
 

  
Abstract— This study presents an enhanced Adaptive Binary 

Manta Ray Foraging Optimization (ABMRFO) algorithm for 

feature selection in QSAR biodegradation classification. The 

proposed method integrates an adaptive Sigmoid transfer 

function for binary conversion and a dynamic somersault 

factor for improved search efficiency. Nine ABMRFO variants 

were tested on the QSAR Biodegradation dataset using hold-

out validation over 150 iterations, evaluated based on 

classification accuracy, convergence speed, fitness value, and 

computational efficiency. Among the evaluated variants, 

ABMRFO3 emerged as the top performer, achieving the 

highest classification accuracy of 90.38% while selecting an 

average of only 9.2 features. It demonstrated strong 

optimization capabilities with the lowest mean fitness value 

(0.0975), best fitness (0.0548), and worst fitness (0.1193). Its 

fast convergence was evidenced by an average computational 

time of 27.92 seconds. The Friedman test ranked ABMRFO3 

first with a sum of ranks of 19, confirming its superior 

performance. Additionally, the Wilcoxon signed-rank test 

indicated statistically significant improvements of ABMRFO3 

over other algorithms, further validating its effectiveness. Its 

adaptive mechanisms ensure exceptional search accuracy, 

computational efficiency, and solution stability, making it a 

robust solution for complex feature selection tasks in QSAR 

modeling. 

 
Index Terms—Adaptive BMRFO, Descriptor selection, 

Biodegradation classification, QSAR modelling 

I. INTRODUCTION 

HEMINFORMATICS is a field within information 

technology focused on managing, analyzing, and 

manipulating chemical data, such as small molecule 
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structures, properties, and biological activities [1]. Within 

cheminformatics, a central research focus is Quantitative 

Structure-Activity Relationship (QSAR) modeling, which 

predicts chemical compounds' behavior based on their 

structural attributes using mathematical, statistical, and 

informatics methods [2]–[4]. One critical application of 

QSAR modeling is in assessing the biodegradability of 

chemicals. This vital environmental parameter determines 

how quickly and efficiently a substance can be broken down 

by natural biological processes, such as microbial activity. 

Biodegradability is essential for minimizing the long-term 

accumulation of harmful chemicals in the environment, as 

substances that are not readily biodegradable can persist, 

leading to ecological and health risks [5] and [6]. QSAR 

models have been widely used to predict whether a chemical 

is readily biodegradable or not, utilizing molecular 

descriptors such as chemical functional groups, structural 

properties, and physicochemical data [6]. These models help 

reduce the need for extensive experimental testing, which is 

both costly and time-consuming [5] and [7]. Despite the 

utility of QSAR models, they face significant challenges 

when dealing with high-dimensional datasets, which often 

result in overfitting and poor generalization [3]─[8].  

Feature selection (FS) has emerged as an effective 

solution to mitigate these challenges [9] and [10]. However, 

traditional methods often become impractical for high-

dimensional datasets due to their high computational 

complexity and inefficiency [11]. FS is inherently a non-

deterministic polynomial-time (NP-hard) problem [12], 

meaning it requires exponential time to find the optimal 

subset of features. To overcome these limitations, FS is 

often reformulated as an optimization problem, where 

swarm intelligence (SI) algorithms are widely employed to 

explore the solution search space more efficiently [13]–[15]. 

A very accurate search for the solution is expected when SI, 

which is a technique for quickly implementing a global 

search, is integrated into the solution search [16]. 

One widely used SI algorithm is the Manta Ray Foraging 

Optimization (MRFO) algorithm [17]. Although effective, 

MRFO has certain limitations, particularly its ability to 

exploit complex problem spaces fully. In addition, the No-

Free-Lunch (NFL) theorem, which was developed by [18], 

claims that there is no one method that can effectively 

address all optimization issues [18]. The standard MRFO 

algorithm, initially designed for continuous optimization 

tasks, may struggle with FS problems that require navigating  
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binary solution spaces.  

This limitation underscores the need to enhance the 

conventional MRFO algorithm to better adapt it for FS 

tasks. This paper introduces an enhanced binary MRFO 

(BMRFO), integrating an adaptive Sigmoid transfer function 

and a dynamic somersault factor to improve. It aims to 

strengthen exploration-exploitation trade-offs and reduce 

entrapment in suboptimal solutions.  Our algorithm is 

evaluated on high-dimensional QSAR datasets, showing 

significant improvements in both accuracy and 

computational efficiency. 

In this paper, we highlight the following key 

contributions: 

1) Optimization Framework for Feature Selection: We 

formulate an optimization problem aimed at minimizing 

the number of selected features while enhancing 

classification accuracy, striking a balance between 

dimensionality reduction and predictive performance. 

2) Introduction of Adaptive Binary Manta Ray Foraging 

Optimization (ABMRFO): We propose the ABMRFO 

algorithm specifically tailored for feature selection 

tasks. This algorithm incorporates a dynamic 

somersault foraging factor and an adaptive transfer 

function as its binary mechanism, extending the 

conventional MRFO algorithm for improved 

performance in binary optimization. 

3) Comprehensive Performance Evaluation: We evaluate 

the performance of nine variants of ABMRFO 

algorithm using the QSAR Biodegradation dataset from 

the University of California, Irvine (UCI) Machine 

Learning Repository. The results are compared against 

the conventional MRFOv3 algorithm, validating the 

enhancements introduced by ABMRFO through 

benchmarking with state-of-the-art algorithms in the 

field. 

The remainder of this paper is organized as follows: 

Section II explains the related works of the study. Section III 

describes the methodology, covering the MRFO algorithm, 

the proposed adaptive BMRFO algorithm, and the 

experimental setup. Section IV presents the results and 

discussion, providing a detailed analysis of the findings. 

