
 

  

Abstract— Local Binary Patterns (LBP) is one of many image 

features suitable for enhancing textures within an image. Despite its 

popularity, this feature as well as its variants actually still has some 

drawbacks: requiring the use of bilinear interpolation mechanism 

which leads to a computational bottleneck, being unable to capture 

macrostructures, and being prone to noise. The objective of this 

research is to propose a novel image feature named Square Binary 

Patterns (SBP) which is intended to solve the mentioned problems. 

Experiments were conducted using four texture datasets, namely 

KTH-TIPS, KTH-TIPS2-b, ALOT, and the texture dataset we 

created on our own. The existing LBP-based features including 

LBPriu2, LBPu2, LBPri, MS-LBP, LTP, FbLBP and ILBP are 

directly compared with SBP. The quality of these features is 

obtained by observing the classification accuracy of separate SVM 

models. The classifier which produces higher accuracy implies that 

its corresponding feature contains a more important information 

regarding the textures. Experimental results showed that our best-

performing SBP variant was able to work 2.98 times faster than the 

conventional LBP while at the same time capable of producing 

accuracy comparable to that of the existing LBP-based features. 

This paper makes a significant contribution through the 

introduction of the SBP algorithm and the creation of a novel 

texture dataset. 

 
Index Terms—Feature Extraction, Local Binary Patterns, 

Machine Learning, Texture Classification  

I. INTRODUCTION 

EXTURE feature extraction is one of the most interesting 

topics to be brought up into discussion as it is useful to be 

used in many classification tasks, especially when the classes of 

the images are distinguishable by looking at its textures, such as 

visual-based material analysis. There are actually several 

algorithms specialized for extracting texture features, one of 

which is LBP (Local Binary Patterns). The algorithm, which was 

first introduced by Ojala et al. [1], became popular in this field 

thanks to its ability in handling gray-level variations [2]-[4]. This 

 
 

notion is true because the binary encoding of each pixel within 

an image is generated only based on its local neighborhood, thus 

not affected by the illumination in the farther part of the image. 

Despite its high popularity, this does not necessarily mean that 

LBP is flawless. Even though this feature extraction algorithm is 

considered to be computationally cheap [3], yet the authors of 

this research think that the process can still be further sped up. 

This is essentially because the sampling points of LBP follow a 

circular pattern, which causes plenty of points to not fall right at 

the center of a pixel. In such a case, bilinear interpolation 

operation is required to approximate the actual value of these 

sampling points, which authors perceive this process as a 

bottleneck. To the best of our knowledge, this phenomenon can 

be seen in all existing LBP variants, including those proposed by 

the same author in their subsequent paper, i.e., LBPu2 (Uniform 

LBP), LBPri (Rotation-Invariant LBP), and LBPriu2 (Rotation-

Invariant Uniform LBP) [5]. The second problem encountered 

by LBP is that according to [6] the feature extraction method is 

unable to capture macrostructures, i.e., large repeating patterns. 

This statement makes sense because LBP works by taking into 

account local neighborhood, limiting its ability to capture 

microstructures only. Third, LBP is also known to be prone to 

noise [2], [7], [8] since an extremely high or low value is 

captured as is by the algorithm which affects the resulting binary 

encoding. 

In order to address the above issues, the authors of this 

research propose a new texture feature named SBP (Square 

Binary Patterns), in which it is intended to tackle the three 

problems simultaneously: the need for bilinear interpolation, the 

inability to capture macrostructures, and the difficulty in 

handling noise. The first one can be achieved since SBP, as the 

name suggests, uses square-shaped rather than circular pattern 

which guarantees the sampling points lie exactly at the center of 

a pixel. To address the macrostructure problem, SBP implements 

an adjustable parameter to control the sampling point radius to 

be taken into account. This method is actually inspired by MS-

LBP (Multi-Scale LBP) which was previously proposed in [9]. 

Lastly, the noise problem is addressed by taking the average 

features from different radii, in which this process is adopted 

from the average smoothing algorithm. 

The two main contributions of this paper are listed below: 

● The proposal of SBP for addressing the problems of 

LBP as well as its existing variants mentioned earlier. 

● The creation of a new texture dataset which will later 

be used to further validate the performance of SBP. 

The remaining parts of this paper will be organized as follows: 

the second section explains previous works related to the existing 

LBP variants, the third section explains the details of SBP 
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algorithm and the experimental procedure, the fourth one 

discusses experimental results, and the fifth section concludes 

the research. 

II. REVIEW ON THE EXISTING LBP VARIANTS 

A. The Conventional LBP 

Before getting into the details of the proposed SBP, it is 

necessary to discuss the conventional LBP feature extraction 

algorithm in advance. The original LBP has two main 

parameters, namely 𝑃 and 𝑅 in which they represent the number 

of sampling points and the sampling radius, respectively. Fig. 1 

displays what the sampling points look like when 𝑃 and 𝑅 are 

assigned with different values. It is important to note that such a 

sampling mechanism is used in all LBP variants. 

The circular pattern shown in Fig. 1 can be modeled using 

equation (1), where 𝑥 and 𝑦 denote spatial coordinates, 𝑝 

represents the index of the sampling point, and 𝑃 is the total 

number of sampling points. As seen in the figure, most of the 

sampling points do not lie exactly at the center of a pixel. Thus, 

bilinear interpolation technique is used in order to obtain its exact 

value, which the mathematical expression is displayed in 

equation (2). The variables 𝑄11, 𝑄21, 𝑄12 and 𝑄22 represent the 

neighboring pixel values where the approximation is made from. 

