
 

  
Abstract— The rapid growth of Internet of Things (IoT) 

devices has resulted in numerous security challenges. Anomaly 
detection has become a crucial aspect of IoT security, as it helps 
identify unusual behaviors and potential threats within IoT 
networks. Deep learning techniques have shown considerable 
potential in recognizing anomalies across various domains. 
However, the dynamic and continuously developing nature of 
cyberattacks complicates the process of monitoring and 
identifying among different types of attacks effectively. This 
study aims to enhance IoT security by conducting a comparative 
analysis of two deep learning algorithms: convolutional neural 
networks (CNNs) and recurrent neural networks (RNNs). We 
deploy these models on the new CICIoT2023 dataset to detect 
large-scale attacks targeting IoT devices. Our findings reveal 
that the CNN model outperforms others with an accuracy of 
98%, while the BiLSTM model achieves 85%, and the hybrid 
CNN-BiLSTM model reaches 94%. These results show that 
CNNs are better at extracting spatial features and that hybrid 
models might be able to use both spatial and temporal 
dependencies. By providing insights into model selection and 
optimization, this research contributes to the development of 
robust intrusion detection systems for IoT security. 

Index Terms—convolutional neural network, recurrent 
neural network, IoT security, comparative analysis, deep 
learning 

I. INTRODUCTION 
he rapid development and widespread adoption of the 
Internet of Things (IoT) have made it one of the most 
prominent and rapidly growing fields in recent years. 

Consequently, IoT has emerged as a significant area of 
study within academic and research communities. IoT 
refers to a pervasive network where diverse objects and 
entities in our environment are interconnected through the 
Internet, enabling seamless communication and interaction 
without human intervention. This connectivity includes a 
diverse range of objects linked through wireless and wired 
networks, each equipped with unique addressing 
mechanisms. Such interconnectedness facilitates 
collaborative efforts and information exchange, fostering 
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the development of innovative applications and services. 
Remarkable examples include smart homes, intelligent 
transportation systems, connected vehicles, advanced power 
grids, smart cities, and efficient traffic management systems 
[1]. As a result, IoT has gained considerable traction and is 
already transforming various industries. 

The IoT foresees a transformation of daily life through the 
proliferation of billions of smart devices, estimated to reach 
approximately 75 billion by 2025, aimed at automating 
routine tasks [2]. This transformative technology holds vast 
potential to enhance human life across diverse sectors, 
including healthcare, transportation, agriculture, education, 
and numerous business applications [3]. By 2020, 
projections indicate that the global IoT market will reach 
$457.29 billion [4], with an estimated 50 billion 
interconnected IoT devices [5], highlighting the anticipated 
expansion and the critical need to secure these systems. 

As with other emerging technologies, security challenges 
present significant obstacles to the effective deployment of 
IoT systems. Addressing these challenges is essential for 
instilling public confidence in IoT devices and encouraging 
broader adoption. As these devices increasingly integrate 
into daily life, it is crucial to ensure robust protection against 
various known threats [1]. The IoT ecosystem benefits from 
diverse connectivity options, such as Wi-Fi, 4G/5G, 
Bluetooth, cloud services, and advanced analytics. However, 
these advancements also introduce new challenges that 
require careful consideration [4]. 

This study addresses the growing number of cyberattacks 
targeting IoT devices, driven by their rapid expansion. There 
is an increasing demand for robust detection methods 
utilizing machine learning and deep learning approaches to 
identify malicious and anomalous activities in the IoT 
domain. Effective techniques are crucial for minimizing 
security vulnerabilities and safeguarding IoT devices from 
potential threats. Moreover, there is a need to compare and 
evaluate different techniques to enhance IoT security. This 
research aims to assess the effectiveness of deep learning 
techniques for anomaly cybersecurity datasets available for 
developing machine learning classifiers for IoT anomaly 
detection has increased, with noteworthy examples including 
BoT-IoT, CIC2019DDoS, and BoT-IoT 2020. CICIoT2023, 
a newly released dataset, offers extensive records across 33 
categories of attacks targeting IoT environments, offering 
greater accuracy compared to earlier datasets. The primary 
objective of this study is to compare two specific deep 
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learning models for anomaly detection in IoT networks using 
the CICIoT2023 dataset. Through comprehensive 
comparative analysis, this study seeks to identify the 
strengths, weaknesses, and performance characteristics of 
these models. The contributions of this research include: 

1) Designing an anomaly detection model for IoT 
networks using convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs) based 
on CICIoT2023. 

2) Building models from scratch for designing 
multiclass classifiers and evaluating their 
performance. 

3) Investigating the effectiveness and reliability of the 
new real-time dataset, CICIoT2023. 

The findings of our research can provide valuable 
insights to researchers and practitioners, guiding them in 
the selection and implementation of effective anomaly 
detection methods for IoT networks. 

The remainder of this paper is organized as follows: 
Section II provides a brief overview of the two deep 
learning techniques used in our research: CNNs and 
RNNs. Section III outlines the research methodology 
employed for the comparative analysis. In Section IV, we 
discuss related work. Section V summarizes machine 
learning and deep learning methods for classifying attacks 
on IoT platforms. Section VI presents an overview of two 
common IoT attack datasets and compares them. Section 
VII details the implementation of a multiclass CNN and a 
type of RNN using the CICIoT2023 dataset. In Section 
VIII, we present and discuss our detailed results. Finally, 
Section IX outlines our conclusions and highlights future 
directions for research. 

 
II. DEEP LEARNING BACKGROUND 

Deep learning, a subset of machine learning, facilitates 
the acquisition of knowledge from prior experience [6]. It 
has become one of the most prominent topics in computer 
science [7], leveraging artificial neural networks and other 
machine learning algorithms that mimic the structure of 
biological neural networks. These algorithms consist of 
multiple layers that enable feature extraction, 
transformation, and pattern analysis using supervised or 
unsupervised learning methods. Inspired by the human 
brain, deep learning models are capable of processing, 
labeling, and categorizing input data to derive meaningful 
insights. This technique excels in handling large and 
complex datasets, surpassing the capabilities of traditional 
machine learning algorithms. Moreover, deep learning can 
operate without supervision and effectively manage 
unstructured and unlabeled data. 

The term ‘deep’ refers to the large number of layers in 
these models. Typically, deep learning models comprise 
three types of layers: an input layer that receives data, 
hidden layers responsible for extracting patterns, and an 
output layer that generates results. The output of one layer 
becomes the input for the subsequent layer, establishing a 
hierarchical learning structure [6]. Deep learning has led to 
substantial advancements across various fields, resulting in 
transformative impacts on industries and businesses. Its 
success has sparked a global race among leading 

economies and technology companies to explore and push 
the boundaries of deep learning further. In certain areas, 
deep learning has even demonstrated performance that 
surpasses human capabilities [8]. Furthermore, deep 
learning has enhanced industrial applications by 
automating tasks that were previously labor-intensive, 
contributing to its rising popularity in the digital age. 

