
 

  

Abstract—Due to the randomness and fluctuation of wind 

speed, the accuracy of wind speed prediction through a single 

model is relatively low. In response to this issue, this paper 

integrated the advantages of the Improved Crested Porcupine 

Optimizer (ICPO), Convolutional Neural Network (CNN), 

Bi-directional Gated Recurrent Unit (BiGRU), and the 

Attention mechanism, and constructed the ICPO-CNN- 

BiGRU-Attention prediction model. Firstly, aiming at the 

disadvantage that traditional CPO algorithm is easy to fall into 

local optimization, and the good point set strategy is used to 

initialize the population, so that the population distribution is 

uniform. Tangent flight operator and Cauchy mutation strategy 

are used to optimize the position of the Crested porcupine, 

balance the ability of local development and global search, and 

further improve the convergence performance of the algorithm. 

Then, this model used the ICPO algorithm to optimize the 

learning rate, the convolution kernel size, the number of BiGRU 

neurons, and the key value of Attention mechanism in the 

combined CNN-BiGRU-Attention model, and the optimal 

hyper-parameter combination was given to the combined model 

for model training and wind speed prediction. Based on the 

wind speed data from a wind farm in the United States, the 

proposed model’s prediction performance was compared with 

that of CNN, BiGRU, CNN-BiGRU, CNN-BiGRU-Attention, 

and CPO-CNN-BiGRU-Attention, and the error evaluation 

indexes of each model were calculated. The experimental results 

indicate that the proposed model in this paper is superior to 

others, with higher prediction accuracy and better stability, 

which verifies the feasibility and superiority of the 

ICPO-CNN-BiGRU-Attention model in wind speed prediction, 

and has certain practical significance and application value.  

 
Index Terms—Wind speed prediction, Crested porcupine 

optimizer, Combined model, Good point set initialization, 

Tangent flight strategy, Cauchy mutation strategy 
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I. INTRODUCTION 

WITH the extraction and consumption of fossil energy 

sources, including coal, oil, and natural gas [1], the emission 

of greenhouse gases such as carbon dioxide continues to rise, 

aggravating the greenhouse effect of the earth. Thus, the 

problem of fossil energy shortage and environmental 

pollution has become increasingly prominent [2]. In the 

process of facing these challenges, the development and 

application of new energy have become increasingly 

important [3]. 

Wind energy is a renewable energy source that is 

characterized by being low-carbon and clean [4]. It not only 

has great development potential, but also can reduce the 

dependence on fossil energy and minimize greenhouse gas 

emissions, thereby mitigating environmental pollution [5]. 

However, owing to the fluctuating characteristics and 

instability of wind speed [6], wind speed has a certain 

volatility. The integration of wind power into the grid 

significantly affects the stability of the power system's 

operation [7]. Therefore, accurate forecasting of wind speed 

is of great significance to boost the efficiency of wind energy 

utilization, and reducing greenhouse gas emissions. It holds 

significant importance in achieving sustainable energy 

development and environmental protection [8]. 

At present, domestic and foreign experts have done a lot of 

study on short-term wind speed prediction. One of the 

commonly used prediction methods is machine learning, 

which includes Convolutional Neural Networks (CNN) [9], 

Gated Recurrent Unit (GRU) [10], Back Propagation (BP) 

[11], etc. However, the single model for predicting wind 

speed has certain limitations, and numerous researchers have 

proposed combined models. 

Combined models integrate multiple single prediction 

models to enhance the prediction accuracy [12]. Chen et al. 

[13] built a short-term wind speed combined prediction 

model relying on a two - step decomposition method. Robust 

empirical model decomposition (REMD) and wavelet packet 

decomposition (WPD) were used to decompose the wind 

speed series, and then the decomposed data were utilized to 

train and forecast the LSTM-ARIMA model. The 

experimental outcomes demonstrate that the hybrid 

forecasting model achieves greater accuracy compared to 

individual models. He et al. [14] constructed the combined 

ARIMA-LS-SVM model, and corrected the prediction error 

of the ARIMA model by introducing the least square support 

vector machine (LS-SVM). The evaluation index of the 

combined model has been significantly improved compared 

with the ARIMA model. Wang et al. [15] created a 
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CNN-LSTM-ARIMA ultra-short-term wind speed prediction 

model, and the experimental findings verifies the combined 

model’s superior predictive accuracy. 

In the process of wind speed prediction, the prediction 

model's hyperparameters are typically adjusted manually 

based on experience, making it challenging to ensure the 

effectiveness of predictions. To enhance the model's 

performance, an optimization algorithm was employed to 

refine the model's hyperparameters [16].  Wang et al. [17] 

adopted an enhanced sparrow search algorithm to perform 

the hyperparameter optimization of the CNN - BiGRU model, 

and adaptively searched for the best parameter combination. 