 

(1) 

 

(2) 

After the sampling points have been interpolated, the next step 

to do is to generate a binary sequence by comparing the value of 

a single pixel with the values of its corresponding sampling 

points. The binary number will then be converted back to 

decimal prior to being assigned as a new pixel value. Equation 

(3) shows the encoding procedure of a standard LBP, where 𝑠 is 

a sign function, 𝑔𝑝 is the value of 𝑝-th sampling point, while 𝑔𝑐 

is the value of the center pixel. 

 

 

(3) 

 
(4) 

B. LBP-Based Variants 

Since its first introduction in 1994, LBP [1] has encountered 

plenty of modifications. The same author proposed its variants 

several years later, namely LBPu2 (Uniform LBP), LBPri 

(Rotation-Invariant LBP), and LBPriu2 (Rotation-Invariant 

Uniform LBP) [5]. The creation of LBPu2 was intended to 

suppress the influence of non-uniform patterns, as these are 

considered to contain less information than uniform patterns. 

Meanwhile, LBPri is an LBP variant specialized to capture a 

textural structure regardless of its rotation. Combining both 

LBPu2 and LBPri results in LBPriu2, in which it preserves the 

rotation invariance of a texture while at the same time 

highlighting only the uniform patterns of a texture. 

Many other LBP variants proposed by other researchers 

started to emerge afterwards. The first one to discuss is the so-

called MSJ-LBP (Multi-Scale Joint encoding of Local Binary 

Patterns) [9], in which it is an improvement of MS-LBP (Multi-

Scale Local Binary Patterns). MS-LBP itself is essentially an 

ordinary LBP which is performed several times on multiple 

scales. The information captured by MSJ-LBP is claimed to be 

better than MS-LBP since it also takes into account the 

correlation of the encodings between all scales rather than the 

encodings alone. Not only that, there were also several other 

researchers who attempted to capture multi-scale LBP 

information. Dan et al. [10] proposed JLBPW (Joint LBP with 

Weber-like responses) while Prema et al. [11] created HDLBP 

(Hamming Distance based LBP) to do so. In addition to the 

latter, the authors implemented the algorithm for smoke 

detection which is similar to PCLBP (Pairwise Comparing LBP) 

proposed by Yuan et al. [12] and LBMP proposed by [13]. 

Next, there are at least two other LBP variants introduced 

within the same year as MSJ-LBP, namely LBPV (LBP 

Variance) [14] and CLBP (Completed LBP) [15]. The former 

works by capturing the contrast information within a small 

image region, whereas the latter combines information from the 

center pixel (CLBP_C), the magnitude between center and the 

sampling points (CLBP_M) as well as its sign (CLBP_S). It 

might be worth noting that CLBP_S is equivalent to the 

conventional LBP. FbLBP (Feature-based LBP) [3] actually also 

captures the similar information to CLBP, in which both 

FbLBP_F and CLBP_M are intended to capture the magnitude 

of the sampling points yet with different feature representations. 

Not only CLBP and FbLBP, but ELBP (Extended LBP) [16] 

can also be broken down into smaller components: CI-LBP 

(Central Intensity LBP), NI-LBP (Neighboring Intensities LBP), 

RD-LBP (Radial Difference LBP), and AD-LBP (Angular 

Difference LBP). The idea of this approach is to capture both the 

information from each individual sampling points itself and the 

difference between one sampling point and another. In the next 

couple of years, the same author proposed MRELBP (Median 

Robust Extended LBP) [6], in which its objective was to improve 

ELBP in terms of its ability in capturing both micro- and 

macrostructures. Furthermore, [17] proposes LBPOUS which 

consists of three different LBPs, namely LBPO, LBPU, and LBPS. 

 

 
 

Fig. 1.  The sampling points generated using different 𝑃 and 𝑅 (redrawing 

based on [5]). 
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The authors claimed that these three sub-features contain 

different information which are complementary to each other, 

allowing LBPOUS to achieve high accuracy. 

Different from the previous ones, LTP (Local Ternary 

Patterns) [7] employs 3 numbers to generate its encoding: -1, 0, 

and 1. This proposed method was proven to be less sensitive to 

the presence of noise. Next, LABP (Local Adaptive Binary 

Patterns) [18] is similar to the original LBP, except that the 

threshold used for creating the binary encoding is determined by 

the mean of the corresponding sampling points. This is basically 

the reason that this LBP variant is considered to be adaptive to 

the neighboring pixels. BELBP (Binarized Edge LBP) [19] is 

even more similar to the original LBP. However, what sets it 

apart is that BELBP works by applying LBP on edge features 

rather than the original image. The authors of this research 

utilized this texture features to detect abrupt-shot boundaries.  

Talking more specifically about the other possible 

implementations of LBP variants, ILBP (Improved LBP) [20] 

was proposed and directly used by the authors to extract texture 

features from time-frequency image generated by diesel engine 

sound. Meanwhile, in the medical field, LMELBP (Local 

Maximum Edge Binary Patterns) [21] was proposed to perform 

segmentation on brain MR images. Not only that, [22] proposed 

MCG-LBP (Multi-Scale Continuous Gradient LBP) for leaky 

cable fixture detection in high-speed railway tunnels, whereas 

[23] utilized LBP-HF (LBP Histogram Fourier) for detecting 

image tampering through copy-move forgery. 

Going back to the discussion regarding CLBP [15], there are 

actually several research papers that attempted to improve the 

algorithm. For instance, [24] proposed PC-LBP (Principal 

Curvatures LBP) while [25] combined CLBP with LTP, 

resulting in a new features called CLTP (Completed Local 

Ternary Pattern). However, [8] mentioned that CLTP is 

computationally expensive due to its high dimensionality. Thus, 

they propose to make further improvement on this algorithm by 

developing another one which is referred to as WCLTP (Wavelet 

Completed Local Ternary Pattern). 