Finally, Section V concludes the paper by summarizing the 

key insights and contributions. 

 

II. RELATED WORKS 

The idea behind QSAR is to convert the process of 

searching for compounds with desired qualities, which is 

based on chemical intuition and experience, into a 

mathematically quantified and automated form [19]. 

Molecular descriptors can be used to describe the molecular 

composition in computational method. Practically, 

molecular descriptors are chemical information recorded 

within molecular structures for which numerous sets of 

methods are available for transformation. Once the chemical 

descriptors are determined, they will be used as independent 

variables in the QSAR model. The activities that can be 

modeled by QSAR are dependent variables of the QSAR 

model. These dependent variables are expected to be 

influenced by the independent variables which are molecular 

descriptors. Environmental applications of the QSAR model 

have expanded to include testing materials' biodegradability 

without requiring chemical reactions. The structures of the 

related compounds and experimental biodegradation data 

are used to generate QSAR models for biodegradation. The 

ability to produce statistically meaningful predictions and 

infer the physicochemical characteristics of the 

corresponding molecules are two benefits of QSAR models 

[19]–[21]. Limited works have employed QSAR models to 

estimate biodegradability of chemical compounds as 

displayed in Table I [20]. 

 
TABLE I 

RELATED WORK ON THE CLASSIFICATION OF BIODEGRADABLE 

SUBSTANCES 

Ref Machine Learning Model 

[22] Four QSAR models were developed for predicting primary and 

ultimate biodegradation rate rating with multiple linear regression 

(MLR) and support vector regression (SVR) algorithms. 
[23] SVM models with linear and RBF kernels, random forest (RF), 

and Naïve Bayesian (NB) and their Ensemble. 

 

There are minimum works that apply QSAR models in 

binarization approach for MRFO. Recent years have seen an 

increase in the use of binary MRFO in numerous 

applications; some of the works are given in Table II. 

 
TABLE II 

RELATED WORK ON THE BMRFO ALGORITHM 

Ref Variant Algorithms Application 

[24] 
and 
[25] 

Binary BWOA, 

BPSO, 

BGWOA, and 
BMRFO 

On the chemical dataset, the gathered 

results demonstrated that the proposed 

approaches performed well. One of 
these findings was near-optimal 

convergence, along with improved 

classification accuracy, accelerated 
processing, and a substantial 

reduction in descriptor size. 

[26] BMRFO This methodology was validated with 
the NSL-KDD and CIC-IDS2017 

intrusion detection datasets and was 

tested against GA, PSO, GWO, and 

GOA. A statistical significance test 

indicates a significant difference 

between the proposed model and the 
comparative approaches for F-

measure. 

[27] MRFO Comparing the BMRFO against other 
methods in the literature, the results 

show that it achieved the maximum 

accuracy with less attributes. 

 

Dynamic parameter adjustment has significantly 

improved algorithm performance in recent years [28]. To 

avoid early convergence, for example, a study from [29] 

dynamically modified the somersault factor, while a further 

investigation from [30] proposed a spirally element to 

improve search efficiency inside a specified region. 

Similarly to [31], the author has modified the r value during 

the chain foraging phase, using a higher value in the early 

stages to enable longer strides and speed up population 

convergence toward the optimal solution. In [32], the author 

addressed optimization challenges by presenting an 

adaptive-somersault version of the MRFO approach to 

improve both local and global search abilities. To improve 

the original MRFO's optimization efficiency, the suggested 

method combines an adaptive sine-based position updating 

mechanism. An adaptive scheme of control factor, which 

included the somersault factor, was incorporated in [33], in 

order to broaden the exploration range of the MRFO during 

the early phase and to enhance its capabilities of exploitation 
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during the later phase. In [34], the IBMRFO approach is 

presented as a solution to the joint feature selection issue. It 

enhances the conventional MRFO by including a binary 

approach, an adaptive element of somersault foraging, and a 

chaotic map of tent for population initiation, which increases 

its efficacy for feature selection. 

 

III. METHODOLOGY 

A. Manta Ray Foraging Optimization (MRFO) Algorithm 

The MRFO algorithm was first introduced in 2020 [17], 

drawing inspiration from the food-searching behavior of 

manta rays. The MRFO employed three unique search 

strategies to address continuous optimization problems. 

 

Chain Foraging 

In the MRFO algorithm, manta rays detect plankton and 

move toward areas with higher concentrations, assuming the 

best solution is like the most concentrated plankton. They 

form a chain, where each ray follows both the best-known 

solution and the one ahead of it, updating their position in 

every iteration. The mathematical model of chain foraging 

represented in (1). 

 

xi
d(t+1)= {

xi
d(t)+r (xbest

d (t) − xi
d(t)) +α (xbest

d (t) − xi
d(t)) , i = 1

xi
d(t)+r (xi-1

d (t) − xi
d(t)) +α (xbest

d (t) − xi
d(t)) , i = 2,…,N

 
(1) 

α=2r√|log(r)|
 

(2) 

 

where 𝑥 denotes the position of the search agent or manta 

ray. i is the order of the manta ray, d denotes the search 

space dimension, t the iteration number, and r is a random 

vector in [0,1]. α represents the weight coefficient. The 

position with the highest plankton concentration is denoted 

as xbest
d  and it is assumed as the best solution in MRFO.  

 

Cyclone Foraging 

The search agent, a manta ray, swims in a spiral form 

toward the plankton and connects with other manta rays via 

a head-to-tail link. Equation (3) provided the following 

definition for the mathematical description of the spiral-

shaped movement. 