The findings reveal that the ISA-CNN-BiGRU model 

achieves superior prediction accuracy compared to other 

models. Zhu et al. [18] used the Firefly improved Sparrow 

search algorithm (FA-SSA) to optimize the parameters of the 

CNN-BiLSTM-Attention runoff prediction combined model, 

and the optimized model has higher prediction accuracy. 

Cheng et al. [19] proposed a gray wolf optimization 

algorithm to optimize the CNN-BiLSTM ultra-short-term 

wind power prediction model, and the experimental 

outcomes validated the efficacy and advantages of the 

proposed model. 

In this study, to minimize the error and enhance the 

accuracy of the wind speed forecasting model, the 

CNN-BiGRU-Attention model was constructed by 

combining the CNN network for feature extraction of wind 

speed data, the BiGRU network for capturing bidirectional 

dependency of wind speed series data and the Attention 

mechanism for optimizing the output weights of network 

models. Meanwhile, the combined model’s hyperparameters 

were optimized by the Improved Crested Porcupine 

Optimizer (ICPO). The specific improvement measures are 

as follows:  

(1) The good point set strategy is employed to initialize the 

population, ensuring a more uniform initial distribution. 

(2) The tangent flight strategy was applied to enhance the 

position update formula of Crested Porcupine during the 

initial defense phase. 

(3) The Cauchy mutation strategy was utilized to refine the 

position update formula for Crested Porcupine's fourth 

defense stage. 

Then, the ICPO-CNN-BiGRU-Attention model is 

constructed for wind speed prediction. Experimental 

validation was performed using the wind speed data from a 

wind farm in the United States across different wind turbines. 

The prediction performance of the ICPO-CNN-BiGRU- 

Attention model was assessed by comparing it with the CNN, 

BiGRU, CNN-BiGRU, CNN-BiGRU-Attention, and 

CPO-CNN- BiGRU-Attention models. Meanwhile, the error 

evaluation indexes for each model were calculated to further 

demonstrate the proposed method's effectiveness and 

advantages. 

II. THEORETICAL BASIS  

A. Convolutional Neural Network (CNN) 

CNN is a deep learning model, which mainly includes 

input layer, convolutional layer, pooling layer, fully 

connected layer and output layer [20], and its structure is 

shown in Fig. 1. The input layer is used to accept the input of 

the original data; convolutional layer is the cores of CNN, 

and extracts input data’s features; the pooling layer is 

employed to reduce the input and extract the most essential 

features [21]; the fully connected layer transforms the 

features extracted by the convolutional and pooling layers 

into the final output categories. Output layer is the network's 

prediction of the input data.  

Input

Fully 

Connected

Output

... ...

Convolutional

Pooling

 

Fig. 1. The CNN structure 

CNN is categorized into one-dimensional (1D CNN), 

two-dimensional (2D CNN), and three-dimensional (3D 

CNN) convolutions based on its structural design [22]. 1D 

CNN is utilized for processing time series data, 2D CNN is 

employed in image processing and text recognition, and 3D 

CNN primarily handles data with both time and spatial 

dimensions. The wind speed data analyzed in this paper 

belong to time series data. Thus, 1D CNN is selected to 

extract the features of the original wind speed data, and 

eliminate the latent interdependencies among various 

features, extraneous noise, and instability components. Then, 

the wind speed data processed by CNN is fed into the BiGRU 

for prediction.  

B. Bi-directional Gated Recurrent Unit (BiGRU) 

 BiGRU is a special variant of recurrent neural networks 

(RNN) [23] with a combination of two one-way GRU 

networks, and is commonly applied for time series data 

processing. The structure of GRU includes an update gate 

and a reset gate, as shown in Fig. 2. The function of the reset 

gate rt is to selectively forget the irrelevant information of the 

previous moment, and minimize the impact of irrelevant 

information on critical features. The update gate zt is utilized 

to assess the size of the current time step in retaining the state 

information from the previous time step, thereby 

strengthening the correlation between temporal 

characteristics [24]. 

xt

zt

rt

ht-1

σ 

σ tanh

ht

th

 

Fig. 2. The GRU structure 

rt and zt are defined by Equations (1) and (2): 

 rt= (wrxt+urht-1) (1) 

 zt= (wzxt+uzht-1) (2) 
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where, xt is the input at the current time; wr and ur are the 

weight matrixes of reset gate; wz and uz are the weight 

matrixes of the update gate; ht-1 is the status of the previous 

time; ht is the output at the current time;  is the sigmoid 

activation function. 

The current output ht of the GRU is calculated by 

Equations (3) and (4): 

 ht=zt ht-1+(1- zt)
th   (3) 

 
th =tanh (wzxt+urrt ht-1)  (4) 

where, tanh is the hyperbolic tangent activation function, and 

th  is the hidden state of reset gate. 