LBP-TOP (LBP from Three Orthogonal Planes) [26] can be 

considered as a special LBP variant thanks to its ability to capture 

texture as well as temporal information from a sequence of 

images. The idea was then adopted by [27], which proposed 

MCLBP (Multiple Channels LBP) to capture the texture features 

of a multi-channel image without needing to perform grayscale 

conversion. If these two LBPs work on 3D arrays, the ones 

proposed in [28] and [29] are specialized to perform LBP feature 

extraction on 1D array instead. The thresholding mechanism in 

such cases works in a similar way to a standard LBP, except that 

the sampling points are stretched along a single axis only, 

allowing it to extract meaningful information from waveforms. 

The last three LBP variants to discuss are SCLBP (Sorted 

Consecutive LBP) [30], PNULBP (Prominent Non-Uniform 

LBP) [31], and LBPmr (Magnitude Ranking LBP) [32]. SCLBP 

works by exploiting the information contained in the consecutive 

bits in the binary encoding. Next, the author of PNULBP 

proposed this algorithm because they saw that LBPu2 is missing 

some information as it almost completely discards the non-

uniform pattern. The idea of PNULBP is to extract some more 

meaningful information from non-uniform patterns and combine 

it with LBPu2 afterwards. Lastly, LBPmr was proposed because 

the weights used for creating the conventional LBP codes are 

fixed. The author of this algorithm regarded this as a problem 

and attempted to fix this issue by setting the sampling point with 

the largest magnitude as the MSB (Most Significant Bit) of the 

resulting binary code. 

Among all LBP variations, there is no single one proposed 

specifically for handling the three drawbacks of LBP 

simultaneously, i.e., the requirement of bilinear interpolation, the 

inability to capture macrostructures and the sensitivity towards 

noise. Thus, this paper proposes a new LBP-based variant named 

Square Binary Patterns to handle these issues. 

III. PROPOSED METHOD AND EXPERIMENTAL SETUP 

A. Square Binary Patterns 

This paper proposes an LBP-like feature which is named SBP 

(Square Binary Patterns). The procedure for extracting SBP 

features is shown in Fig. 5. The main steps written in the figure 

can actually be summarized as follows: center point 

determination, sampling points determination, thresholding, 

binary sequence generation, decimal conversion, and histogram 

generation. Each of the mentioned steps is going to be explained 

in the following sub-sections: 

1) Center point determination. This stage is very similar to 

the conventional LBP. Every single pixel in the image is 

going to be indexed as a center pixel one by one starting 

from the top-left corner. The process finishes once it has 

reached the bottom-right corner of the input image. Later 

on, the intensity of each pixel will be compared with its 

surrounding neighbors. 

2) Sampling points determination. Instead of following a 

circular pattern like what LBP does, SBP works by 

taking four groups of sampling points. These four groups 

are called “upper”, “right”, “lower” and “left” in which 

all of those groups are named after its position relative to 

the corresponding center pixel as shown in Fig. 2. The 

term “square” in SBP itself comes from these four sides 

of sampling points. Each group in each SBP level 

consists of 3 sampling points. Hence, the combination of 

those 4 groups will produce 12 sampling points. In the 

subsequent process, the 12 sampling points will be 

encoded in a clockwise direction starting from the 

leftmost pixel of the “upper” group. 

3) Thresholding. SBP adopts the exact same thresholding 

method as LBP. The value of center pixel is going to act 

as the threshold value, where any sampling point that has 

lower value than the center will be encoded as 0, while 

the points with equal or higher value will be encoded as 

1. See the illustration in Fig. 3. 

4) Decimal conversion. With 12 binary digits, the maximum 

possible decimal value is 4095. The decimal values of all 

SBP levels are averaged and then normalized to ensure that 

the resulting value falls within the range of 0 to 255. The 

averaging process is inspired by the average smoothing 

method, which is useful for reducing noise effects. 

Meanwhile, the normalization process is necessary because 

the original range of 0 to 4095 is too large and redundant. 

5) Histogram generation. Once the entire processes have 

been done to all pixels in the image, the resulting output 

is going to be in form of 2-dimensional array, which is 

referred to as the SBP feature. In order to use the feature 

for training a machine learning model, it is necessary to 

convert it into a single-dimensional array. This can 
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simply be achieved by putting the pixel intensity values 

into a histogram. 

 

The entire SBP feature extraction (excluding the histogram 

generation) can mathematically be expressed in equation (5). In 

this equation, 𝑔𝑛𝑝 denotes the pixel intensity at 𝑛-th level and 𝑝-

th sampling point, while 𝑔𝑐 represents the intensity of center 

pixel. The binary encoding is then generated by the 𝑠 function 

which is basically the same as the one written in equation (4). 

The term 17/273 in the equation is employed as an approach to 

keep the resulting intensity value to lie within the range of 0 to 

255 only. Finally, the process of converting binary to decimal is 

done by the 2𝑝 multiplier. 

 

 

(5) 

 

B. Datasets 

The author of this research utilized four datasets: KTH-TIPS 

(Kungliga Tekniska Högskolan – Textures Under Varying 

Illumination, Pose and Scale) [33], KTH-TIPS2-b [34], ALOT 

(Amsterdam Library of Textures) [35], and the one that we 

created ourselves named SuroTex (Surrounding Texture) [36]. 

The original KTH-TIPS dataset comprises 10 texture classes, 

each with 9 scales describing the pattern size. There are 81 

images in each class, all with the dimensions of 200×200 pixels. 