Deep learning models have been particularly effective in 
understanding complex structures across diverse domains, 
including natural language processing, speech recognition, 
image recognition, and video analysis [6]. These models 
offer a range of architectures, each with specific applications 
and compatibility. In the context of cybersecurity, deep 
learning provides powerful tools for designing effective 
detection systems. This study discusses two typical deep 
learning models: 

 
1) Convolutional Neural Networks (CNNs): CNNs have 

emerged as a widely adopted deep learning technique across 
various domains, particularly in computer vision, where they 
excel in simulating the human visual system [6]. CNNs 
consist of convolutional and pooling layers. The 
convolutional layers extract essential features from the input 
data, while the pooling layers enhance the generalization of 
these features. CNNs operate on two-dimensional (2D) data, 
which involves converting input data into matrix form for 
efficient anomaly detection [9]. This capability makes CNNs 
well-suited for applications involving image processing and 
visual pattern recognition. 

 
2) Recurrent Neural Networks (RNNs): RNNs are 

designed to analyze time-series and sequential data by 
incorporating previous outputs as inputs for current 
processing. This feedback loop makes RNNs particularly 
effective for tasks involving temporal sequences, such as 
object and human tracking in video footage. A specific type 
of RNN, known as a Long Short-Term Memory (LSTM) 
network, includes a memory cell that helps retain 
information over time, allowing it to capture long-term 
dependencies in sequential data. LSTM networks are capable 
of learning temporal and sequential patterns from complex 
data sequences, making them ideal for applications in speech 
recognition and anomaly detection [6]. 

III. RESEARCH METHODOLOGY 
In this study, we use Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs) because 
they work well and have been used successfully in many 
areas, such as finding problems in IoT networks. Specifically, 
we aim to construct these models and evaluate their 
performance using established evaluation metrics. The 
research methodology consists of the following stages: 

1) Comparative Analysis of Deep Learning Models: Our 
research focuses on conducting a comparative 
analysis of two distinct deep learning models for 
classifying various types of attacks on IoT platforms. 
We aim to build robust deep learning models using 
the recently published IoT attack dataset, 
CICIoT2023. The selection of CNN and RNN models 
was based on their demonstrated capability to 
accurately identify and classify anomalies within the 

IAENG International Journal of Computer Science

Volume 52, Issue 5, May 2025, Pages 1424-1441

 
______________________________________________________________________________________ 



 

network, as well as insights gathered from the 
literature review. Fig. 1 depicts the research flowchart 
and outlines the methodology stages. 

2) Review of Previous Studies: The objective of this 
stage was to identify commonly used machine 
learning models for detecting attacks on IoT 
platforms. By reviewing existing research, we 
gathered valuable insights into the models that have 
shown promising results in IoT anomaly detection. 

3) Analysis of Existing IoT Attack Datasets: In this stage, 
we focused on examining frequently used datasets in 
prior studies to ensure the effectiveness of the 
proposed models. Our goal was to select a realistic 
and recently published dataset that would provide 
representative results. After careful consideration, we 
chose the CICIoT2023 dataset for our study due to its 
comprehensive coverage of 33 categories of attacks. 
Section VI provides detailed information on IoT 
attack datasets. 

4) Data Preprocessing: The quality of training data 
significantly influences the effectiveness of deep 
learning models. IoT datasets often include data from 
diverse sensors across multiple domains, leading to 
challenges such as inconsistent data distribution. To 
address these issues, we performed extensive data 
preprocessing, including error correction, 
normalization, and feature extraction. These steps 
were essential to ensure the integrity of the dataset and 
establish a solid foundation for model training and 
analysis. 

5) Model Development: We developed three deep 
learning models: a CNN built from scratch, an RNN 
model utilizing a Bidirectional Long Short-Term 
Memory (BiLSTM) architecture, and a hybrid model 
combining CNN and BiLSTM techniques. We trained 
and evaluated all models using the CICIoT2023 
dataset. We chose BiLSTM for its proven ability to 
capture long-term dependencies in sequential data, 
which makes it well-suited for time-series anomaly 
detection. 

6) Comparative Performance Evaluation: In this stage, 
we assessed the models using key performance 
metrics, including accuracy, precision, recall, and F1-
score. We selected these metrics due to their capacity 
to thoroughly assess classification performance. We 
conducted a detailed comparison of the CNN, RNN 
(BiLSTM), and hybrid models based on these metrics 
to identify their relative strengths and weaknesses.  

IV. RELATED WORK 

Extensive research literature has utilized machine 
learning and deep learning algorithms for detecting attacks 
on IoT platforms, owing to their capability to analyze 
complex, large-scale datasets effectively. These methods 
typically fall into two categories: binary classifiers, which 
differentiate between attacks and normal traffic, and 
multiclass classifiers, which aim to distinguish among 
various types of attacks. In the context of IoT security, we 
now provide a brief overview of several commonly used 

machine learning and deep learning models. We also discuss 
the strengths and limitations of these approaches to highlight 
the factors that affect their performance in IoT environments. 

 

A. Machine learning approaches for IoT attack 
detection 

Previous studies have extensively investigated the 
application of machine learning methods to detect distributed 
denial-of-service (DDoS) attacks on IoT devices. One study 
explored the use of three machine learning algorithms: 
decision tree, k-nearest neighbors (KNN), and naïve Bayes. 
These algorithms were employed to classify network traffic 
as either benign or indicative of a DDoS attack. The 
experiments utilized the CIC2019DDoS dataset, which 
included various DDoS attack types, such as UDP, DNS, 
SYN, and NetBIOS attacks. The results showed that the 
decision tree algorithm achieved an impressive accuracy rate 
of 100%, KNN reached an accuracy of 98%, while Naïve 
Bayes achieved a relatively lower accuracy of 29% [11]. 
Similarly, another study proposed a network intrusion 
detection approach using decision trees, a widely adopted 
machine learning algorithm for classification tasks. Decision 
trees recursively split features based on conditions that help 
determine the class labels of instances. The authors 
emphasized the importance of data quality enhancement 
through preprocessing and feature selection techniques to 
improve the performance of the decision tree classifier. They 
underscored the potential for integrating machine learning 
techniques into Intrusion Detection Systems (IDS) to 
enhance their capabilities [12]. 

Furthermore, [13] introduced a novel Intrusion Detection 
System (IDS) that was specifically designed for securing IoT 
networks. The proposed system utilized supervised machine 
learning algorithms, including KNN, logistic regression, 
multilayer perceptron, decision trees, and random forests. 
This study employed a unique feature set specifically 
designed for IoT environments, facilitating the accurate and 
automatic detection of various attacks, such as DDoS, DoS, 
reconnaissance, and information theft [13]. However, the 
study noted that machine learning algorithms often 
encounter challenges when handling large volumes of 
training data, particularly in maintaining high accuracy. 
Consequently, these models may struggle with scalability 
and performance when applied to large-scale IoT datasets.  

In [35], they introduce an edge-enabled virtual honeypot-
based intrusion detection system (EVHIDS) to secure 
Vehicle-to-Everything (V2X) networks. The system gets 
99.01% accuracy and better detection rates for attacks like 
botnets (99.02%) and DoS (99.22%) by using a virtual 
honeypot (PotRSU) to attract and study threats and machine 
learning for real-time intrusion detection. It incorporates data 
preprocessing for optimized ML performance and enables 
collaboration between PotRSU, roadside units, and cloud 
servers for continuous threat updates. The EVHIDS 
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enhances V2X security, offering a scalable, adaptive solution 
for intelligent transportation systems.  