In contrast to basic one-way GRU, BiGRU is capable of 

simultaneously utilizing information flows in both forward 

and reverse directions for analyzing time series. Structurally, 

BiGRU is a bidirectional recurrent neural network formed by 

integrating two GRUs that propagate in opposite directions 

[25]. The structure of BiGRU is illustrated in Fig. 3. 

x1 x2 xt+n

GRU GRU GRU

GRU GRU GRU

ht ht+1 ht+n

......

......

Forward

Reverse

......

......  

Fig. 3. The BiGRU structure 

C. Attention Mechanism 

The Attention mechanism, widely used in artificial 

intelligence, mimics the way humans allocate focus when 

processing information [26], and its structure is shown in Fig. 

4. Through the attention mechanism, the model can 

effectively utilize temporal information, and concentrate on 

the nearest time point, thus improving the model's forecasting 

precision. 

y
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xt+nxt xt+1 ...

...

at
at+1
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Fig. 4. The Attention structure  

where, x is the input of BiGRU; h is the output of the BiGRU; 

a is the different weights assigned to h by the Attention 

mechanism; y is the output of the Attention mechanism. 

D. Crested Porcupine Optimizer  

The Crested Porcupine Optimizer (CPO) is an innovative 

intelligent optimization algorithm proposed in 2024 [27]. It 

draws inspiration from the four defense strategies of the 

Crested Porcupine (CP) against predators: sight, sound, smell, 

and physical attack. The whole algorithm completes the 

exploration and development based on the above strategies. 

During the optimization process, sound and sight defense 

mechanisms help the algorithm explore uncharted territory 

for a global search, known as the exploration phase. Smell 

and physical attack mechanisms are used to develop known 

information and conduct a local search, called the 

development phase.  

(1) Population initialization 

The CPO algorithm generates the initial population using 

Equation (5): 

 ( ) 1, 2,...,iX Lb rand Ub Lb i N= +  − =，  (5) 

where, Ub and Lb are the upper and lower bounds of the 

population, respectively; rand is a random number between 

[0, 1]; N is the population number. 

(2) Cyclic Population Reduction 

The Cyclic Population Reduction (CPR) technique is a 

unique mechanism in the CPO algorithm, which enhances 

convergence speed while preserving population diversity. 

The CPO implemented CPR to ensure that only threatened 

CPs would activate the defense mechanism, while not 

including all CPs in the population. Therefore, those 

threatened CPs are removed from the population during the 

optimization process in this strategy. Subsequently, they are 

re-introduced into the population to enhance diversity and 

prevent entrapment in local minima. The CPR technique is 

simulated by Equation (6): 

 max
min min

max

( , / )
( ) (1 )

/

rem t T T
N N N N

T T
= + −  −  (6) 

where, Nmin is the ratio of the selected partial CP; rem is a 

complementary function; t is the t-th iteration; Tmax is the 

maximum number of iterations; T is a cyclic variable that 

controls the number of times the performed CPR technique.  

(3) The first defense strategy: sight 

When CPs are faced with danger, they intimidate predators 

by flapping their feathers. Subsequently, the predators make 

decisions according to their proximity distance to CPs. This 

behavior is represented by Equation (7). 

 1 | 2 |t t t t
i i CP iX X randn rand X y+ = +    −  (7) 

where, Xt is the individual position at the t-th iteration; randn 

is utilized to generate random variables that satisfy the 

normal distribution (when |randn| < 1 or > -1, predators will 

move closer to CPs, otherwise away from CPs); XCP is the 

optimal solution in the population at the t-th iteration; yt is the 

location of the predator, and calculated by Equation (8):  

 ( ) / 2t t t
i i ry X X= +   (8) 

where, Xr is the position of CP randomly selected in the 

population, and r is the random number between [1, N].  

(4) The second defense strategy: sound 

When the first defense strategy does not drive the predator 

away, the CPs execute the second defense strategy. CPs 

threaten and repel predators by making noise, and this 

behavior is simulated by Equation (9): 

 1
1 2(1 ) ( ( ))t t t t t

i i i r rX U X U y rand X X+ = −  +  +  −   (9) 

where, r1 and r2 are different random numbers between [1, N], 

respectively. U is a randomly generated binary vector, and 

determines whether a predator approaches CPs. When U=0, 
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predators are away from the threatened CPs; When U=1, the 

predator continues to move towards CPs. Otherwise, the 

distance between the predator and CP stays unchanged. 

(5) The third defense strategy: smell 

When both the first and second defense policies fail, CPs 

implement the third defense strategy. By releasing an 

unpleasant odor to deter predators, this behavior is simulated 

by Equation (10): 

 

1
1

2 3

(1 ) (

          ( ) )

t t t t
i i r i

t t t
r r t i

X U X U X S

X X rand S 

+ = −  +  +

 − −   
  (10) 

where, r3 is a random number between [1, N] that differs from 

r1 and r2; S is the odor diffusion factor;  controls the search 

direction; t is a defense factor. S, , and t are calculated by 

Equations (11)-(13). 