To augment the number of images, the author applied a method 

that involved cropping with the size of 100×100 pixels from the 

top-left corner, top-right corner, bottom-left corner, and bottom-

right corner of each image. By applying this method to all 

images, the dataset now has 324 images per class. 

Despite having a similar name, KTH-TIPS2-b is actually 

different to KTH-TIPS. This dataset consists of 11 classes in 

which each of those has 432 texture images. However, further 

processing is required prior to using this dataset since the size of 

the images are somewhat not uniform. We decided to resize 

them all to 100×100 pixels in order to handle this issue. Next, 

ALOT is a dataset of 250 texture classes which contains 100 

images each. Similar to KTH-TIPS2-b, since the image size is 

not uniform, hence it was resized to 100×100 as well before the 

 
 

Fig. 2. The four groups of sampling points. 

  
 

 
 
Fig. 3. Raw image to be processed (left) and the thresholding result (right). 

 

 
 

Fig. 4. An example of how SBP feature is computed. The initial binary 

sequence is based on the dummy image in Fig. 3. 
  

 
 

Fig. 1.  The sampling points generated using different 𝑃 and 𝑅 [5]. 

  

 

 
 

Fig. 5. The algorithm for extracting Square Binary Patterns. 
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features being extracted. It is important to note that the author 

conducted the experiments on the first 30 and 50 texture classes 

as well as the entire 250 classes. Lastly, the SuroTex dataset was 

preprocessed in a similar way to ALOT. While the current 

version of this dataset contains 50 texture classes, this research 

utilized an earlier version of SuroTex which comprised 40 

texture classes. 

C. Experiment Steps 

The experiments conducted in this research followed the 

flowchart displayed in Fig. 7. The first step to be taken was to 

preprocess the images. The preprocessing stage consisted of 

grayscaling and smoothing with a kernel of size 5×5. In this case, 

average smoothing was chosen since it requires the least number 

of operations than the other smoothing methods. Once 

preprocessing was done, different texture feature extraction 

would be performed independently. The features to be compared 

in this research were LBP, LBPriu2, LBPu2, LBPri, MS-LBP, LTP, 

FbLBP, ILBP and the SBP itself. There were 2 and 3 variations 

of MS-LBP and SBP, respectively. Later on, these variations are 

going to be referred to as MSLBP2, MSLBP3, SBP1, SBP2, and 

SBP3, in which the numbers represent the neighbor distances to 

be taken into account. The resulting texture features were then 

used to train an SVM model. The training was done 20 times 

with different train-test split of ratio 80:20, in which the partition 

of each training iteration was selected randomly. Lastly, the 

model was evaluated by calculating the average testing accuracy 

score. 

There were three types of experiments to be conducted. The 

first one was an experiment to test whether SBP is able to work 

faster than the other algorithms. Secondly, the classification 

performance of SBP under different textural scales were tested, 

in which this is useful to find out whether the proposed SBP 

feature is able to handle macrostructures. Lastly, there were also 

experiments done to find out the robustness of SBP under noisy 

conditions.  

D. Experiment Parameter Settings 

Discussing the experimental parameter settings, the two 

parameters that we set to be fixed were 𝑃 and 𝑅 with the value 

of 8 and 1, respectively for all LBP-based variants. However, 

exceptions were made for MS-LBP2 which used 𝑅=1 and 𝑅=2, 

and MS-LBP3 which used 𝑅=1, 𝑅=2, and 𝑅=3. The resulting 

binary encoding of these MS-LBP radii were then concatenated 

to construct the final feature vector. Similarly, this mechanism is 

also applied to SBP. SBP1, SBP2, and SBP3 were all using 𝑁=1, 

𝑁=2 and 𝑁=3, respectively. The major difference between SBP 

and LBP is the number of sampling points, where SBP used 

𝑃=12 rather than 8. Lastly, LTP threshold was set to 5 in which 

this number was determined arbitrarily. 

In addition to the parameters for feature extraction strategies, 

we also introduced two other parameters that were used to create 

histograms: patchnum and binsperpatch. The term patchnum 

refers to the number of divisions an image is partitioned into. The 

authors decided to set patchnum to 4 in all experiments. This 

basically means that a single image will be divided into 4 rows 

and 4 columns so that there will be 16 patches in total. The 

illustration shown in Fig. 8 displays an image of size 100×100 

 

 
 
Fig. 6. First row: original image from SuroTex [36], LBP, LBPriu2, LBPu2. 

Second row: LBPri, LTP lower pattern, LTP upper pattern, FbLBP. Third row: 

ILBP, SBP1, SBP2, SBP3. (Images in all rows are arranged from left to right). 

  
Fig. 7. The flowchart of this research. 

 
Fig. 8. How the histogram of each sub-image is concatenated. 

TABLE I 

FEATURE VECTOR LENGTHS 

Feature Name Calculation 
Feature Vector 

Length 

LBP [1] 30 × 16 480 
FBLBP [3] 30 × 16 480 

LBPRIU [5] 10 × 16 160 

LBPU [5] 59 × 16 944 
LBPRI [5] 36 × 16 576 

MSLBP2 [5] 30 × 16 × 2 960 

MSLBP3 [5] 30 × 16 × 3 1440 
LTP [7] 30 × 16 × 2 960 

ILBP [20] 30 × 16 480 

SBP1 (proposed) 30 × 16 480 
SBP2 (proposed) 30 × 16 480 

SBP3 (proposed) 30 × 16 480 
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treated with patchnum=4. On the other hand, binsperpatch 

denotes the number of bins to be generated for each patch. In this 

case, the parameter was set to 30. It is important to note that the 

binsperpatch parameter does not apply to LBPu2, LBPri, and 

LBPriu2, as these methods have fixed histogram bin counts of 59, 

36, and 10, respectively. Table I displays the final feature vector  

dimensions after taking into account all the 16 patches. 

