests smaller positioning errors. 

Evaluation 

metrics 
BP LSTM ResNet-LSTM 

MSE 6483.17 1876.62 201.53 

RMSE 82.36 43.32 14.20 

MAE 80.58 41.36 11.34 

MAPE (%) 38.42 26.54 14.87 
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.  
Fig. 5. The error curves of the proposed positioning algorithm 

 

Fig. 6. The error scatter plots of the proposed positioning algorithm 

 

Fig. 7. The box plot of the positioning errors for the different positioning 

algorithms 

 

Fig. 8. The cumulative distribution function (CDF) plots for the proposed 

positioning algorithm 

The error distribution of tag coordinates generated by the 

proposed algorithm is concentrated within a specific region, 

indicating superior clustering performance. In contrast, the 

LSTM and the BP display more dispersed error distributions, 

with certain positioning coordinates exhibiting significantly 

larger errors. Following an analysis of the relationship 

between error fluctuations and directional errors across 

different algorithms (as depicted in Fig. 6), box plots are used 

to analyze positioning performance. 

 

Fig. 9. Trajectory comparison of actual and predicted coordinates 

The box plot is adapted to provide a more detailed 

examination of the overall error distribution characteristics of 

the positioning algorithms, and a more comprehensive 

understanding of positioning performance in terms of 

prediction accuracy and stability.  

The box plot provides five key statistical metrics regarding 

the data distribution: the minimum value (lower bound), the 

first quartile (bottom of the box), the median (line within the 

box), the third quartile (top of the box), and the maximum 

value (upper bound). This visualization facilitates a clear 

assessment of the error distribution for each algorithm, 

highlighting both the central tendency (median) and the 

dispersion of the data (interquartile range). In a box plot, 

shorter boxes and narrower interquartile ranges typically 

signify that the algorithm’s errors are more concentrated, 

indicating greater stability in predictions. As illustrated in Fig. 

7, the proposed positioning algorithm demonstrates a 

concentrated error distribution with minimal fluctuation and 

almost no outliers compared to other algorithms, indicating 

that the model’s predictive performance is stable across all 

test samples. 

As shown in Fig. 8, the proposed ResNet-LSTM algorithm 

reaches a cumulative probability close to 1 when the error is 

below 20 cm, whereas the LSTM network model and BP 

neural network reach similar cumulative probabilities only 

when the error is around 40 cm and 100 cm, respectively. 

This demonstrates the outstanding performance of the 

proposed algorithm within the range of small errors, with 

most samples having small errors, thereby reflecting its high 

accuracy and stability. 

To evaluate the performance of the proposed 

ResNet-LSTM algorithm more intuitively, this experiment 

compares the actual coordinate trajectory with the 

coordinates predicted by the different positioning model, as 

illustrated in Fig. 9. From Fig. 9, the coordinates predicted by 

ResNet-LSTM are closer to the real coordinates. The average 

errors between the predicted trajectory and the actual 

trajectory for BP, LSTM, and ResNet-LSTM are 78.01 cm, 

35.48 cm, and 13.59 cm, respectively, indicating the superior 

positioning accuracy of the proposed ResNet-LSTM 

algorithm. 

IAENG International Journal of Computer Science

Volume 52, Issue 5, May 2025, Pages 1417-1423

 
______________________________________________________________________________________ 



 

III. CONCLUSIONS  

This paper proposes a UWB indoor positioning algorithm 

that integrates ResNet with LSTM neural networks. This 

algorithm converts UWB-collected distance measurements 

into time series representations, employs ResNet to mitigate 

noise and uncertainties within the time series, and 

subsequently trains the processed data using the LSTM 

network. Simulation experiments demonstrate that the 

algorithm outperforms both BP and LSTM algorithms with 

respect to positioning accuracy and stability, producing more 

accurate positioning coordinates. 
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