 

1

( )
exp( )

( )

t
t i
i N t

kk

f X
S

f X 
=

=
+

  (11) 

 
1,   0.5

1,  

if rand

else



= 

−
  (12) 

 max(1/ )
max2 (1 ( / ))

T
t rand t T =   −   (13) 

where, f( · ) is the objective function value of the i-th 

individual at the t-th iteration;  is a small value to avoid 

being divided by zero. 

(6) The fourth defense strategy: physical attack 

All three existing defense strategies are ineffective, 

indicating that the predator is very close to CPs, and CPs 

execute the fourth defense strategy. CPs attack the predator 

until it is incapacitated, and this behavior is simulated by 

Equation (14): 

 

1 ( (1 ) )

          ( )

t t
i CP

t t t
CP i t i

X X rand rand

X X rand F



  

+ = +  − +

  − −   
 (14) 

where,  is the convergence speed factor. Fi is the average 

force of CP affecting the i-th predator, and calculated by 

Equations (15)-(18): 

 1( )t t t
i i i iF rand m V V+=   −   (15) 

 
1

( ) / (exp( ( )) )
Nt t

i i kk
m f X f X 

=
= +   (16) 

 t t
i iV X=   (17) 

 1t t
i rV X+ =   (18) 

where, mi is the mass of the i-th individual; Vt is the initial 

speed of the individual at the t-th iteration; Vt+1 is the final 

speed of the individual at t+1-th iteration. 

(7) Transition between exploration and development phases 

In CPO, the first and second defense strategies are utilized 

for location updates in the exploration phase, and the third 

and fourth defense strategies are used in the development 

phase. The conversion of the two-stage location update is 

simulated by Equation (19): 

 

1 2
3 4

1 21

5
3 4

5

.(3),  
,  

.(5),  

.(6),  
,  

.(10),  

t
i

Eq rand rand
rand rand

Eq rand rand
X

Eq rand Tf
rand rand

Eq rand Tf

+

 



= 


 

  (19) 

where, rand1-rand5 are different random numbers between [0, 

1]; Tf is a constant value between [0, 1], and is used to 

alternate between two defense strategies during the 

development phase. 

E. Improved Crested Porcupine Optimizer 

As a recently developed algorithm, CPO shows robust 

optimization performance and fast convergence. However, it 

faces an imbalance between global exploration and local 

refinement, hindering the attainment of the global optimal 

solution. To address these limitations, this research 

introduces an enhanced CPO algorithm. 

(1) Good point set initialization 

Since the CPO population initialization method is 

randomly generated, it may lead to the initial population 

distribution being too concentrated, which increases the risk 

of the algorithm converging to local optima. Random 

initialization may not cover effectively all regions of the 

solution space, resulting in an incomplete search. To solve 

this problem, this paper introduces a good point set to 

initialize the CP (CPs) population. 

Suppose Gs is a s-dimensional Euclidean geometric space, 

then r ∈ Gs.  

 ( )      ( ) (n) (n) (n)

n 1 2 sP r , r ... r ,1 nq q q q q=       (20) 

where, deviation (n) satisfies 1(n) (r, )nC   − += . C (r, ε) is 

a constant, only related to r and ε(ε>0). Then Pn(q) is called a 

good point set and r is called a good point. The value of r is: 

 ( ) 2
2cos ,1

q
r q s

p


=    (21) 

where, p is the smallest prime number satisfying (p-3) /2≥s. 

Therefore, based on the good point set theory, the new 

initialization equation is:  

  nP ( ) ( ) 1,2,...,iX Lb q Ub Lb i N= + − =，  (22) 

Fig. 5 shows 1000 crested porcupine individuals generated 

in the range [0,1] using random generation and good point set 

theory, respectively. In Fig. 5, the CP individuals are evenly 

distributed in the entire search space after initialization with 

the good point set theory, and the quality and stability of the 

initial population are improved, which helps the algorithm 

escape local optima and achieve the global optimal solution. 

 
 (a) Good point set (b) Random 

Fig. 5. Initialization of CPs. 

(2) Tangent flight strategy 

In the first defense strategy phase, the distance between the 

predator and the CPs will either decrease or increase, which 

will make the algorithm's local search and global search 

unbalanced. So, this study introduced the tangent flight 

strategy to improve the CPO, its mathematical model can be 

described as follows: 

IAENG International Journal of Computer Science

Volume 52, Issue 5, May 2025, Pages 1442-1452

 
______________________________________________________________________________________ 



 

 tan( )
2

f v


=  (23) 

 (1, )v randn d=  (24) 

where, v is a random number with a uniform distribution in 

the range of [0,1]; d refers to the dimension of the function.  

The position update formula after introducing the tangent 

flight strategy in the first defense stage is modified as: 

 
1 | 2 | tan( )

2

t t t t
i i CP iX X randn rand X y v

+ = +    −  (25) 

Tangent flight balances local refinement and global 

exploration effectively. Tangent flight effectively balances 

local refinement and global exploration. The tangent flight 

operator acts as a scaling factor to regulate the distance 

between the predator and CPs, which improves the CPO 

algorithm's convergence and prevents it from being trapped 

in local optima. 