 

xi
d(t+1)= {

xbest
d (t)+r (xbest

d (t) − xi
d(t)) +β (xbest

d (t) − xi
d(t))    i=1

xbest
d (t)+r (xi-1

d (t) − xi
d(t)) +β (xbest

d (t) − xi
d(t))  i=2,…,N

 
(3) 

β=2e
r1

T-t+1
T sin (2πr1) (4) 

 

where T is the maximum number of iterations, β is a weight 

coefficient and r1 is a random vector in [0, 1]. A new 

random position that is far from the current best one is 

assigned to each search agent to promote an extensive global 

search in MRFO. Equation (5) expressed the mathematical 

model. 

 

xrand
d =Lb

d
+r • Ub

d − Lb
d
 (5) 

xi
d(t+1)= {

xrand
d (t)+r (xrand

d (t) − xi
d(t)) +β (xrand

d (t) − xi
d(t)) , i = 1

xrand
d (t)+r (xi-1

d (t) − xi
d(t)) +β (xrand

d (t) − xi
d(t))  , i = 2,…,N

 (6) 

 

where 𝑥𝑟𝑎𝑛𝑑
𝑑  indicates the search agent random position,  

Lb
d
 and Ub

d
 are lower and upper boundaries and 𝑑 denotes 

the dimension of the search space. 

 

Somersault Foraging 

The spot of the best plankton discovered thus far is used 

as a pivot. Every search agent turns around and swims back 

and forth before somersaulting into a new location. Equation 

(7) displayed the model mathematically. 

 
xi

d(t+1)=xi
d(t)+S (r

2
• xbest

d − r3 • xi
d(t)), i=1,2,…,N (7) 

 

where 𝑆 is the somersault factor, 𝑟2, 𝑟3 are random numbers 

in [0,1]. 

 

B. Adaptive Binary MRFO Algorithm 

This section explains the enhancements to the BMRFO 

algorithm, explicitly focusing on the adaptive transfer 

function and the dynamic somersault factor. 

 

Adaptive Transfer Function  

To convert the continuous MRFO into a binary one, this 

study utilizes an adaptive transfer function (TF). This study 

uses an adaptive modified Sigmoid transfer function within 

the MRFO algorithm. Originally proposed in [35], this 

function effectively converts the real-valued position data of 

search agents into probability values between 0 and 1. The 

authors demonstrated significant improvements in selecting 

informative descriptors and achieving high classification 

accuracy compared to the standard Sigmoid transfer 

function. The transfer function is represented in (8). 

 

𝑆𝐼𝐺 − 𝑇𝑣 (𝑥𝑖
𝑑(𝑡 + 1)) =

1

1 + 𝑒
−10(

𝑥𝑑
𝑖 (𝑡+1)

𝑇𝑣 −0.5)

 (8) 

 

where 𝑥 denotes the position of the search agent or manta 

ray, i is the order of the manta ray, d denotes the search 

space dimension and t is the iteration number. 𝑇𝑣 is a time-

varying control parameter provides an adaptive behavior to 

the standard modified Sigmoid transfer function [36]. Next, 

the binarization rule in (9) from [37] is utilized to update the 

position vector based on the calculated probability values 

obtained in  (8). The equation is presented below. 

 

𝑥𝑖
𝑑(𝑡 + 1) = {

1, 𝑖𝑓 𝑟𝑎𝑛𝑑 <  𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥𝑑
𝑖 (𝑡 + 1))

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(9) 

 

with 𝑟𝑎𝑛𝑑 signifying a random number drawn from the 

uniform distribution [0,1]. 

This study investigates the efficacy of three (3) 𝑇𝑣 

strategies within MRFO algorithm. This strategy enables the 

exploration of different regions within the search space, 

enhancing the algorithm’s ability to identify the global 

optimum. Choosing an appropriate 𝑇𝑣 formulation for the 

transfer function (TF) is essential in MRFO to prevent early 

convergence and avoid getting stuck in local minima. The 
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equations for 𝑇𝑣 strategies are outlined in Table III. 

 
TABLE III 

DIFFERENT 𝑇𝑣 FORMULATIONS 

TF 𝑇𝑣 

SIG-𝑇𝑣1 𝑡𝑚𝑎𝑥 − (𝑡𝑚𝑎𝑥 −  𝑡𝑚𝑖𝑛) × (𝑡 𝑇⁄ ) 

SIG-𝑇𝑣2 𝑡𝑚𝑎𝑥 − (𝑡𝑚𝑎𝑥 −  𝑡𝑚𝑖𝑛) × (𝑡 𝑇⁄ )𝛼, 𝛼 = 0.5 

SIG-𝑇𝑣3 𝑡𝑚𝑎𝑥 − (𝑡𝑚𝑎𝑥 −  𝑡𝑚𝑖𝑛) × 𝑙𝑜𝑔10(1 + 9 × 𝑡 𝑇⁄ ) 

 
The SIG-𝑇𝑣1 approach follows a linear adaptive strategy, 

consistent with the findings of prior studies by [3] and [38]–

[40]. The second approach, labeled as SIG-𝑇𝑣2, employs a 

non-linear adaptive method, as supported by the findings in 

[41]. Furthermore, the third approach, referred to as SIG-
𝑇𝑣3, utilizes a logarithmic adaptive technique, originally 

introduced by [42]. In these strategies, the variable 𝑡 

represents the current iteration number, while 𝑇 denotes the 

maximum number of iterations permitted in the optimization 

process. Additionally, 𝑡𝑚𝑎𝑥 and 𝑡𝑚𝑖𝑛  correspond to the 

maximum and minimum allowable values for the control 

parameter 𝑇𝑣, respectively. The value of 𝑇𝑣 decreases 

systematically over successive iterations, facilitating 

adaptive control. For this research, specific parameter values 

were selected based on established findings in prior studies. 