IV. RESULTS AND DISCUSSIONS  

A. Results on the Computation Time 

The first experiment to be conducted was related to 

computation time, in which it was measured using Kaggle 

Notebook without GPU. In this experimental set all algorithms 

were tested independently to extract features from 100 images of 

size 100×100 pixels. The result in Fig. 9 shows that all SBP 

variants required the least time to complete the task, which 

essentially proves that our initial hypothesis is correct. 

 Before this experiment was done, we manually calculated the 

time complexity of all feature extraction algorithms. It was found 

that the presence of the bilinear interpolation operation causes 

the existing LBP-based algorithms to work much longer. The 

bilinear interpolation itself is basically a method for estimating 

the approximate value of a sampling point based on a weighted 

average of the values of its four neighboring pixels, which the 

calculation is done using equation (4). It is important to note that 

this equation is run for each sampling point requiring bilinear 

interpolation. Referring to Fig. 1, there are 4 sampling points 

need to be interpolated when 𝑃=8 and 𝑅=1, which are exactly 

the parameters we use for this experimental setup. The 

computation time of all LBP-based algorithms is going to be 

even longer especially when the number of sampling points 𝑃 is 

larger. Still referring to Fig. 1, it is seen that when 𝑃 and 𝑅 are 

set to 16 and 2, there are only 4 sampling points lie exactly at the 

center of a pixel, leaving the other 12 sampling points required 

to be interpolated.  

Different from all other LBP-based approaches, SBP 

completely discards the bilinear interpolation process thanks to 

the square-shaped patterns. Taking a closer look at the algorithm, 

SBP appears to be computationally more expensive at first 

glance due to its fixed 12 number of sampling points, which 

theoretically result in a longer binary-to-decimal conversion 

process compared to other LBP-based algorithms that by default 

have 8 sampling points. However, our analytical calculation 

shows that the higher number of sampling points in SBP has a 

less significant impact on computation time compared to the 

bilinear interpolation process required by the existing LBP 

variants. This analysis is proven by the experimental result in 

Fig. 9, where SBP with 𝑁=1 completed the feature extraction 

process only in 33.2 seconds, which is approximately 4.6 times 

faster than the conventional LBP. 

Apart from the bilinear interpolation, there are many other 

factors causing the existing LBP variants to work slower than 

SBP. The algorithm that we found slowest in this experiment is 

MSLBP3. It is seen in the same figure that it took 432.3 seconds 

to complete the task, which is 13 times slower than SBP1. This 

result makes sense because the algorithm essentially works by 

repeating the conventional LBP three times at different radii. 

MSLBP2 actually also has the same idea, yet it is faster than 

MSLBP3 since it only repeats the LBP process twice. The 

computation time of LTP appears to be close to MSLBP2, which 

is because the process of extracting lower and upper patterns in 

the algorithm is also equivalent to running LBP twice. Next, 

LBPRI is slow due to the binary rotation mechanism which is 

done to achieve geometrical rotation invariance. Meanwhile, 

LBPU is algorithmically similar to the original LBP, yet it is 

slightly more expensive due to the pattern uniformity checking 

procedure. LBPRIU on the other hand, is computationally faster 

than the conventional LBP because it sums the binary values and 

treats the result as a decimal rather than performing the typical 

binary-to-decimal conversion. Lastly, the modern LBP variants 

of FBLBP and ILBP are also considered slow because of the 

pixel intensity averaging mechanism adopted in both algorithms. 

  

B. Results on Datasets of Different Textural Scales 

The next experiment was related to the feature quality, in 

which it was examined by observing the accuracy produced by 

an SVM trained with each of the features. Higher accuracy 

indicates that the feature used for training contains a more 

meaningful information. All datasets mentioned earlier as well 

as the smaller version of ALOT, i.e., ALOT-30 and ALOT-50, 

would be employed to do the classification task. 

Generally speaking, the performance of SBP appeared to be 

comparable with other features, as shown in the experimental 

results in Table II. It seemed like SBP with 𝑁=2 was the most 

optimal one, considering that SBP with other 𝑁 values always 

produced lower accuracy. The accuracy of SBP2 was observed 

to consistently surpass LBP, LBPRIU, LBPRI, LTP, and ILBP. 

FBLBP was able to obtain the exact same result as SBP2 on the 

50-class ALOT dataset and was slightly better than SBP2 on our 

own texture dataset. Unfortunately, the accuracy of SBP2 was 

still lower than LBPU and MSLBP3. The higher accuracy of 

LBPU was likely because its smaller feature vector dimension 

contains more relevant information. In fact, this aligns with the 

principle of the uniform patterns in LBP, which was originally 

proposed to suppress the effect of non-uniform, irrelevant 

patterns that might appear in a texture. Meanwhile, the higher 

accuracy obtained by MSLBP3 might be due to the large amount 

of information contained in the resulting feature vector. This 

notion makes sense since it works by capturing three LBP 

features of different scales at once. Although the averaging 

 
 

Fig. 9. The computation time of each texture feature extraction algorithm to process 

100 images of size 100×100. 
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mechanism adopted by SBP allows it to produce smaller feature 

vector dimension while still containing information from 

multiple scales, it might cause prominent information to be 

smoothed out. However, as demonstrated by the computational 

complexity experiments in Fig. 9, the slightly lower accuracy of 

SBP2 is a worthwhile trade-off, as it offers significantly higher 

computational speed, making it more suitable for real-time 

applications. In addition to Table II and the subsequent ones, the 

best-performing SBP as well as the accuracy that exactly 

matches the best SBP are going to be highlighted in blue. 