(3) Cauchy mutation strategy 

The predator is very close to the CPs when the algorithm 

reaches the fourth defense strategy stage. This results in the 

limitation of the search space of the predator, which makes 

the algorithm to easily become trapped in the local optimum 

and unable to conduct the global search. To solve this 

shortcoming, the Cauchy mutation operator is incorporated to 

enhance population diversity and assist the algorithm in 

escaping local optima during later stages. The probability 

density function of the Cauchy distribution is: 

 
2

1
( ) , ( , )

(1 )
f x x

x
=  − +

+
 (26) 

Fig. 6 illustrates the curves corresponding to the Gaussian 

and Cauchy distributions. 

 

Fig. 6. Probability density function curve of Gaussian distribution and 

Cauchy distribution. 

The Cauchy distribution is similar to the standard Gaussian 

distribution in that it is a continuous probability distribution. 

However, the value of the Cauchy distribution at the origin is 

smaller, and the rate of approaching zero at both ends is 

slower, so it can produce larger perturbations than the 

Gaussian distribution.  

Therefore, Cauchy mutation was used to perturb the 

position of the CP population in the fourth defense strategy, 

to expand the search scale of the CPO algorithm and improve 

the ability of the algorithm to jump out of the local optimal. 

The updated formula of the fourth defense strategy after 

improvement is shown in Equation (27): 

 

1 ( (1 ) )

          ( )

t t
i CP

t t t
CP CP t i

X X rand rand

Cauchy X X rand F



 

+ = +  − +

  + −   
 (27) 

F. Algorithm performance testing 

To evaluate the performance of the proposed ICPO 

algorithm, validation experiments were conducted using 

various test functions. The experiments included two 

unimodal and two multimodal functions, as detailed in Table 

I. 

In Table I, f1 and f2 represent unimodal functions, while f3 

and f4 indicate multi-modal functions. For the initialization of 

each algorithm, the population size is 30, the maximum 

number of iterations reaches 200, and the spatial dimension is 

30. Fig. 7 shows the average convergence of the two 

algorithms when running independently for 30 times in 

different test functions. 

From Fig. 7, the ICPO algorithm has a smaller fitness 

value and faster convergence speed than the CPO algorithm 

regardless of unimodal functions or multi-modal functions. 

This confirms the optimization effect and stability 

characteristics of the ICPO algorithm. 
TABLE Ⅰ 

 Test functions 

Function Boundary 
Optimal 

Solution 

1

1 1

( )
nn

i i

i i

f x x x
= =

= +   [-10,10] 0 

2

2

1 1

( )
n i

j

i j

f x x
= =

 
=  

 
   [-100,100] 0 

2

3

1

( ) 10cos(2 ) 10
n

i i

i

f x x x
=

 = − +   [-5.12,5.12] 0 

2

4

1 1

1
( ) cos( ) 1

4000

nn
i

i

i i

x
f x x

i= =

= − +   [-600,600] 0 

 
(a) f1 

 
(b) f2 
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(c) f3 

 

(d) f4 

Fig. 7. Convergence curve of the test function 

To comprehensively evaluate ICPO's performance, 

statistical metrics (best values, standard deviation, and 

average) were calculated for four test functions after running 

both algorithms independently 30 times under identical 

conditions. The results are presented in Table II. 

Table II 

The statistics of four test functions based on two algorithms 

Algorithm 
CPO ICPO 

Function Index 

f1 

best 1.62e-16 2.06e-43 

std 8.82e-08 8.09e-27 

average 3.81e-08 2.29e-27 

f2 

best 8.85e-28 8.49e-85 

std 1.04e-09 8.73e-53 

average 1.95e-10 1.59e-53 

f3 

best 0 0 

std 18.7263 0 

average 3.4189 0 

f4 
best 0 0 

std 3.13e-12 0 

average 5.79e-13 0 

For the ICPO algorithm, the minimum and average values 

of the four test functions possess the least standard deviation 

and are in closest proximity to the theoretical optimal 

solutions. This offers complete verification that the 

optimization performance and stability of ICPO algorithm 

are superior. 

Besides, to prove the stability of ICPO algorithm more 

clearly, the box diagram was drawn in Fig. 8. 

 

Fig. 8. Boxplot of two algorithms 

In Fig. 8, the ICPO algorithm exhibits a narrower box 

height, lower median, and fewer outliers across all test 

functions, highlighting its superior performance and strong 

stability. 

Ⅲ. ICPO-CNN-BIGRU-ATTENTION PREDICTION MODEL 

With the aim of enhancing the exactness in wind speed 

prediction, a short-term forecasting model using ICPO- 

CNN-BiGRU-Attention is introduced. 