The maximum value 𝑡𝑚𝑎𝑥  was set at 4, while the minimum 

value 𝑡𝑚𝑖𝑛  was assigned a value of 0.01, following the 

recommendations from [39]. The parameter 𝛼, influencing 

the adaptation rate, was chosen as 0.5, in line with findings 

reported in [38]. These parameter choices ensure a robust 

and dynamically responsive optimization process, guided by 

well-established theoretical foundation.  

 

Dynamic Somersault Factor 

In the conventional BMRFO algorithm, the somersault 

factor 𝑆 is fixed at 2. In this paper, the manta ray agent 

updates its somersault position using a dynamic somersault 

factor based on the same adaptive strategies employed in the 

adaptive transfer function. This enhancement improved the 

agents' exploration and exploitation capabilities as the 

search progressed. The specific equations governing the 

dynamic somersault factor are detailed in Table IV. 

 
TABLE IV 

DIFFERENT 𝑆 FORMULATIONS 

S Mathematical Equation 

S1 𝑡𝑚𝑎𝑥𝑠 − (𝑡𝑚𝑎𝑥𝑠 − 𝑡𝑚𝑖𝑛𝑠)  ×  (𝑡 𝑇⁄ ) 

S2 𝑡𝑚𝑎𝑥𝑠 − (𝑡𝑚𝑎𝑥𝑠 − 𝑡𝑚𝑖𝑛𝑠)  ×  (𝑡 𝑇⁄ )𝛼, 𝛼 = 0.5 

S3 𝑡𝑚𝑎𝑥𝑠 − (𝑡𝑚𝑎𝑥𝑠 − 𝑡𝑚𝑖𝑛𝑠)  ×  𝑙𝑜𝑔10(1 + 9 × 𝑡 𝑇⁄ ) 

 

The parameters 𝑡𝑚𝑎𝑥𝑠 and 𝑡𝑚𝑖𝑛𝑠 represents the maximum 

and minimum allowable values, respectively, for the 

dynamic control parameter 𝑆 [33]. In this research, the 

specific values for 𝑡𝑚𝑎𝑥𝑠, 𝑡𝑚𝑖𝑛𝑠, and 𝛼 were set to 2, 0.01 

and 0.5, respectively, as originally introduced by [17], [38] 

and [33]. The proposed dynamic 𝑆 factor decreases 

progressively over time. Fig. 1 shows the original and 

proposed 𝑆-factor values over 150 iterations. The work aims 

to enhance the BMRFO algorithm by incorporating adaptive 

and dynamic mechanisms as illustrated in Fig. 2. 

 

Fitness Function 

The two main goals of improving classification accuracy 

and reducing the number of features is used to evaluate the 

feature selection algorithm's efficacy. In order to balance 

these goals, this feature selection method uses a fitness 

function. The chosen feature subsets are evaluated using a 

wrapper-based feature selection technique that employs a K-

Nearest Neighbors (K-NN) classifier with the Euclidean 

distance metric where k = 5. The well-known categorization 

method K-NN is renowned for its simplicity, quickness, and 

ease of use [43]–[45]. The K-NN classifier’s classification 

error rate obtained during the evaluation is incorporated into 

the fitness function formulation in Eq.(10). The optimization 

algorithm leverages a fitness function to assess candidate 

feature subsets based on two key criteria: the classification 

error rate and the number of selected features. An optimal 

subset achieves both a low error rate and a minimal feature 

count, which is reflected in a lower fitness value indicating a 

more relevant and efficient selection. 

 

↓ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝛼 ×  𝐶𝐸 +  𝛽 ×
|𝐹𝑠𝑒𝑙𝑒𝑐𝑡|

|𝐹𝑎𝑐𝑡𝑢𝑎𝑙|
 

(10) 

 

In (10), CE represents the classification error rate 

determined by the classifier. |𝐹𝑠𝑒𝑙𝑒𝑐𝑡| indicates the number 

of selected features, while |𝐹𝑎𝑐𝑡𝑢𝑎𝑙| denotes the total number 

of original features. The parameters, α and β correspond to 

the significance of classification quality and subset length, 

respectively. The values α ∈ [1, 0] and β = (1 −  α) are 

derived from [23] and [24]. For this work, the classification 

performance is prioritize as the most importance metric, thus 

α is set to 0.99, and β is set to 0.01 following guidelines 

from [46] and [48]. 

 

C. Experimental Settings 

This section explains the dataset, parameter settings, and 

performance measurements used in this study. 

 

Dataset 

This study utilized QSAR Biodegradation dataset by [6] 

obtained from University of California, Irvine (UCI) 

Machine Learning Repository. Data pre-processing was 

performed using Weka Explorer where the nominal class 

labels: RB (readily biodegradable) and NRB (not readily 

biodegradable) were converted into binary values, 0 and 1, 

respectively, to enable machine learning models to classify 

chemicals into two distinct classes. A detailed description of 

the dataset is provided in Table V below. 

 
TABLE V 

DATASET DESCRIPTION 

Dataset Name Feature size Instance size No. of classes 

QSAR 

Biodegradation 

41 1055 2 

RB (366) / 

NRB (699) 
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Fig. 1. Fixed S factor and proposed dynamic S1, S2, and S3 factor values. 