Meanwhile, all results worse than the best SBP will be 

highlighted in orange, yet if it is better, it will be colored in green. 

In the upcoming experiments, authors attempted to perform 

the same classification task with the KTH-TIPS dataset that had 

been divided into three groups based on the scale of its textural 

patterns. The first group includes scales 1 to 3 with large textural 

patterns, while the next two groups comprise scales 4 to 6 and 7 

to 9, presenting medium- and small-sized patterns, respectively. 

The results of this experiment are shown in Table III. The trend 

displayed in the table appeared to be similar to the previous one, 

except that the accuracies on larger textures were lower than that 

of the smaller textures. These experimental results essentially 

indicate that smaller textures are easier to classify than the larger 

ones. While LBPRI surpassed the best SBP in large textures, the 

latter was generally only outperformed by LBPU and MSLBP3. 

Especially in medium and small textures, SBP2 were only 

separated from the two features by a relatively small margin. 

 Next, authors are also interested in finding out how each 

feature performs compared to the conventional LBP in terms of 

the accuracy difference. It is seen in Table IV that MSLBP3 

outperformed the original LBP by 2.4%, 3.4%, and 5.6% on 

small, medium, and large-sized textures, respectively. Such an 

increase in the accuracy difference when the textural scale gets 

larger indicates the superiority of multiscale-based LBP variant 

in capturing larger repeating patterns as compared to the original 

LBP. Thus, it makes sense to say that wider MSLBP radius 

somewhat correlates to its ability in recognizing large textures. 

This kind of behavior can also be observed in SBP2, where its 

accuracy difference towards LBP in small textures (1.8%) are 

lower than those of medium (2.9%) and large textures (2.1%). 

Note that these results are obtained on SBP2 with the number of 

histogram bins in each patch set to 30. During the experiments, 

authors attempted to increase the value of this parameter to 100 

both for SBP2 and LBP in order to gain new insights. Using this 

configuration, it is found that the accuracy gap between the two 

reached 6% on large textures, strengthening the notion that LBP-

based features with multiscale approach allows it to capture 

larger repeating patterns. 

 In order to support these findings, we performed further 

experiment on the 𝑁 parameter of SBP specifically on large 

textures, which the results are displayed in Table V. According 

to the table, it is seen that classification accuracy tends to 

improve as the 𝑁 is increased, with the results being more 

apparent when the number of histogram bins in each patch is set 

to 100. This confirms that the proposed SBP aligns with our 

previous findings where larger textures are able to be recognized 

better with multiscale-based feature extraction algorithms.  

C. Results on Datasets of Noisy Images 

In order to find out the robustness of SBP in noisy conditions, 

we carried out more experiments on each textural scale group in 

the KTH-TIPS dataset that had been synthesized with noise. 

There were two types of noise used, namely Gaussian and s&p 

(salt and pepper) noise. In the case of Gaussian noise, variance 

was the parameter used to control noise severity. This parameter 

was set to 0.05, 0.1, 0.15, and 0.2, in which the latter is the one 

that causes the images to look the most unclear. This section is 

going to reveal which feature obtained the least accuracy 

TABLE II 

CLASSIFICATION RESULTS ON DIFFERENT DATASETS 
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LBP [1] 0.783 0.806 0.804 0.807 0.747 0.858 

FBLBP [3] 0.796 0.815 0.813 0.826 0.761 0.862 
LBPRIU [5] 0.768 0.730 0.774 0.745 0.600 0.783 

LBPU [5] 0.852 0.858 0.893 0.890 0.855 0.914 

LBPRI [5] 0.806 0.733 0.670 0.613 0.380 0.829 
MSLBP2 [5] 0.767 0.791 0.779 0.779 0.713 0.844 

MSLBP3 [5] 0.828 0.843 0.850 0.850 0.766 0.897 

LTP [7] 0.679 0.684 0.670 0.593 0.520 0.735 
ILBP [20] 0.704 0.736 0.745 0.743 0.668 0.738 

SBP1 (proposed) 0.740 0.785 0.766 0.766 0.689 0.813 
SBP2 (proposed) 0.807 0.826 0.819 0.826 0.762 0.860 

SBP3 (proposed) 0.776 0.823 0.789 0.794 0.758 0.811 

Results matching the best SBP accuracy are highlighted in blue (■), results 

below the best SBP are highlighted in orange (■), and results above the best 
SBP are highlighted in green (■). 

 

 
TABLE III 

CLASSIFICATION RESULTS ON DIFFERENT SCALES IN KTH-TIPS DATASET 

Feature Name 
Large 

Textures 
Medium 
Textures 

Small 
Textures 

LBP [1] 0.686 0.898 0.921 
FBLBP [3] 0.704 0.903 0.921 

LBPRIU [5] 0.692 0.907 0.926 

LBPU [5] 0.777 0.947 0.963 
LBPRI [5] 0.739 0.920 0.915 

MSLBP2 [5] 0.651 0.875 0.891 

MSLBP3 [5] 0.742 0.932 0.945 
LTP [7] 0.547 0.795 0.731 

ILBP [20] 0.613 0.792 0.850 

SBP1 (proposed) 0.628 0.854 0.869 
SBP2 (proposed) 0.707 0.927 0.938 

SBP3 (proposed) 0.684 0.896 0.900 

Results matching the best SBP accuracy are highlighted in blue (■), 

results below the best SBP are highlighted in orange (■), and results above 
the best SBP are highlighted in green (■). 