First, the CNN-BiGRU-Attention model is built by 

combining CNN, BiGRU, and Attention, and its structure is 

shown in Fig. 9. 

Fully 

Cconnected

Attention

BiGRU

CNN

Output

.. ..

.. ..

Inputx1 xn-1x2 xn

...

BiGRU

..

..

Convolution

Pooled

BiGRUBiGRU

y1 yn-1y2 yn

...

h1 ht-1 ht

+

x1 xn

h1 ht

y1 yn
 

Fig. 9. The CNN-BiGRU-Attention structure diagram 

IAENG International Journal of Computer Science

Volume 52, Issue 5, May 2025, Pages 1442-1452

 
______________________________________________________________________________________ 



 

The processed wind speed data are input into the model, 

and the convolution layer is utilized to carry out convolution 

calculation and feature extraction for the multi-dimensional 

data. The maximum pooling layer serves the purpose of 

extracting main features and ignoring irrelevant features, and 

reducing data complexity. The pooled one-dimensional 

feature data are sent to the BiGRU layer, fully extracting the 

time series features of the data, and then the time series 

training is carried out. The Attention mechanism is utilized 

for distributing diverse weights to the feature vectors 

processed by BiGRU, and the output wind speed is calculated 

through the fully connected layer. The structure of the 

CNN-BiGRU-Attention model includes the following units:  

Step 1: Input layer. The input vector dimension is 800×10, 

and the wind speed data are processed into 10 columns by the 

rolling prediction method. 

Step 2: CNN layer. This layer consists of a convolution 

layer and a pooling layer. The size of the convolution kernel 

is 3, the step size is 1, and the activation function adopts the 

ReLU function [28]. To retain more wind speed data 

information, the pooling layer utilizes a maximum pooling 

approach with a pooling size of 3 and a step size is 1 [29]. The 

data undergoes feature extraction via the convolutional and 

pooling layers before being passed into the BiGRU network. 

Step 3: BiGRU layer. Forward and reverse BiGRU layers 

are employed to analyze the features extracted by the CNN 

layer. 

Step 4: Attention layer. The Attention layer receives the 

hidden state ht from BiGRU as input. 

Step 5: Output layer. The fully connected layer is utilized 

to link with the Attention layer, the number of neurons is 25, 

and the Sigmoid function is adopted as the activation 

function. 

Subsequently, the ICPO algorithm is utilized to optimize 

the values of four hyperparameters in the CNN-BiGRU- 

Attention network, reduce the risk of overfitting and enhance 

the model's prediction accuracy. The convolutional kernel 

number in the CNN convolutional layer, the neuron number 

in the BiGRU hidden layer, the learning rate, and the key 

value of the Attention mechanism were set as the 

optimization parameters. Fig. 10 shows the optimization and 

prediction flow of the ICPO-CNN-BiGRU-Attention. 
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Fig. 10. The ICPO-CNN-BiGRU-Attention model flow chart 

The optimization and prediction process of the combined 

model is as follows: 

Step 1: The maximum iterations, population size, and 

other parameters of the ICPO algorithm were initialized, and 

the mean square error was selected as the fitness function. 

Step 2: Initialize the ICPO-CNN-BiGRU-Attention 

parameters, and set the parameter optimization interval. The 

upper and lower limits of the four hyperparameters are as 

follows: [2, 10], [10, 50], [0.001, 0,01], [2, 50]. 

Step 3: The initial position of the CP individual was 

randomly generated, and calculated the fitness values. Sort 

and find the best and worst fitness values, representing the 

corresponding individual positions. 

Step 4: The position of CP was updated according to 

Equations (25), (9), (10), and (27), and the fitness value of CP 

was recalculated. Meanwhile, the individual optimal position 

and global optimal position were updated [30]. 

Step 5: The algorithm judges if the maximum iterations 

have been reached. Once this limit is attained, the algorithm 

halts and outputs the optimal CP positions along with the best 

- performing model parameters. Otherwise, return to step 4 

and the iteration will continue. 

Step 6: The ICPO-CNN-BiGRU-Attention model is 

trained with optimal network parameters, and then proceed 

short-term wind speed prediction. 

IV. EXAMPLE ANALYSIS 

A. Data collection and pre-processing 

The experiment adopts the historical operation data of 

wind turbines in a wind farm in the United States, the dataset 

consists of a set of data every 5 minutes. The wind speed data 

of wind turbines A-02, A-09, and A-13 were selected as the 

sample data. 810 wind speed data points are chosen from 

00:00 on September 1 to 19:25 on September 3 for each wind 

turbine.   

Meanwhile, the data are processed using a rolling 

prediction method with n=10, where data points x1, x2, …, xn 

predict xn+1, and x2, x3, …, xn+1 forecast xn+2. After processing, 

each dataset comprises 800 data points. The first 720 points 

were used as training samples, while the remaining 80 were 

used as test sets to assess predictive performance. The three 

processed data sets are represented as dataset A-02(dA-02), 

dataset A-09(dA-09), and dataset A-13(dA-13).  