  
START 

  #Step 1: Initialize parameters 

  Define time-varying parameters: t_max, t_min 

  Define dynamic somersault factor parameters: t_maxs, t_mins 

  Initialize N, T, Tv, S, Ub, Lb 

  #Step 2: Generate a uniform random initial population X of manta rays within [lb, ub] 

  FOR i FROM 1 TO N DO 

    X(i,d) = lb + (ub - lb) * rand(0,1) 

  ENDFOR 

  #Step 3: Compute fitness of each manta-ray 

  Evaluate fitness of each manta-ray 

  Identify the best solution Xbest with the lowest fitness value Fitbest 

  #Step 4: Initialize iteration counter 

  t = 1 

  #Step 5: Optimization loop 

  WHILE t <= T DO 

    #Update Time-Varying and Dynamic Somersault factor Parameters 

    Update Tv formulations 

    Update S formulations 

    #Decision making based on probability 

    IF r < 0.5 THEN 

      Update position of manta-rays using Equation (1) 

    ELSE 

      IF (t/T) < r2 THEN 

        Update position of manta-rays using Equation (5) 

      ELSE 

        Update position of manta-rays using Equation (3) 

      ENDIF 

    ENDIF 

    #Mapping and binarization 

    Map manta-ray position to probability using transfer function 

    Transform probability value to binary using binarization rule 

    Evaluate fitness of updated manta-rays 

    Update global best manta-ray 

    #Somersault foraging update 

    Update position of manta-rays using Equation (7) 

    Map manta-ray position to probability using transfer function 

    Transform probability value to binary using binarization rule 

    Evaluate fitness of updated manta-rays 

    #Increment iteration counter 

    t = t + 1 

  ENDWHILE 

  #Step 6: Return the best solution 

  RETURN Xbest 

END 
Fig. 2. Pseudocode of the proposed ABMRFO algorithm. 
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Parameter Setting 

In the experiment, each algorithm was run ten times using 

a variety of random seeds to ensure reproducibility and 

provide different data partitioning. This is one way to 

inspect the robustness of the proposed algorithm. Each run 

was subjected to 150 iterations. A stratified hold-out 

validation technique, similar to those in [49] and [43], was 

used, dividing the data into 80% for training and 20% for 

testing. During optimization, the classifier was trained on 

the training data, and the testing data was used to evaluate 

the performance of the selected features. TABLE VI 

displays nine variants of ABMRFO algorithm with different 

combination of transfer functions and somersault factors. 

The results are average metrics calculated from ten 

independent runs to account for potential variations. The 

algorithm was developed and executed using MATLAB 

R2023b on a DESKTOP-AS4B9A8 with an Intel(R) 

Core(TM) i5-8250U CPU @ 1.60GHz   1.80 GHz, running 

on Windows 11 Home Single Language and equipped with 

8 GB of RAM. Additionally, we conducted feature selection 

using eight state-of-the-art swarm intelligence (SI) 

optimization algorithms, applying the parameter settings 

outlined in TABLE VII. The performance of these 

algorithms was compared against our proposed method to 

evaluate its effectiveness and superiority in feature selection 

tasks. 

 
TABLE VI 

DIFFERENT VARIANTS OF THE PROPOSED ABMRFO ALGORITHM 

Algorithm TF S 
ABMRFO1 SIG-𝑇𝑣1 S1 
ABMRFO2 SIG-𝑇𝑣2 S1 
ABMRFO3 SIG-𝑇𝑣3 S1 
ABMRFO4 SIG-𝑇𝑣1 S2 
ABMRFO5 SIG-𝑇𝑣2 S2 
ABMRFO6 SIG-𝑇𝑣3 S2 
ABMRFO7 SIG-𝑇𝑣1 S3 
ABMRFO8 SIG-𝑇𝑣2 S3 
ABMRFO9 SIG-𝑇𝑣3 S3 

 
TABLE VII 

PARAMETER SETTINGS 

Algorithm Parameter Value 

All Search agent size, N 15 

 Iteration length, T 150 

 No. of runs, R 10 

 Problem dimension 41 

 α in the fitness function 0.99 

 β in the fitness function 0.01 

MRFOv3 [27] Somersault factor, S 2 

BMRFO [25]   

BMRFOTV1 [24]   

BCSA [50] Flight length, FL 1.8 

 Awareness probability, AP 0.1 

bGOW2 [51] - - 

BHHO-TV1 [39] Escaping energy, E 2 to 0 

BWOA-3 [35] a 2 to 0 

BWOATV2  [24] 

 

Performance Measurement 

This study investigates how well the suggested improved 

BMRFO algorithm performs by evaluating numerous 

performance measurement metrics. The performance 

analysis metrics are described as follows: 

1) Average fitness (MeanFit) is used to evaluate the 

convergence ability. 

2) Best fitness (BestFit) is used to determine the minimum 

fitness value obtained from 10 run times. 

3) Worst fitness (WorstFit) is used to determine the 

maximum fitness value obtained from 10 run times. 

4) Average classification accuracy (AvgAcc) reflects how 

effectively the classifier can classify data using the 

descriptors selected by the algorithm. 

5) The average number of selected descriptors (AvgNd) 

indicates the quantity of relevant descriptors chosen by 

the algorithm. 

6) Average precision (AvgPre) measures the positive 

patterns correctly predicted from the total predicted 

patterns in a positive class. 

7) The Average F1 Score (AvgF1-Score) evaluates the degree 

of accuracy, reflecting the balance between sensitivity 

and precision. 

8) In seconds, average computational time (AvgCT) 

measures the convergence speed of the algorithm, 

representing the time required to complete the search 

and selection process. 

Moreover, two non-parametric statistical analysis 

methods, Friedman-test (FT) and Wilcoxon signed-rank test 

were employed. The Friedman test was employed to identify 

significant differences in rankings across multiple 

performance metrics when evaluating various SI algorithms. 