 
B. Deep learning approaches for IoT attack detection 

Existing Intrusion Detection Systems (IDSs) based on 
machine learning have shown promise but still face 
limitations, particularly in handling the complexities of IoT 
networks. Advanced deep learning techniques have been 
explored to address these limitations, enhancing anomaly 
detection and network security. Among these, Convolutional 
Neural Networks (CNNs) and Recurrent Neural Networks 
(RNNs) have demonstrated significant efficacy in network 
traffic classification tasks [14]. The proposal of a Pearson 
Correlation Coefficient-CNN (PCC-CNN) model addressed 
security concerns related to IoT communication protocols, 
achieving an impressive accuracy of 99.89% and a low 
misclassification rate of 0.001 [15]. Similarly, Mahmoud et 
al. [16] introduced a CNN-based anomaly detection model, 
delivering high precision, recall, and F1 scores. In addition to 
these efforts, Qian et al. [17] created an edge-cloud-based 
IDS that combines RNNs and BiLSTMs. This IDS performed 
better than models trained on the full set of attributes, 
showing how important it is to choose the right features to 
improve performance. 

In the context of IoT-based electric vehicle charging 
stations, Kilichev et al. [18] presented an ensemble 
architecture combining CNNs, LSTMs, and GRUs. Their 
results showed exceptional accuracy in both binary and 
multiclass classification tasks. Furthermore, Meliboev et al. 
[19] showed that combining CNNs with LSTMs is better for 
finding network intrusions, which shows that hybrid models 
work effectively. Vinayakumar et al. [20] compared deep 
neural networks (DNNs) to classical machine learning 
classifiers and confirmed the advantage of DNNs in detecting 
advanced cyberattacks. Addressing class imbalance issues in 
datasets, Sharma et al. [21] introduced a filter-based DNN 
approach that leveraged Generative Adversarial Networks 
(GANs) to synthesize data for minority attack categories, 
improving multiclass classification accuracy from 85.0% to 
91.0% using the UNSW-NB15 dataset. Other researchers 
have also explored dataset-specific IDS solutions; for 
instance, Vishwakarma et al. [23] created the NF-UQ-NIDS 
dataset to enhance real-time intrusion detection in IoT 

networks, effectively capturing a diverse range of attack 
behaviors. 

Several studies have investigated novel approaches for 
addressing Distributed Denial of Service (DDoS) and Denial 
of Service (DoS) attacks in IoT systems. Ma et al. [26] 
suggested a CNN model that uses a multilayer convolution 
feature fusion mechanism and a categorical cross-entropy 
loss function. On the NSL-KDD dataset, this model was very 
accurate and had a low rate of false alarms. Similarly, 
Adefemi et al. [27] used a refined LSTM (RSTM) model to 
find DoS attacks. They improved performance by using 
preprocessing methods such as encoding, dimensionality 
reduction, and normalization. Ahmad et al. [28] further 
explored deep learning techniques, utilizing a DNN with 
mutual information to identify anomalies in the IoT-Botnet 
2020 dataset, thereby outperforming traditional methods. 
Ullah et al. [29] built on their research from 2021 and 
suggested a more advanced framework for finding anomalies 
that combines LSTMs, BiLSTMs, GRUs, and CNNs to make 
feature learning better and consistency across scenarios. 
Their hybrid deep learning model demonstrated robust 
performance on seven diverse datasets. Saba et al. [30] 
developed a CNN-based IDS to analyze IoT network traffic, 
effectively identifying anomalies using the NID and BoT-IoT 
datasets. Lastly, Ajiboye et al. [36] examine the use of 
Autoencoder Neural Networks (AeNN) for dimensionality 
reduction to enhance Deep Neural Networks (DNN) in 
Intrusion Detection Systems (IDS) for IoT. Using the BoT-
IoT dataset, the study develops a binary classification model 
to detect attacks like DoS, DDoS, and reconnaissance. 
Results show AeNN improves accuracy, with increases of up 
to 13.1% in some cases by enabling better feature selection. 
Despite minor declines in certain scenarios, the study 
concludes that combining AeNN and DNN offers an 
efficient, accurate solution for IoT network security [36]. 

Ultimately, these studies underscore the effectiveness of 
deep learning models in enhancing IoT network security. 
Techniques such as CNNs and RNNs have consistently 
delivered superior results, as evidenced by various research 
efforts. However, challenges like computational costs, data 
dependency, and class imbalance persist. Future research 
should focus on developing scalable, lightweight IDS 
solutions while addressing these limitations. 

 

Fig. 1: Conceptual view of our research methodology 
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V.   ANALYSIS OF PREVIOUS DETECTION 
SYSTEMS 

We summarize the machine learning and deep learning 
approaches presented in Section IV. Table I highlights the 
machine learning algorithms employed in earlier studies 
[11], [12], and [13]. Studies [11] and [12] proposed 
supervised machine learning algorithms to develop binary 
classifiers for detecting Distributed Denial of Service 
(DDoS) attacks. Among these, decision trees outperformed 
KNN and Naïve Bayes in [11], demonstrating superior 
accuracy and reliability. In [12], decision trees were the only 
algorithm explored, albeit using different datasets, as 
detailed in Table I. In [13], the BoT-IoT dataset was utilized 
as it provides a realistic benchmark for forensic analytics, 
capturing various IoT-specific attack scenarios. The machine 
learning algorithms in [13] were applied to build both binary 
and multiclass classifiers, offering a performance 
comparison of the proposed models. This research 
underscores the critical need for robust machine learning 
methodologies tailored to IoT environments to effectively 
detect and mitigate cyber threats. As IoT technologies 
continue to progress, it is crucial to conduct ongoing research 
to improve the accuracy, reliability, and scalability of IDSs. 

Table II summarizes the deep learning approaches 
discussed in Subsection IV-B. CNN-based methods are the 
most commonly used models, as demonstrated in studies 
[14], [15], [16], [19], [24], [26], [28], [29], and [30]. These 
models have been mostly applied to binary classification 
tasks, though some have also been adapted for multiclass 
scenarios. The BoT-IoT dataset, a comprehensive IoT 
benchmark, is the most frequently utilized dataset for 
training and evaluating these classifiers, given its realistic 
attack simulations and relevance to IoT environments. 
Besides CNNs, hybrid deep learning models have been 
proposed, combining CNNs with RNNs, LSTMs, and GRUs 
to improve feature extraction and classification accuracy. 
These hybrid models demonstrate promising results in 
detecting a wide range of IoT attacks. 

Deep learning models have shown significant advantages 
over traditional machine learning approaches in handling 
complex and high-dimensional IoT data. For instance, CNN 
architectures excel at automatic feature extraction and 
classification, enabling accurate detection of anomalies and 
cyber threats. However, these models are computationally 
intensive and require large amounts of labeled data, which 
can limit their practical application in resource-constrained 
IoT environments. Research efforts such as those in [24], 
[26], and [29] address these challenges by proposing 
optimized models and leveraging transfer learning to reduce 

dependency on large datasets. While machine learning 
methods like decision trees and KNN offer simplicity and 
computational efficiency, they struggle to match the 
accuracy and adaptability of deep learning approaches in 
dynamic IoT environments. The increasing complexity of 
IoT networks and the diversity of cyber threats necessitate 
further exploration of hybrid and ensemble learning models. 
Combining the strengths of both machine learning and deep 
learning approaches can offer a more balanced trade-off 
between performance and resource requirements. 