Given the substantial volume of input data for the model, 

this may affect the convergence performance and learning 

rate of the neural network. Therefore, before training and 

testing neural networks, the data need to be normalized, and 

can enhance the network's ability to extract data correlations 

and improve training effectiveness and accuracy. The 

normalization formula is shown in (28): 

 
min

max min

k
k

x x
y

x x

−
=

−
 (28) 

where, xk is the original data before normalization; yk is the 

data after normalization; xmax and xmin are the maximum and 

the minimum values respectively in the dataset before 

normalization [31]. 

B. Error evaluation index  

The Mean Square Error (MSE), Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), and R-square (R2) were used as 
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evaluation indicators. Equations (29)-(33) show the 

computation formulas: 
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where, M indicates the number of samples, xi represents the 

measured wind speed data, ˆ
ix  denotes the predicted wind 

speed data from the six models, and  ix  is the average of the 

measured wind speed data. Among, the smaller the values of 

MSE, RMSE, MAE the MAPE, the better the prediction 

effect of the models. The closer the R2 value is to 1, the 

greater the stability for the models. 

C. Model parameter settings 

Adam optimization algorithm was adopted to optimize the 

network parameters, and ICPO algorithm parameters were 

set according to the literature [27]. The parameters were set 

as shown in Table III. 

TABLE ⅠII 
 Parameter setting 

Argument Parameter 
 setting Argument Parameter  

setting 
GRU training times 1000 T 2 

Learning rate 0.001  0.2 
Regularization parameter 0.001 N 8 

convolution kernel 3 Tmax 10 
pooling size 3 Nmin 6 

Tf 0.8   

D. Experimental results and analysis  

To assess the predictive performance of the 

ICPO-CNN-BiGRU-Attention model, six models (CNN, 

BiGRU, CNN-BiGRU, CNN-BiGRU-Attention, CPO- 

CNN-BiGRU-Attention, and ICPO-CNN-BiGRU-Attention) 

were experimentally verified using three datasets from the 

different wind turbine, and the prediction results were shown 

in Figs. 11-13. Meanwhile, the error evaluation indexes of six 

models based on different datasets are calculated and listed in 

Tables IV-VI. 

For the prediction results of dA-02 in Fig. 11, the proposed 

model outperforms other prediction models at numerous 

sample points, and those points in the 60-80 range are 

particularly closer to the actual measured values. Single 

models CNN and BiGRU have the largest prediction error, 

while combined models always perform better than single 

models. 

 

Fig. 11. Prediction comparison of six models (dA-02) 

TABLE IV 

Error evaluation indexes (dA-02) 

Model MSE(m/s) RMSE(m/s) MAE(m/s) MAPE R2 

CNN 0.32864 0.57327 0.44042 8.9865% 62.1057% 

BiGRU 0.36665 0.60552 0.49931 9.9931% 45.6348% 

CNN-BiGRU 0.31458 0.56087 0.46113 8.9135% 68.4147% 

CNN-BiGRU-Attention 0.26379 0.51361 0.39398 7.6487% 71.5631% 

CPO-CNN-BiGRU-Attention 0.23994 0.48984 0.36898 7.0739% 73.9673% 

ICPO-CNN-BiGRU-Attention 0.21545 0.46416 0.34577 6.7482% 76.6246% 
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Fig. 12. Prediction comparison of six models (dA-09) 

TABLE V 

Error evaluation indexes (dA-09) 

Model MSE(m/s) RMSE(m/s) MAE(m/s) MAPE  R2 

CNN 0.32841 0.57307 0.47216 8.4198% 47.3617% 

BiGRU 0.39111 0.62539 0.53688 11.0813% 24.0449% 

CNN-BiGRU 0.31103 0.5577 0.46552 9.5663% 66.2559% 

CNN-BiGRU-Attention 0.28816 0.53681 0.44142 9.1204% 67.8157% 

CPO-CNN-BiGRU-Attention 0.24408 0.49404 0.39663 8.1449% 69.201% 

ICPO-CNN-BiGRU-Attention 0.17389 0.417 0.30886 6.1511% 78.3561% 

 
Fig. 13. Prediction comparison of six models (dA-13) 

TABLE VI 
Error evaluation indexes (dA-13) 

Model MSE(m/s) RMSE(m/s) MAE(m/s) MAPE  R2 

CNN 0.45157 0.67199 0.51464 8.758% 59.8299% 

BiGRU 0.38349 0.61926 0.49369 9.4922% 41.4462% 

CNN-BiGRU 0.34983 0.59146 0.46988 8.9496% 68.4131% 

CNN-BiGRU-Attention 0.3234 0.56868 0.45491 8.3591% 68.9194% 

CPO-CNN-BiGRU-Attention 0.30112 0.54884 0.43881 8.2619% 71.2465% 

ICPO-CNN-BiGRU-Attention 0.26646 0.5162 0.40855 7.6009% 74.3915% 
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Fig. 14. Error index histogram of six models 