This approach ensures a robust comparison by accounting 

for differences in performance across algorithms under 

similar experimental conditions, highlighting statistically 

significant variations in their effectiveness. The Wilcoxon 

signed-rank test at a significance level of 0.05, is conducted 

to determine whether significant performance differences 

exist between the proposed enhanced BMRFO algorithm 

with existing BMRFO algorithms and other state-of-the-art 

SI algorithms. The null hypothesis, which asserts no 

considerable difference between the two algorithms, is 

accepted if the p-value is greater than or equal to 0.05. 

Conversely, if the p-value is less than 0.05, the null 

hypothesis is rejected. 

 

IV. RESULT AND DISCUSSION 

Several evaluations were conducted in this section. The 

first evaluation aimed to determine the optimal combination 

of the two proposed enhancements: an adaptive transfer 

function and a dynamic somersault factor, to identify the 

most effective algorithm for classifying the biodegradability 

of substances. This study employed the Friedman-Test 

ranking to assist in selecting the optimal algorithm. Table 

VIII presents the convergence performance of the proposed 

ABMRFO algorithms. The results show that ABMRFO3 

and ABMRFO9 have the same and lowest mean fitness 

outperformed the other variants. Furthermore, ABMRFO3 is 

seen to produce the lowest best, and worst fitness values, 

demonstrating its strong ability to converge near the optimal 

solution while effectively avoiding local minima. 

Additionally, all the algorithms displayed robustness and 

consistency, with low fitness standard deviations close to 

zero. Among all algorithms, ABMRFO3 exhibited the 

highest fitness standard deviation. However, it demonstrated 
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the fastest convergence, with an average computational time 

of 27.92 seconds, highlighting its superior computational 

efficiency. This is further validated by the Friedman test 

results, which ranked ABMRFO3 as the top-performing 

algorithm. 

Table IX provides a detailed analysis of the experiment 

based on classification performance metrics: AvgAcc, AvgPre 

and AvgF1-Score and AvgNd. The results indicate that 

ABMRFO3 is the top-performing variant, achieving the 

highest average classification accuracy and F1-Score, with 

values of 90.38% and 85.79%, respectively. While 

ABMRFO3 ranked second in average precision, behind 

ABMRFO5, it still demonstrated robust overall 

performance. Although ABMRFO4 selected the fewest 

features, it did not deliver strong classification results. In 

contrast, ABMRFO3 selected the second minimal 

descriptors while maintaining superior classification 

accuracy, underscoring its effectiveness in feature selection. 

According to FT results, ABMRFO3 ranks first, indicating 

that the algorithm demonstrates superior performance. 

 
TABLE VIII 

CONVERGENCE PERFORMANCE OF PROPOSED ABMRFO ALGORITHMS 

AND FRIEDMAN-TEST (FT) RANKING RESULTS 

Algorithm MeanFit BestFit WorstFit StdFit AvgCT FT 

ABMRFO1 0.1015 0.0736 0.1472 0.0188 51.58 8 

ABMRFO2 0.1037 0.0681 0.1336 0.0194 29.18 3 

ABMRFO3 0.0975 0.0548 0.1193 0.0202 27.92 1 

ABMRFO4 0.1085 0.0906 0.1380 0.0137 30.16 7 

ABMRFO5 0.1024 0.0738 0.1247 0.0167 29.06 2 

ABMRFO6 0.1016 0.0763 0.1432 0.0192 34.18 9 

ABMRFO7 0.1011 0.0787 0.1336 0.0146 64.02 5 

ABMRFO8 0.0988 0.0775 0.1373 0.0167 33.02 3 

ABMRFO9 0.0975 0.0723 0.1425 0.0194 64.4 6 

 

TABLE IX 
THE RESULTS FOR AVGACC, AVGPRE, AVGF1-SCORE, AND AVGND OF THE 

PROPOSED ABMRFO ALGORITHMS AND  FRIEDMAN-TEST (FT)  RANKING 

RESULTS 

Algorithm AvgAcc AvgPre AvgF1-Score AvgNd FT 

ABMRFO1 90 84.38 85.04 10.3 7 

ABMRFO2 89.76 83.53 84.68 9.7 9 

ABMRFO3 90.38 85.78 85.79 9.2 1 

ABMRFO4 89.24 82.56 83.86 8.3 8 

ABMRFO5 89.91 85.91 85.29 10.1 4 

ABMRFO6 89.95 84.81 85.08 8.9 4 

ABMRFO7 90.05 84.10 85.12 10.7 6 

ABMRFO8 90.24 85.77 85.60 8.9 2 

ABMRFO9 90.38 85.35 85.70 9.2 2 

 

The second evaluation compares the selected best 

algorithm, ABMRFO3, to the established MRFOv3 [27], 

BMRFO [25] and BMRFOTV1 [24] from the literature. The 

experimental results based on convergence performance are 

summarized in Table X. As shown in Table X, ABMRFO3 

outperforms the other algorithms by achieving the lowest 

mean fitness, demonstrating its superior optimization 

capability. Moreover, ABMRFO3 records the lowest best 

and worst fitness values, reflecting its ability to consistently 

identify high-quality solutions while minimizing 

performance variability. All algorithms show low fitness 

standard deviations, indicating robustness and stable search 

behavior. The lower standard deviation further highlights 

the algorithms capacity to maintain consistent performance 

across multiple runs. ABMRFO3 also achieves the fastest 

convergence, with an average computational time of just 

27.92 seconds. This efficient convergence indicates the 

algorithm’s reduced susceptibility to getting trapped in local 

optima, enabling a more effective search process. The 

integration of an adaptive transfer function and an adaptive 

somersault factor significantly enhances ABMRFO3’s 

exploration-exploitation balance, allowing it to navigate the 

search space dynamically and converge toward optimal 

solutions. These performance improvements are visually 

supported by the convergence graph shown in Fig. 3, which 

clearly illustrates ABMRFO3’s rapid progression toward the 

optimal solution compared to its counterparts. The results 

underscore that ABMRFO3 is a robust and efficient feature 

selection algorithm, providing an effective balance between 

search accuracy, computational efficiency, and solution 

stability. This is further validated by the FT ranking results, 

which highlight ABMRFO3's superior performance across 

multiple evaluation metrics.  