Overall, these findings highlight the ongoing evolution of 
IDS methodologies for IoT networks. Future research should 
prioritize the development of lightweight, scalable models 
capable of real-time intrusion detection without 
compromising accuracy. Additionally, ulitlizing synthetic 
data generation techniques, such as Generative Adversarial 
Networks (GANs), can address class imbalance issues and 
enhance the robustness of IDS models. By addressing these 
challenges, the next generation of IDS solutions can 
effectively safeguard IoT ecosystems against emerging 
cyber threats. 

VI. OVERVIEW OF IOT ATTACK DATASETS 
Various IoT attack datasets have been utilized to develop 

machine learning and deep learning models for detecting 
attacks in IoT environments. In our study, we focused on two 
key datasets: CICIoT2023 and BoT-IoT. The CICIoT2023 
dataset was employed to train and evaluate a range of deep 
learning models, while the BoT-IoT dataset was used during 
the comparative analysis stage to benchmark model 
performance. These datasets were selected due to their 
relevance and comprehensiveness in representing real-world 
IoT attack scenarios. CICIoT2023 offers updated attack 
patterns and traffic data, making it ideal for training robust 
models capable of addressing emerging threats. On the other 
hand, the BoT-IoT dataset, widely recognized for its diverse 
attack scenarios and realistic IoT traffic, serves as a reliable 
benchmark for comparative studies. 

In the following section, we provide a detailed 
explanation of the CICIoT2023 and BoT-IoT datasets, 
followed by a comprehensive comparison to highlight their 
respective features, strengths, and limitations. 

Study Year 
 
Machine Learning 

 
Classification type Dataset 

Binary Multi DT SVM NB KNN RF MLP LR 
[11] 2021 x  x x    x  CIC2019DDoS 

 

[12] 2021 x       x  NSLKDD+ CICIDS2017 
 

[13] 2021 x x  x x x x x x BoT-IoT 
 
 
 

[35] 2024 x x x x x  x x  Simulated 
 

 

TABLE I  SUMMARY FOR TYPES OF MACHINE LEARNING MODELS USED FOR DETECTING 
ATTACKS IN IOT SYSTEMS 
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TABLE II  SUMMARY OF COMMONLY USED DEEP LEARNING APPROACHES FOR ANOMALY 
DETECTION IN IOT SYSTEMS 

 

Studies Year 

Deep learning approaches Classification 
type 

Dataset Supervised 
approaches Unsupervised approaches Hybrid 

approaches Binary Multi 
ANN CNN RNN DNN DBM RBM DBN DA 

[14] 2020 
 

x x x x x x x 
 

x x 
 
CSE-CIC- 
IDS2018 
BoT-IoT 

[15] 2023 
 

x 
       

x x 
 
CSE-CIC- 
IDS2018 
BoT-IoT 

[16] 2021 
 

x 
       

x x 
 
CSE-CIC- 
IDS2018 
BoT-IoT 

[28] 2021 
 x x x      x  

 
IoT-Botnet 
2020 

 

 
[29] 

 

 
2022 

  

 
x 

 

 
x 

     

CN N+ 
RNN 

 

 
x 

 

 
x 

 
NSL-KDD 
BoT-IoT 
IoT- NI 
IoT-23 
MQTT 
MQTTSet 
IoT-DS2 

[32] 2023   x       
RNN+BiLSTM x   

BoT-IoT 
NSL-KDD 

[18] 2024          
CNN+LSTM+ 

GRU 
x x Edge- 

IIoTset 

[19] 2022 
 

x x 
     

CNN+ 
LSTM 

x 
  

UNSW NB15 
NSL-KDD 
KDDCup 99 

 
 

[20] 

 
 

2019 

    
 

x 

      
 

x 

 
 

x 

 
KDDCup 99 
NSL-KDD 
UNSW-NB15 
Kyoto 
WSN-DS 
CICIDS 2017 

[22] 2023    x      x  Owned 
Dataset 

[27] 2022   x       x   
CICIDS-2017 
NSL-KDS 

[26] 2020  x        x  NSL-KDD 

[25] 2021   x       x x NSL-KDD 

[24] 2023 x x x      ANNs+CNNs 
+RNN x x IoT-23 

[30] 2022  x        x x NID 
BoT-IoT 

 

 
[23] 

 

 
2022 

    

 
x 

      

 
x 

 

 
x 

 
NF-BoT IoT 
NF-ToN-IoT 
NF-CSE CIC 
IDS2018 
NF-UNSW 
NB15 
NF-UQ-NIDS 

[21] 2023    x     GANs+DNN  x UNSW- 
NB15 
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A. Overview of the CICIoT2023 Dataset 

The CICIoT2023 dataset [10] is a significant resource for 
IoT security research due to its unique and comprehensive 
features. As one of the largest and most recent datasets 
available in 2023, it provides researchers with a robust 
foundation for developing and evaluating intrusion detection 
systems. The dataset encompasses 33 distinct types of 
attacks, classified into seven categories, making it both 
extensive and diverse. A key feature of CICIoT2023 is its 
realistic nature, as it represents real-time IoT scenarios, 
simulating practical attack patterns and network behaviors. 
The dataset was generated using a meticulously designed 
testbed that included 105 IoT devices, alongside Zigbee and 
Z-Wave devices, to ensure diversity in network topology and 
attack simulations. This comprehensive setup allowed for the 
execution of 33 unique attacks on the network, leveraging 
other IoT devices to replicate realistic threat scenarios. These 

characteristics make the CICIoT2023 dataset particularly 
well-suited for analyzing and mitigating security 
vulnerabilities in modern IoT environments. Additionally, 
CICIoT2023 offers detailed documentation and taxonomy of 
the various attacks and their categories, as illustrated in Fig. 
2. This taxonomy provides researchers and practitioners with 
a structured understanding of the attack landscape, further 
enhancing the dataset’s utility in IoT security applications. 
By expanding a wide range of attack types and device 
interactions, CICIoT2023 sets a benchmark for 
comprehensiveness and realism in IoT dataset development. 
B. BoT-IoT Dataset 

The BoT-IoT dataset [31] was developed using a 
comprehensive testbed designed to simulate a realistic smart 
home IoT network environment. The testbed included a set of 
interconnected virtual machines (VMs) connected via a local 
area network (LAN) and the Internet, with the PFSense 
system serving as the gateway to provide Internet 
connectivity. To replicate the infrastructure of a real-world 
IoT network, an Ubuntu server was used to emulate IoT 
resources, while a Kali Linux VM was employed as the attack 
system to generate malicious traffic. The Ostinato tool 
simulated normal network activity, generating realistic traffic 
patterns to ensure a balanced dataset. To further enhance the 
dataset's realism, a smart home framework was developed, 
incorporating five IoT devices operating locally and 
connected to cloud services through a Node-RED system. 
This setup utilized the MQTT protocol for transmitting IoT 
messages to the cloud, closely mimicking modern IoT 
communication architectures. The result is a dataset that 
accurately reflects the network activity of a typical smart 
home environment, encompassing both benign and malicious 
traffic. 