 

TABLE IV 

ACCURACY DIFFERENCE OF EACH TEXTURE FEATURE TOWARDS THE 

CONVENTIONAL LBP 

Feature Name 
Large 

Textures 
Medium 
Textures 

Small 
Textures 

MSLBP3 [5] 0.056 0.034 0.024 

SBP2 (bins=30) (proposed) 0.021 0.029 0.018 

SBP2 (bins=100) (proposed) 0.060 0.030 0.027 

 
TABLE V 

THE CLASSIFICATION ACCURACY OF SBP ON LARGE TEXTURES WITH 

DIFFERENT N VALUES 

SBP Variant 
No of bins per patch 

30 100 

SBP1 (N=1) 0.628 0.703 

SBP2 (N=2) 0.707 0.722 

SBP3 (N=3) 0.684 0.740 
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degradation as the level of noise increases. 

The first experiment related to noise was performed by 

applying Gaussian noise on images of large texture, in which the 

results are displayed in Table VI. Initially in a non-noisy 

condition, SBP2 ranked fourth behind LBPU, MSLBP3 and 

LBPRI with an accuracy of 70.7%. As the Gaussian noise added, 

the accuracy of LBPU and LBPRI drastically dropped to 42.4% 

and 37.7% respectively, causing them to be lower than SBP2 

which obtained 43.4%. Despite this fact, SBP2 remained in the 

third rank since LTP somehow obtained 48.1%, surpassing both 

SBP2 and MSLBP3. Nevertheless, LTP dominated only at 

Gaussian noise variances of 0.05 and 0.1. Meanwhile, MSLBP3 

became the best one at noise 0.15, at which point SBP2 ranked 

second with 33.8% accuracy, which was only 0.3% lower than 

MSLBP3. SBP2 finally took first place at the most severe noise 

level with the accuracy of 32.2%, exceeding MSLBP3 and LTP 

which had previously performed better at lower noise levels. 

On the other hand, the conventional LBP, which is the main 

baseline of this research, was completely unable to surpass SBP2 

at all. Similar behavior could also be observed on LBPRIU, 

MSLBP2, FBLBP, and ILBP. All these results prove that SBP is 

a texture feature suitable to be extracted in the case where the 

images contain large repeating patterns with a high level of 

Gaussian noise. 

In the case when the same noise type was applied to medium-

sized textures, LBPU appeared not to be able to surpass SBP2 at 

all despite its superiority over all other features in a normal 

condition as shown in Table II. It is interesting to see that LTP, 

which used to produce a relatively low accuracy in non-noisy 

condition, became the best one across all noise variance, 

exceeding both MSLBP3 and SBP2. Despite not being the best 

one, the classification rate of SBP2 was ranked third after LTP 

and MSLBP3, except that at 0.15 noise it ranked second behind 

LTP with a gap of only 0.5%, surpassing MSLBP3 by 2.7% 

margin. This essentially proved that SBP2 is a good feature to 

consider when it comes to classifying medium-sized textures in 

noisy condition since it can still achieve high accuracy while 

having much smaller computational complexity as shown in Fig.  

9. In addition to this experiment set, the conventional LBP as 

well as FBLBP, LBPRIU, LBPRI, MSLBP2, and ILBP were 

completely unable to perform as good as SBP2, similar to the 

experimental results conducted on large textures. 

Different from the previous two textural sizes, the 

experimental result on small textures highlights the weakness of 

SBP. According to Table VI, even the conventional LBP was 

able to obtain better results than the best SBP at noise variance 

0.05, 0.1, and 0.15 with the margins of 0.9%, 3.9% and 0.9%, 

respectively. At noise variance 0.2, the accuracy of the best SBP 

was indeed better than LBP, yet the difference between the two 

was only 0.1%. This indicates that SBP is not suitable for 

TABLE VI 

THE EFFECT OF GAUSSIAN NOISE ON LARGE, MEDIUM, AND SMALL TEXTURES 

Feature Name 

Large Textures Medium Textures Small Textures 

No 

Noise 

Variance No 

Noise 

Variance No 

Noise 

Variance 

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 

LBP [1] 0.686 0.401 0.333 0.314 0.276 0.898 0.517 0.459 0.406 0.393 0.921 0.578 0.518 0.435 0.387 

FBLBP [3] 0.704 0.398 0.345 0.324 0.274 0.903 0.527 0.460 0.408 0.387 0.921 0.591 0.519 0.447 0.394 

LBPRIU [5] 0.692 0.362 0.325 0.306 0.280 0.907 0.420 0.358 0.339 0.291 0.926 0.492 0.394 0.371 0.306 

LBPU [5] 0.777 0.424 0.386 0.318 0.301 0.947 0.539 0.469 0.420 0.395 0.963 0.594 0.519 0.468 0.403 

LBPRI [5] 0.739 0.377 0.326 0.299 0.282 0.920 0.491 0.422 0.373 0.349 0.915 0.513 0.451 0.410 0.369 

MSLBP2 [5] 0.651 0.359 0.307 0.277 0.253 0.875 0.484 0.425 0.372 0.349 0.891 0.557 0.472 0.399 0.340 

MSLBP3 [5] 0.742 0.465 0.387 0.341 0.296 0.932 0.569 0.491 0.440 0.415 0.945 0.575 0.490 0.428 0.372 

LTP [7] 0.547 0.481 0.390 0.336 0.308 0.795 0.614 0.529 0.472 0.443 0.731 0.640 0.554 0.503 0.441 

ILBP [20] 0.613 0.370 0.325 0.298 0.267 0.792 0.428 0.369 0.353 0.324 0.850 0.500 0.432 0.392 0.378 

SBP1 (proposed) 0.628 0.352 0.308 0.287 0.259 0.854 0.491 0.434 0.376 0.365 0.869 0.533 0.455 0.422 0.375 

SBP2 (proposed) 0.707 0.434 0.358 0.338 0.322 0.927 0.556 0.483 0.467 0.413 0.938 0.569 0.479 0.426 0.381 

SBP3 (proposed) 0.684 0.434 0.379 0.329 0.288 0.896 0.529 0.439 0.400 0.368 0.900 0.519 0.461 0.402 0.388 

Results matching the best SBP accuracy are highlighted in blue (■), results below the best SBP are highlighted in orange (■), and results above the best 
SBP are highlighted in green (■). 