In Table IV, the five error evaluation indexes of the 

ICPO-CNN-BiGRU-Attention model were compared with 

CNN, BiGRU, CNN-BiGRU, CNN- BiGRU-Attention, and 

CNN-BiGRU-Attention. MSE decreased by 34.44%, 41.2%, 

31.5%, 18.3%, and 10.2%, respectively; RMSE declined by 

19.0%, 23.3%, 17.2%, 9.6%, and 5.2%, respectively; MAE 

reduced by 21.5%, 30.8%, 25.0%, 12.25%, and 6.3%, 

respectively; MAPE diminished by 24.9%, 32.5%, 24.3%, 

11.8%, and 4.6%; R2 increased by 23.8%, 67.9%, 12.0%, 

7.1%, and 3.6%, respectively. Therefore, the ICPO-CNN- 

BiGRU-Attention model manifests the most outstanding 

prediction capabilities. 

As shown in Fig. 12, among the prediction outcomes 

yielded by the six models, the ICPO-CNN-BiGRU-Attention 

model indicated the best performance, while the single model 

had the largest prediction error. 

In Table V, as opposed to the other five models, the five 

error evaluation indexes of the proposed model have been 

improved to a certain extent. MSE decreased by 47.1%, 

55.5%, 44.1%, 39.7%, and 28.7%, respectively; RMSE 

declined by 27.2%, 33.3%, 25.2%, 22.3, and 18.5%, 

respectively; MAE reduced by 34.6%, 42.5%, 33.6%, 30.0%, 

and 22.1%, respectively; MAPE diminished by 26.9%, 

44.5%, 35.7%, 32.5%, and 24.5%; R2 increased by 65.4%, 

225.8%, 18.3%, 15.5%, and 13.2%, respectively. 

Observing the prediction results in Fig. 13, except for a 

few sample points, the predicted values generated by the 

model proposed in this paper are much nearer to the 

measured values compared with those of other models. Based 

on the computation presented in Table VI, the error 

evaluation index for the ICPO-CNN-BiGRU-Attention 

model demonstrates superior performance. So, it can be 

concluded that the findings align with those of dA-02 and 

dA-09. 

For a clearer comparison of the six prediction models, their 

performance was assessed using MSE, RMSE, MAE, MAPE, 

and R2. The results are shown in Tables IV-VI. To visualize 

the error metrics more effectively, histograms were used to 

display the error evaluation indicators for each model across 

the three datasets, as illustrated in Fig. 14. 

Fig. 14 clearly describes the change trend of the five error 

evaluation indexes. Evidently, when considering different 

datasets, the model presented herein has the best calculation 

results of the error evaluation indexes and the optimal 

prediction performance. 

In summary, the proposed model has the best prediction 

effect on dA-09, which is obviously better than that of the 

other two wind turbines. However, from the comparison of 

error evaluation indicators on the data of different wind 

turbines, the ICPO-CNN-BiGRU-Attention model always 

maintains the optimizer prediction performance among the 

six prediction models. 

 Ⅳ. CONCLUSION 

Due to the randomness and variability of wind speed, 

achieving accurate wind speed predictions is challenging. To 

tackle this issue, this study introduces a short-term wind 

speed prediction method using a combined CNN-BiGRU- 

Attention model optimized by the ICPO algorithm, validated 

with datasets from various wind turbines. 

The conclusions of this paper mainly include: 

(1) This paper integrates the strengths of CNN, BiGRU, 

and Attention mechanisms to construct a CNN-BiGRU- 

Attention model, addressing the issue of low prediction 

accuracy for wind speed using a single model. 
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(2) The good point set initialization strategy, tangent flight 

operator, and Cauchy mutation strategy are employed to 

enhance the traditional CPO algorithm, with test functions 

confirming that the ICPO algorithm achieves faster 

convergence and higher accuracy.  

(3) The ICPO algorithm was applied to optimize the four 

hyperparameters of the CNN-BiGRU-Attention model, 

addressing the challenges of multiple parameters and difficult 

selection in the combined model, and constructing the 

ICPO-CNN-BiGRU-Attention wind speed prediction model. 

This significantly enhanced the efficiency and accuracy of 

the model.  

(4) The ICPO-CNN-BiGRU-Attention model was tested 

using datasets from various wind turbines to validate its 

universality for short-term wind speed prediction. The results 

demonstrate that the proposed model outperforms other 

comparative models. 

In conclusion, the proposed ICPO-CNN-BiGRU-Attention 

model effectively performs short-term wind speed 

forecasting and shows superior predictive performance 

across datasets from different wind turbines. This research 

provides valuable insights for the power sector to enhance the 

dispatch of wind energy resources and holds significant 

practical implications. 
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