Fig. 2: Categories and types of attacks in the CICIoT2023 dataset 

Fig. 3: Categories and types of attacks in the BoT-
IoT dataset 
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TABLE III  COMPARISON OF CICIOT2023 DATASET WITH BOT-IOT DATASET [10] 

 
Category Rows Training (80%) validation (10%) Testing (10%) 

DDos 33,984,560 27,187,648 3,398,456 3,398,456 

Dos 8,090,738 6,472,590.4 809,073.8 809,073.8 

Mirai 2,634,124 2,107,299.2 263,412.4 263,412.4 

Benign 1,098,195 878,556 109,819.5 109,819.5 

Spoofing 486,504 389,203.2 28,650.4 28,650.4 

Recon 354,565 283,652 35,456.5 35,456.5 

Web 24,829 19,863.2 2,482.9 2,482.9 

Brute Force 13,064 10,451.2 1306.4 1306.4 

 

Attack Type CICIoT23 Dataset BoT-IoT Dataset 
DoS TCP Flood P P 

HTTP Flood P P 
UDP Flood P P 
SYN Flood P  

DDoS TCP Flood P  
ICMP Flood P  
PSHACK Flood P  
HTTP Flood P P 
RSTFIN Flood P  
UDP Flood P P 
Synonymous IP 
Flood 

P  

SYN Flood P  
UDP Fragmentation P  
ACK 
Fragmentation 

P  

Slow Loris P  
ICMP 
Fragmentation 

P  

Recon Ping Sweep P  
Host Discovery P  
OS Scan P P 
Port Scan P P 
Vulnerability Scan P  

Web-Based Browse Hijacking P  
SQL Injection P  
Command Injection P  
Uploading Attack P  
XSS P  
Backdoor Malware P  

Spoofing Arp Spoofing P P 
DNS Spoofing P  

Mirai Greeth flood P  
Greip flood P  
UDP plain P  

Brute Force Dictionary Brute 
Force 

P P 

 

TABLE IV  DATASET PORTIONS FOR TRAINING, VALIDATION, AND TESTING 
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As illustrated in Fig. 3, the BoT-IoT dataset comprises 
four main attack categories, further subdivided into ten 
subcategories. This taxonomy provides a structured 
framework for understanding and analyzing different types 
of attacks, making the dataset a valuable resource for 
researchers and practitioners. Because it shows a wide range 
of real-life IoT network activity, the BoT-IoT dataset makes 
it possible to test and develop advanced intrusion detection 
and mitigation methods that are specifically designed to 
work in IoT settings. 

C. CICIoT2023 vs. BoT-IoT 
While both the CICIoT2023 and BoT-IoT datasets are 

valuable resources for IoT security research, the CICIoT2023 
dataset [10] offers several remarkable advancements and 
improvements over the BoT-IoT dataset [31]. First, the 
CICIoT2023 dataset is based on an extensive topology 
comprising 105 real IoT devices, whereas the BoT-IoT 
dataset utilizes a smaller set of virtual machines (VMs) to 
emulate the IoT environment. By using real IoT devices, 
CICIoT2023 captures the complexities and refinements 
inherent in IoT networks, including interactions between 
various device types and protocols, such as ZigBee and Z-
Wave. This realism ensures that the dataset more accurately 

reflects real-world IoT scenarios, enhancing its applicability 
for intrusion detection research. Second, the CICIoT2023 
dataset encompasses a broader range of attack scenarios, with 
33 distinct attack types classified into seven categories. In 
comparison, the BoT-IoT dataset focuses on four main attack 
categories with 10 subcategories, offering a less 
comprehensive representation of the threat landscape. Table 
III highlights the differences in attack coverage between the 
two datasets, illustrating how CICIoT2023 provides a more 
detailed and structured taxonomy of attacks. This taxonomy 
facilitates the development and evaluation of advanced 
intrusion detection and mitigation techniques by providing a 
clear categorization of attack types. 

Moreover, the CICIoT2023 dataset includes attacks 
specifically designed to exploit the capabilities of other IoT 
devices, simulating realistic attack vectors observed in real-
world scenarios. This approach enhances the dataset's 
practical relevance, as it reflects the evolving tactics and 
techniques employed by malicious actors targeting IoT 
systems. By providing a detailed and realistic representation 
of IoT threats, CICIoT2023 enables researchers to better 
understand the underlying patterns and characteristics of 
attacks, leading to the development of more targeted and 

Fig. 5: The architecture for the proposed BiLSTM model 

Fig. 4: The architecture for the proposed CNN model 
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effective security solutions. In summary, the CICIoT2023 
dataset stands out as a more comprehensive and realistic 
resource compared to the BoT-IoT dataset. Its extensive 
topology, diverse attack scenarios, and structured taxonomy 
make it an invaluable tool for addressing the complex and 
evolving challenges of IoT security. 

 

VI.  IMPLEMENTATION 
For this experiment, we used Google Colab Pro with 

334.6 GB of RAM and a 225.3 GB disk using TensorFlow 
and TPU v2 as hardware accelerators. Four phases were 
used to implement the proposed framework, as described in 
the following. 

A. Pre-processing of datasets 

The preprocessing of the CIC IoT 2023 dataset included 
consolidating attack labels, removing duplicates, and 
normalizing the numeric features, which are crucial for 
preparing the data in a manner that can effectively support 
the subsequent training and evaluation of deep learning 
models. 

B. The proposed CNN model architecture 
The proposed Convolutional Neural Network (CNN) 

model is designed with a typical layered architecture, 
consisting of convolutional layers for feature extraction, 
pooling layers for dimensionality reduction, and fully 
connected layers for the final classification task. This 
architecture leverages hierarchical feature learning, allowing 
the network to capture both simple and complex patterns 
present in the input data, making it well-suited for the 
multiclass classification problem addressed in this study 
(details in Section II).  

Fig. 4 illustrates the architecture of our proposed CNN 
model. Looking deeply in Fig. 4, the input layer of the model 
applies an initial convolution operation with 64 filters, each 
of size 3 × 1, to the input data. The ReLU activation function 

is employed to introduce non-linearity, allowing the network 
to learn complex patterns. The input shape is determined by 
the number of features in the training dataset, defined as 
X_train.shape[1], with a single channel dimension, as the 
data is one-dimensional.  The model architecture consists of 
three convolutional blocks. Each block is composed of a 
convolutional layer followed by a max-pooling layer: 

• The number of filters in each convolutional layer 
increases progressively across the blocks: 64, 128, 
and 256, respectively. This incremental increase 
enables the model to capture a diverse set of 
features, ranging from simple edges to more 
complex patterns. 

• The convolutional layers use the ReLU activation 
function, which introduces non-linearity and 
prevents issues like the vanishing gradient problem. 

 
Max-pooling layers, specified as MaxPool1D 

(pool_size=2) as shown in Fig. 4, follow each convolutional 
layer. These layers down sample the feature maps by 
reducing the dimensionality along the time axis by a factor 
of 2. Max-pooling retains the most prominent features while 
discarding less significant information, reducing the 
computational load and minimizing the risk of overfitting. 
The output of the last convolutional block is passed through 
a Flatten layer, which reshapes the multi-dimensional 
feature maps into a one-dimensional vector. This 
transformation prepares the data for the fully connected 
layers, enabling the model to interpret the extracted features 
for classification purposes. The network includes four 
densely connected layers, which progressively reduce the 
number of neurons: 
• The fully connected layers have 256, 128, and 64 

neurons, respectively, using the ReLU activation 
function for non-linearity. 