 
TABLE X 

COMPARISON RESULTS BASED ON THE FITNESS PERFORMANCES OF 

ABMRFO3 WITH OTHER BMRFO VARIANTS 

Algorithm MeanFit BestFit WorstFit StdFit AvgCT FT 

MRFOv3 0.1127 0.0844 0.1501 0.0190 31.96 3 

BMRFO 0.1021 0.0548 0.1533 0.0260 61.42 4 

BMRFOTV1 0.1019 0.0822 0.1336 0.0145 50.70 2 

ABMRFO3 0.0975 0.0548 0.1193 0.0202 27.92 1 

 

The results presented in Table XI and Fig. 4 show a clear 

performance improvement when applying feature selection 

(FS). The "No FS" (No Feature Selection) approach shows 

the lowest performance across all evaluation metrics, with 

an average accuracy of 81.33%, precision of 76.40%, and an 

F1-score of 73.54%, while using the maximum number of 

descriptors (41). This highlights that using all available 

descriptors without selection reduces classification 

effectiveness due to the inclusion of irrelevant features that 

can cause overfitting and increase computational 

complexity. The introduction of FS using the MRFOv3 

algorithm shows a notable improvement, achieving an 

average accuracy of 89.00, precision of 84.51%, and an F1-

score of 83.88%, while significantly reducing the number of 

selected descriptors to 15.8. This demonstrates the critical 

role of feature selection in enhancing classification accuracy 

while minimizing the feature set. Further improvements are 

observed with the BMRFO and BMRFOTV1 algorithms, 

achieving average accuracies of 90.00% and 89.95%, 

respectively. BMRFO excels with a precision of 86.47% and 

an F1-score of 85.45%, selecting 12.7 descriptors. Similarly, 

BMRFOTV1 maintains high performance with a precision of 

84.24% and an F1-score of 85.01% while using only 10 

descriptors, reflecting its efficiency in selecting relevant 

features. The proposed ABMRFO3 algorithm outperforms 

all competitors, achieving the highest average accuracy of 

90.38% and an F1-score of 85.79%. Notably, it 

accomplishes this while selecting the fewest descriptors 

(9.2), emphasizing its ability to efficiently balance 

classification accuracy and feature reduction. This result 

highlights ABMRFO3’s superior optimization capability, 

driven by its advanced mechanisms such as the time-varying 

transfer function and adaptive somersault factor. Overall, 

these findings confirm that ABMRFO3 delivers the best 

trade-off between classification performance and feature 

reduction, demonstrating its effectiveness in improving 

model accuracy while minimizing computational 
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complexity. Its robust performance across all metrics 

validates its potential as a reliable and efficient feature 

selection algorithm for complex classification tasks. The FT 

results further confirmed that ABMRFO3 consistently 

outperforms its competitors. 

 
TABLE XI 

COMPARISON RESULTS BASED ON CLASSIFICATION PERFORMANCES OF 

ABMRFO3 WITH OTHER BMRFO VARIANTS 

Algorithm AvgAcc AvgPre  AvgF1-Score AvgNd FT 

No FS 81.33 76.40 73.54 41 5 

MRFOv3 89.00 84.51 83.88 15.8 4 

BMRFO 90 86.47 85.45 12.7 2 

BMRFOTV1 89.95 84.24 85.01 10 3 

ABMRFO3 90.38 85.78 85.79 9.2 1 

 

The findings presented in Table XII highlight the superior 

performance of the ABMRFO3 algorithm when compared to 

state-of-the-art algorithms such as BSCA [50], bGOW2 

[51], BHHO-TV1 [39], BWOA-3 [35], and BWOATV2 [24]. 

ABMRFO3 achieved the best results in three out of the five 

fitness performance metrics, showcasing its capability to 

excel across multiple evaluation criteria. Notably, 

ABMRFO3 achieved the lowest mean fitness (0.975), best 

fitness (0.0548), and worst fitness (0.1193) values, 

indicating its robustness and ability to avoid early 

convergence—a critical challenge in optimization tasks. To 

visually illustrate and compare the optimization accuracy 

and convergence rates of each algorithm, the average 

convergence curves of the six algorithms are plotted as 

displayed in Fig. 5. Although all algorithms exhibited 

impressive robustness and consistency, as indicated by 

fitness standard deviations approaching zero, BCSA 

achieved somewhat lower performance, some notable 

differences emerged. For instance, bGOW2 exhibits rapid 

convergence with a minimal computation time of 12.06 

seconds; yet it becomes stuck in local optima and 

experiences stagnation. This disclosed that ABMRFO3 is a 

strong candidate for optimization problems requiring 

balance between performance, stability, and resistance to 

early convergence. 

 

 

 
Fig. 3. Convergence graph of the proposed ABMRFO3 and existing BMRFO variants. 

  

 
Fig. 4. Comparison of classification performance with and without feature selection. 