Fig. 6: The architecture for the proposed hybrid CNN-BiLSTM model 
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• To prevent overfitting, L2 regularization is applied to 
each dense layer. Additionally, dropout layers with a 
dropout rate of 20% are added after each dense layer, 
randomly dropping a fraction of the neurons during 
training to enhance generalization. 

 
• The final layer of the CNN model is a dense layer with 

8 neurons, corresponding to the number of classes in 
the CICIoT2023 dataset. A softmax activation function 
is used in this layer, providing a probability distribution 
over the 8 classes, allowing the model to perform multi-
class classification.  
 

C. The proposed BiLSTM model architecture  
The proposed Recurrent Neural Network (RNN) model 

utilizes Bidirectional Long Short-Term Memory (BiLSTM) 
layers to effectively capture temporal dependencies in the 
sequence data. This design choice aims to leverage the 
bidirectional nature of the BiLSTM, enabling the model to 
learn from both past and future contexts simultaneously, 
which is particularly beneficial for tasks that involve 
sequence analysis, such as network traffic anomaly 
detection. Fig. 5 depicts our proposed BiLSTM model 
architecture. To begin with, the BiLSTM model is defined as 
a Sequential model, which organizes layers in a linear stack. 
The architecture begins with a Bidirectional LSTM layer 
comprising 512 units, with the return_sequences=True 
parameter enabled. This configuration ensures that the 
LSTM layer outputs a sequence of vectors, rather than a 
single hidden state, allowing the subsequent layer to process 
temporal dependencies more effectively. The input shape is 
specified as (X_train.shape[1], 1), where X_train.shape[1] 
corresponds to the number of features in the dataset, and the 
channel dimension is set to 1 for one-dimensional data.  

To mitigate the risk of overfitting, a Dropout layer is 
incorporated immediately after the first BiLSTM layer with a 
dropout rate of 50%, randomly dropping half of the neurons 
during training. This helps in regularizing the model by 
preventing it from relying too heavily on specific neurons. 
The second layer is another Bidirectional LSTM, also 
configured with 512 units but without threturn_sequences 
parameter. As a result, this layer outputs a single vector, 
summarizing the learned temporal features across the entire 

input sequence. This compressed representation is then 
passed to the final dense layer for classification. The final 
layer of the model is a dense layer with 8 neurons, 
corresponding to the number of output classes in the dataset. 
A softmax activation function is applied in this layer to 
produce a probability distribution across the 8 classes, 
making it suitable for multi-class classification tasks. 

D. The proposed hybrid CNN-BiLSTM model architecture  

This proposed model architecture integrates 
Convolutional Neural Network (CNN) and Bidirectional 
Long Short-Term Memory (BiLSTM) layers to effectively 
capture both spatial and temporal features in the dataset. This 
hybrid model leverages the strengths of CNN for feature 
extraction and BiLSTM for temporal dependency learning, 
making it well-suited for complex sequence classification 
tasks, such as network attack detection. Fig. 6 illustrates a 
detailed architecture for the proposed CNN-BiLSTM model. 
As shown in Fig. 6, the architecture starts with CNN layers 
for features extraction. The initial layers of the model consist 
of three consecutive 1D convolutional layers, each followed 
by a max-pooling operation. 

The CNN layers are designed to automatically learn and 
extract hierarchical spatial features from the input data: 

• The first convolutional layer uses 64 filters with a 
kernel size of 3 and a ReLU activation function, 
which helps capture local patterns in the data. 

• A MaxPooling layer with a pool size of 2 reduces 
the dimensionality, preserving the most important 
features while reducing computational complexity. 

• This is followed by a Conv1D layer with 128 filters 
and another max-pooling layer, further refining the 
learned spatial features. 

• The final convolutional block uses 256 filters, 
enhancing the model’s ability to detect complex 
patterns and anomalies. 

By stacking multiple convolutional layers, the model 
extracts a rich set of spatial features, which are crucial for 
distinguishing different types of network attacks. The max-
pooling layers help to downsample the data, mitigating the 
risk of overfitting and speeding up training. After extracting 
spatial features, the model passes the output through a series 
of Bidirectional LSTM (BiLSTM) layers. As shown in Fig. 6, 

Fig. 7: A comparison among accuracy, F1Score, recall, and precision across all proposed models.  
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the BiLSTM layers are designed to capture temporal 
dependencies by processing the sequence data in both 
forward and backward directions: 

• The first BiLSTM layer consists of 128 units and 
utilizes return_sequences=True, enabling the layer 
to output a sequence rather than a single hidden 
state. This helps in learning long-range 
dependencies within the data. 

• A Dropout layer with a rate of 0.3 follows, serving 
as a regularization technique to prevent overfitting 
by randomly dropping a fraction of the neurons 
during training. 

• The second BiLSTM layer has 64 units, further 
refining the learned temporal patterns, followed by 
another dropout layer with the same rate. 

The inclusion of BiLSTM layers allows the model to 
effectively capture bidirectional temporal patterns, which are 
essential for understanding the sequential nature of network 
traffic and identifying potential attack sequences. The output 
from the BiLSTM layers is fed into a dense layer with 64 units 
and a ReLU activation function. This layer acts as a bridge, 
transforming the learned features into a more compact 
representation suitable for classification. A dropout layer 
(rate of 0.3) is added to further mitigate overfitting risks. 
Finally, the model ends with a dense layer using a softmax 
activation function, which outputs probabilities for each of 
the attack classes. 
 
E. Training and testing of DL models stage 
 

To facilitate the training and evaluation of deep learning 
models, we implemented a systematic approach to partition 
the CICIoT2023 dataset. Following best practices in machine 
learning and deep learning, the dataset was divided into three 
subsets: training (80%), validation (10%), and testing (10%). 
The training subset, comprising the majority of the dataset, 
was used to enable the deep learning algorithms to learn 
robust feature representations by capturing underlying 
patterns and relationships within the data (see Table IV). The 
validation subset was employed during the training phase to 
monitor performance, assess generalization capabilities, and 
guide decisions on hyperparameter tuning and early stopping. 
Finally, the testing subset, an independent portion of the data, 
provided an unbiased evaluation of the model’s performance 
on unseen data, ensuring its reliability for practical 
deployment. This partitioning approach established a robust 
framework for evaluating model performance and developing 
accurate, generalizable predictive systems. To train the 
models, we used the Adam optimizer with a learning rate of 
0.0001, chosen for its adaptability and robustness in 
optimizing deep neural networks. The loss function, sparse 
categorical crossentropy, was selected as it is well-suited for 
multi-class classification tasks. Additionally, several 
regularization techniques were implemented to enhance 
model performance and prevent overfitting: 

• EarlyStopping: This technique monitored 
validation loss and halted training if no 
improvement was observed for five consecutive 
epochs, reducing training time and mitigating 
overfitting. 

• ReduceLROnPlateau: This method dynamically 
adjusted the learning rate, reducing it by a factor of 

0.5 when the validation loss plateaued, enabling 
finer optimization during later epochs. 

By combining a well-structured dataset partitioning 
strategy with effective optimization and regularization 
techniques, we ensured a rigorous and reliable evaluation of 
our deep learning models’ capabilities. 
 

VI. RESULTS AND DISCUSSION 
In this section, we present the performance of three 

distinct deep learning models—CNN, BiLSTM, and a hybrid 
CNN-BiLSTM—on a multi-class classification task aimed at 
detecting various types of cyber-attacks in IoT environment. 
The goal was to determine which model architecture provides 
the best generalization capability for accurately identifying 
attack types in a CICIoT2023, which is a complex dataset, 
considering both spatial and temporal features of the input 
data. 
 
A. Comparative evaluation of model performance metrics 

 
In Fig. 7, the bar chart presents a comparison of key 

evaluation metrics—accuracy, F1 score, recall, and 
precision—for the three models: CNN, BiLSTM, and CNN-
BiLSTM. These metrics offer a holistic view of the models' 
effectiveness, taking into account not only their overall 
accuracy but also their ability to balance true positives, false 
positives, and false negatives across multiple classes. We are 
going to discuss them in more detail.  
• Accuracy: The CNN model achieves the highest 

accuracy among both the BiLSTM and CNN-BiLSTM 
models. With an accuracy close to 98%, the CNN 
model records superior performance, utilizing its 
convolutional layers to effectively capture spatial 
features in the dataset as shown in Fig. 7. The CNN-
BiLSTM model follows with an accuracy of 
approximately 94%, indicating that the hybrid 
architecture benefits from incorporating temporal 
features through the BiLSTM layers. In contrast, the 
BiLSTM model has the lowest accuracy, around 85%, 
highlighting its limitations in handling complex 
spatial features without convolutional processing. 

• F1 Score: The CNN model again outperforms with the 
highest F1 score, reflecting its strong ability to 
correctly classify both positive and negative instances. 
The CNN-BiLSTM model shows a slightly lower F1 
score but still performs well, suggesting a satisfactory 
trade-off between precision and recall. The BiLSTM 
model has the lowest F1 score, which aligns with its 
reduced accuracy and indicates potential challenges in 
achieving a balanced classification performance. 

• Recall: The CNN model exhibits the highest recall, 
indicating its effectiveness in minimizing false 
negatives, as shown in Fig. 7. The CNN-BiLSTM 
model also shows high recall, benefiting from the 
temporal feature extraction of the BiLSTM layers. 
However, the BiLSTM model falls behind with 
significantly lower recall, suggesting that it struggles 
to identify certain attack types accurately, potentially 
due  
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Fig.8 : Confusion matrix for the proposed CNN, BiLSTM, and hybrid CNN-BiLSTM models 
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to its inability to capture spatial dependencies 
effectively. 

 
• Precision: the CNN model consistently maintains the 

highest precision, showcasing its ability to prevent false 
positives. The CNN-BiLSTM model shows 
competitive precision, slightly lower than the CNN 
model, which may be attributed to the added 
complexity of the temporal layers introducing 
some noise. The BiLSTM model has the lowest 
precision, indicating a higher rate of false positive 
predictions, likely due to its weaker feature 
extraction capabilities. 

 
B.  Confusion matrix analysis 
 

Fig. 8 shows the confusion matrices for the CNN, hybrid 
CNN-BiLSTM, and BiLSTM models. The confusion 
matrices provide a detailed view of the models' classification 
performance across various network attack types. These 
matrices highlight how well each model distinguishes 
between benign traffic and different attack classes, offering 
insights into the strengths and limitations of each 
architecture. 
 
1) CNN model: 

The confusion matrix for the CNN model in Fig. 8(a) 
shows strong performance with minimal misclassifications 
across most classes. The significant diagonal values in the 
matrix indicate excellent precision in classifying high-
volume attack types like DDoS and DoS. The model 
correctly identifies most instances of benign traffic, with 
only minor confusion observed for less frequent attack 
types like Recon and Spoofing. Overall, the CNN model 
demonstrates robust generalization, effectively separating 
most classes with few false positives, supporting its high 
overall accuracy of 98%. 

 
2) Hybrid CNN-BiLSTM model:  

The hybrid CNN-BiLSTM model's confusion matrix in 
Fig. 8(c) shows a few more wrong classifications than the 
CNN model's, mainly when it comes to telling the 
difference between types of attacks like Recon and 
Spoofing. While the model performs well on high-volume 
classes such as DDoS and DoS, there are more errors for 
classes like Mirai and Web attacks. The added complexity 
of the BiLSTM layers, which may introduce noise instead 
of meaningful temporal features for this dataset, could be 
the cause of the increased misclassifications. Despite these 
challenges, the CNN-BiLSTM model still maintains a 
strong performance overall, particularly for classes with 
distinct patterns, achieving an accuracy of 94%.  

 
3) BiLSTM model: 

The BiLSTM model in Fig. 8(b) reveals the highest 
error rates among the three architectures, as seen in its 
confusion matrix. Significant misclassifications occur, 
particularly for classes such as DoS and DDoS, leading to 
the incorrect classification of many samples as other attack 
types. This suggests that the BiLSTM model struggles to 
capture the discriminative spatial features necessary for 
accurate classification. The model's reliance on temporal 
dependencies without spatial feature extraction appears to 

limit its effectiveness, leading to lower overall accuracy. 
The confusion between Recon and Spoofing attacks is also 
notable, indicating difficulties in distinguishing between 
similar attack patterns. 

 
C.  ROC curve analysis for multi-class classification 
 

Fig. 9 presents the Receiver Operating Characteristic 
(ROC) curves, which provide a comprehensive view of the 
classification performance for each model across multiple 
classes. By plotting the True Positive Rate (TPR) against the 
False Positive Rate (FPR) for each class, the ROC curves 
offer insights into the discriminative ability of the models. 
The Area Under the Curve (AUC) is used as a metric to 
quantify this performance, with values closer to 1 indicating 
better classification. 

From Fig. 9.(a), it is noticeable that the ROC for the CNN 
Model demonstrates near-perfect performance, with AUC 
values close to 1.0 for almost all classes. The classes DDoS, 
Benign, Web, and Spoofing exhibit an AUC of 1.0, indicating 
positive rates. The DoS, BruteForce, and Mirai classes also 
show high AUC values, around 0.99, suggesting strong 
classification capability. Exceptional discriminative power 
and near-zero false positives suggest that the slight deviation 
in classes such as Recon (AUC = 0.98) is due to a minor 
challenge in differentiating this class from others, potentially 
due to feature overlap. Overall, the CNN model achieves 
excellent class separability, underscoring its robustness and 
effectiveness in handling diverse attack types.  

Moreover, the ROC of the hybrid CNN-BiLSTM model, 
which is shown in Fig. 9(c), also shows strong ROC 
performance, with AUC values predominantly above 0.99 for 
most classes. High-volume classes such as DDoS, DoS, and 
Web attacks achieve AUC values of 1.0, reflecting the 
model's ability to accurately classify these well-defined 
patterns. However, the AUC for the Recon class is slightly 
lower (0.91), suggesting reduced separability compared to the 
CNN model. The BiLSTM layers added temporal complexity 
may not significantly contribute to distinguishing between 
certain attack types in this dataset. Despite these minor 
variations, the CNN-BiLSTM model maintains a high overall 
classification performance, benefiting from both spatial and 
temporal feature extraction. 