0  0 100 1 0

 teration

0 1

0 1 

0 1 

0 1 

M
ea
n
 F
it
n
es
s

MRFO 3 BMRFO BMRFO
  1 ABMRFO3

 

 

  

  

  

  

  

  

  

  

 

  

  

  

  

  

  

  

  

  

   

            

 
  

  
  
  
  
 

 
  
 
 
 
  
 
 
  
 

 

                            

IAENG International Journal of Computer Science

Volume 52, Issue 5, May 2025, Pages 1585-1595

 
______________________________________________________________________________________ 



 

 

According to Table XIII, the excellent performance of the 

ABMRFO3 is demonstrated by its classification accuracy 

(90.38%), precision (85.78%), and F1-Score (85.79), 

indicating its capability to prevent premature convergence. 

Although ABMRFO3 ranked second to BHHO-TV1 in 

selecting the best descriptors, it consistently delivered 

exceptional overall performance. While BHHO-TV1 

selected the fewest features, it failed to deliver robust 

classification results. Conversely, ABMRFO3 chose the 

second fewest descriptors while achieving remarkable 

classification accuracy, highlighting its efficacy in large 

feature dimensions. 

 
TABLE XII 

CONVERGENCE PERFORMANCE OF ABMRFO3 WITH STATE-OF-THE-ART 

ALGORITHMS 

Algorithm MeanFit BestFit WorstFit StdFit AvgCT 

BCSA 0.1299 0.1056 0.1513 0.0048 16.55 

bGOW2 0.1085 0.0792 0.1395 0.0063 12.06 

BHHO-TV1 0.1366 0.1136 0.1605 0.0058 15.96 

BWOA-3 0.1123 0.0778 0.1390 0.0117 20.27 

BWOATV2 0.1096 0.0778 0.1429 0.0126 29.23 

ABMRFO3 0.0975 0.0548 0.1193 0.0202 27.92 

 
TABLE XIII 

COMPARISON RESULTS BASED ON AVGACC, AVGPRE, AVGF1-SCORE, AND AVGND 

OF ABMRFO3 WITH STATE-OF-THE-ART ALGORITHMS 

Algorithm AvgAcc AvgPre  AvgF1-Score AvgNd 

BCSA 87.49 84.36 82.06 24.6 

bGOW2 89.38 84.80 84.39 13.9 

BHHO-TV1 86.35 80.32 79.95 5.9 

BWOA-3 88.91 82.84 83.49 10.4 

BWOATV2 89.19 84.52 84.12 10.8 

ABMRFO3 90.38 85.78 85.79 9.2 

 

ABMRFO3's superior performance, validated by the 

Friedman test results presented in TABLE XIV, ranks it first 

with a sum of ranks of 19. Its adaptive mechanisms and 

dynamic search strategies ensure exceptional search 

accuracy, computational efficiency, and solution stability, 

outperforming all competing algorithms. 

 
TABLE XIV 

FRIEDMAN-TEST RESULTS OF ALL PERFORMANCES METRICS 

Algorithm Sum of Rank Final Rank 

BCSA 39 5 

bGOW2 24 2 

BHHO-TV1 41 6 

BWOA-3 32 3 

BWOATV2 33 4 

ABMRFO3 19 1 

 

To evaluate the performance differences between 

ABMRFO3 and its comparative SI algorithms, a Wilcoxon 

signed-rank test based on mean fitness was conducted at a 

0.05 significance level. If the p-value is greater than or equal 

to 0.05, the null hypothesis of no significant difference is 

accepted; otherwise, it is rejected. P-values equal to or 

exceeding 0.05 are underlined for clarity. Table XV presents 

the calculated p-values. The results demonstrate that 

ABMRFO3 exhibits statistically significant performance 

improvements over MRFOv3, BCSA, BHHO-TV1, BWOA-

3, and BWOATV2. However, its performance is statistically 

comparable to BMRFO, BMRFOTV1, and bGOW2. These 

findings suggest that ABMRFO3 generally outperforms 

several state-of-the-art SI algorithms, reinforcing its 

effectiveness as an enhanced feature selection approach. 

 
TABLE XV 

P-VALUES OF WILCOXON SIGNED-RANK TEST BASED ON MEAN FITNESS 

BETWEEN ABMRFO3 WITH OTHER STATE-OF-ART SI ALGORITHMS 

Algorithm p-value 

MRFOv3 0.037 

BMRFO 0.636 

BMRFOTV1 0.625 

BCSA 0.002 

bGOW2 0.064 

BHHO-TV1 0.002 

BWOA-3 0.020 

BWOATV2 0.037 

 

 

 
Fig. 5. Convergence curves of the proposed ABMRFO3 with other state-of-the-art SI algorithms. 
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V. CONCLUSION 

This study introduces an enhanced Adaptive Binary 

Manta Ray Foraging Optimization (ABMRFO) algorithm 

that incorporates a time-varying Sigmoid transfer function 

and a dynamic somersault factor to optimize descriptor 

selection in QSAR biodegradation datasets. The proposed 

enhancements effectively strengthen QSAR classification 

models by balancing exploration and exploitation, leading to 

better feature selection performance. Among the various 

ABMRFO algorithm variants tested, ABMRFO3 

demonstrated superior performance, achieving the highest 

classification accuracy while minimizing the number of 

selected features. This highlights its capability to handle 

high-dimensional datasets efficiently and improve predictive 

model accuracy. The research provides a foundation for 

future studies to explore different parameter configurations 

for the time-varying Sigmoid transfer function. 

Additionally, applying the proposed algorithm to diverse, 

large-scale, and imbalanced datasets from repositories such 

as the UCI Machine Learning repository could validate its 

generalization capabilities.  Moreover, future research could 

explore the integration of alternative transfer functions to 

enhance its search dynamics and convergence behavior. 

Transfer functions play a critical role in converting 

continuous search space solutions into binary values, 

directly influencing the balance between exploration and 

exploitation. 
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