In contrast, Fig. 9(b) depicts the BiLSTM model's ROC 
curve analysis, revealing the highest variability among the 
three models, with several classes displaying lower AUC 
values. While the model achieves perfect AUC scores for 
DDoS, Web, and Spoofing, it struggles with classes like 
Recon and Mirai, where the AUC drops to 0.94 and 0.91, 
respectively. This decline suggests that the BiLSTM model's 
reliance on temporal features alone may not be sufficient to 
differentiate certain classes effectively, particularly when 
spatial features are more informative. Increased false 
positives for classes with overlapping temporal patterns 
hinder the model's overall discriminative ability, despite its 
strong performance on high-volume classes. 
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Fig.9 : ROC curves for the proposed CNN, BiLSTM, and hybrid CNN-BiLSTM models  
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Fig. 10 displays the AUC values for various attack types 
in three different models: the CNN, BiLSTM, and hybrid 
CNN-BiLSTM. The hybrid model consistently achieves the 
highest AUC values across most attack types, indicating 
superior performance. The BiLSTM model shows slightly 
lower performance in some cases, particularly for benign and 
reconnaissance attacks. The CNN model generally maintains 
high AUC values but falls short compared to the hybrid 
model in specific categories. Overall, the hybrid model 
demonstrates robust performance in distinguishing attack 
types, making it the most effective among the three models.  
It is noticeable that Fig. 11 compares the detection accuracy 
of three models, namely CNN, BiLSTM, and Hybrid CNN-
BiLSTM, across various attack types. The CNN model 
demonstrates high accuracy for DDOS, DOS, Mirai, and 
Benign attacks, consistently achieving over 90%. The hybrid 
CNN-BiLSTM model outperforms BiLSTM in most 
categories, particularly for DOS, Benign, and Brute Force 
attacks. BiLSTM shows lower performance in certain cases, 
such as DOS and Brute Force. Recon, Spoofing, and Web 
attacks exhibit relatively lower detection rates across all 
models, indicating potential challenges in identifying these 
attack types effectively. Overall, the hybrid CNN-BiLSTM 
provides a balanced performance, making it a robust choice. 

The results of this study underscore the importance of 
incorporating spatial feature extraction through convolutional 
layers in network traffic classification tasks. The CNN 
model’s robust performance highlights its ability to learn 
discriminative spatial patterns, making it the most effective 
architecture for this dataset. The hybrid CNN-BiLSTM 
model is well-balanced because it uses both spatial and 
temporal features. However, it may need more work, like 
more regularization or advanced feature engineering, to get 
rid of noise and improve classification accuracy. The 
BiLSTM model, on the other hand, demonstrated the 
limitations of relying solely on temporal dependencies, 
suggesting the need to integrate convolutional layers to 
capture local patterns effectively.  

Future work could explore the use of various models that 
combine the predictions of CNN and CNN-BiLSTM 
architectures, potentially leveraging their complementary 
strengths. Additionally, advanced data augmentation 
techniques and hyperparameter tuning could further improve 
generalization and reduce overfitting. This analysis provides  

Fig.10: AUC values of 7 types of attacks detected by the three proposed deep learning models  
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Fig. 11: A comparison of detection accuracy percentages among the three proposed models for various types 
of cyber attacks 
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valuable insights into the design and selection of deep 
learning architectures for network intrusion detection, 
guiding future research in developing more effective and 
robust models for cybersecurity applications.  
 
D. Evaluation of the Proposed Models for DDoS and 

DoS Attack Detection between CICIoT2023 and 
BoT-IoT Datasets 

 
Fig. 12 illustrates the detection performance of CNN, 

BiLSTM, and Hybrid CNN-BiLSTM to DDoS and DoS 
attacks that have been tested for two data sets, that is, the 
CICIoT2023 and Bot-IoT datasets. Accordingly, the result 
yielded by applying the CNN-only model outscored all 
previous models with accuracy as high as 99.8%, though it is 
very closely followed with 98.2% by the hybridized model 
CNN-BiLSTM. The CNN model showed high performance 
for the CICIoT2023 dataset in identifying DDoS attacks, 
while the BiLSTM model gave relatively low performance 
with an accuracy of 96.1%. This analysis has been able to 
achieve complete detection accuracy for the Bot-IoT dataset, 
while CNN and hybrid CNN-BiLSTM architectures reported 
almost perfect detection performances with an accuracy of 
99.99%. The minor variations among these methods show 
that each of them performed highly efficiently in the context 
of the target dataset of DDoS-attack detection and that the 
model BiLSTM is slightly at an advantage over the others. 

What can be concluded that during different datasets and 
kinds of attacks, the CNN model, in general, has shown great 
performance, but it was far better for the CICIoT2023 dataset 
when the DoS attack kind was considered. Another 
competitive performance is from the hybrid CNN-BiLSTM, 
which shows one of the highest performances for the Bot-IoT 
dataset in the detection of DoS attacks. On the other hand, 
BiLSTM performed very inconsistently: this model 
completely failed in the case of the DoS attack for the 
CICIoT2023 dataset but outperformed all other models in the 
detection of DDoS attacks for the Bot-IoT dataset. Therefore, 
this analysis justifies the use of model selection based on the 

characteristics of datasets and types of attacks in IoT security 
applications. More crucially, an in-depth look is necessary at 
the reason behind such variations in the performance 
exhibited by a specific model like BiLSTM. 

 
IX. CONCLUSION 

By using the advanced CICIoT2023 dataset, this study 
did a full comparison of CNN and RNN architectures for 
finding strange things in IoT networks. The findings highlight 
the superior performance of CNN and hybrid CNN-BiLSTM 
models in detecting diverse attack scenarios compared to 
standalone BiLSTM models. The CICIoT2023 dataset was 
very helpful in finding real-life IoT threats and providing a 
strong standard for checking the performance of deep 
learning-based intrusion detection systems (IDSs). Our 
methodological rigor, including precise model architecture 
design, hyperparameter optimization, and thorough 
performance evaluation, underscores the viability of deep 
learning in enhancing IoT network security.  

As a step forward, efforts will focus on refining the 
CNN-BiLSTM model by incorporating advanced feature 
selection methods and shifting toward a more granular 
classification of attacks based on specific types. In addition, 
we are going to optimize the hybrid CNN-BiLSTM using the 
Kepler Optimization Algorithm (KOA), as suggested in [34]. 
This refinement approach can enhance detection accuracy 
and scalability. Adding federated learning, a decentralized 
framework [33], will also make it possible to train across 
distributed IoT data sources while reducing the 
computational challenges that come with big datasets like 
CICIoT2023. Federated learning is a revolutionary way to 
quickly and safely find anomalies because it allows for 
parallel processing and lowers the risks of centralization. 
Ultimately, the insights from this research contribute to the 
development of robust and scalable IDS solutions for IoT 
networks, paving the way for future innovations in securing 
the rapidly expanding IoT ecosystem.  

 
 
 

Fig. 12: Performance comparison of the three proposed deep learning models in detecting DDoS and DoS 
attacks using CICIoT2023 and BoT-IoT datasets  
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