 

 TABLE VII 

THE EFFECT OF S&P NOISE ON LARGE, MEDIUM, AND SMALL TEXTURES 

Feature Name 

Large Textures Medium Textures Small Textures 

No 

Noise 

Amount No 

Noise 

Amount No 

Noise 

Amount 

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 

LBP [1] 0.686 0.597 0.513 0.462 0.425 0.898 0.775 0.658 0.577 0.508 0.921 0.783 0.712 0.663 0.619 

FBLBP [3] 0.704 0.598 0.522 0.480 0.427 0.903 0.775 0.664 0.580 0.512 0.921 0.780 0.719 0.672 0.618 

LBPRIU [5] 0.692 0.568 0.492 0.416 0.380 0.907 0.822 0.649 0.559 0.463 0.926 0.800 0.682 0.596 0.538 

LBPU [5] 0.777 0.658 0.569 0.494 0.438 0.947 0.843 0.719 0.618 0.544 0.963 0.830 0.738 0.687 0.634 

LBPRI [5] 0.739 0.606 0.519 0.457 0.423 0.920 0.788 0.684 0.565 0.535 0.915 0.761 0.665 0.619 0.582 

MSLBP2 [5] 0.651 0.569 0.483 0.418 0.388 0.875 0.746 0.631 0.543 0.469 0.891 0.752 0.682 0.630 0.592 

MSLBP3 [5] 0.742 0.656 0.571 0.517 0.466 0.932 0.797 0.694 0.608 0.526 0.945 0.775 0.692 0.645 0.592 

LTP [7] 0.547 0.532 0.517 0.487 0.441 0.795 0.697 0.666 0.642 0.592 0.731 0.741 0.719 0.700 0.668 

ILBP [20] 0.613 0.501 0.428 0.392 0.353 0.792 0.564 0.506 0.444 0.403 0.850 0.695 0.611 0.544 0.501 

SBP1 (proposed) 0.628 0.547 0.462 0.421 0.394 0.854 0.720 0.634 0.564 0.485 0.869 0.749 0.660 0.621 0.560 

SBP2 (proposed) 0.707 0.644 0.553 0.495 0.443 0.927 0.792 0.693 0.608 0.550 0.938 0.805 0.699 0.648 0.582 

SBP3 (proposed) 0.684 0.624 0.519 0.469 0.420 0.896 0.731 0.610 0.537 0.482 0.900 0.735 0.617 0.576 0.509 

Results matching the best SBP accuracy are highlighted in blue (■), results below the best SBP are highlighted in orange (■), and results above the best 
SBP are highlighted in green (■). 
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conditions with small, noisy textures. Meanwhile LBPU, which 

previously struggled to surpass SBP2 in medium-sized textures, 

is now able to do so across all noise levels. This phenomenon 

probably happened because both LBP and LBPU work by taking 

into account the pixels exactly next to it, enabling it to pay more 

attention to the smaller repeating patterns. On the other hand, 

SBP did not perform as effectively since it works by capturing 

the information from multiple levels and taking the average from 

them. Such an averaging mechanism causes it to lose some 

textural information, especially when noise starts to disrupt the 

images. Even though MSLBP3 also takes into consideration 

pixel values from multiple scales, yet it did not encounter this 

problem because these features of different scales are 

concatenated rather than averaged. 

Similar experiment was also conducted using s&p noise, 

where the accuracy scores are shown in Table VII. In this type 

of noise, the value of 0.05, 0.1, 0.15 and 0.2 represent the 

proportion of noise compared to the total number of pixels within 

an image. Table VII shows the influence of s&p noise on textures 

of different sizes. 

It is seen in the table that initially LBPU performed better than 

both SBP2 and MSLBP3 at noise amount 0.05 in large textures, 

but its accuracy got surpassed by both of them at noise amount 

0.15 and 0.2. Even though SBP2 never achieved the best score 

in this texture size, yet its classification performance ranked 

second right after MSLBP3 at the two most severe noise levels 

with the difference of 2.2% at noise amount 0.15 and 2.3% at 

noise amount 0.2. The reason that it could not perform better than 

MSLBP3 is probably because the presence of noise, which 

should be able to be handled by SBP, was not as significant as 

the presence of large textures, which the information can be 

captured better by MSLBP3. Furthermore, the table also shows 

that there is no other feature performed better than SBP2 except 

LBPU and MSLBP3 across all noise amounts in large texture 

category, in which this behavior supports the notion that SBP is 

a good feature to be extracted when the dataset contains large 

repeating patterns especially when s&p noise is present. 

Examining the impact of s&p noise on medium-sized 

textures, LBPU, MSLBP3 and LBPRIU initially obtained better 

accuracy than the best-performing SBP at noise amount 0.05. 

However, LBPRIU suddenly dropped significantly at the 

subsequent noise amounts such that its accuracy became lower 

than SBP2. The accuracy gap between LBPU to SBP2 and 

MSLBP3 to SBP2 were also getting narrower as the noise 

amount increased. This trend continued until eventually SBP2 

surpassed both of those at the highest noise level. This 

experimental results proved that SBP2 is more robust against 

noise as compared to LBPU and MSLBP3. We do acknowledge 

that the result obtained by SBP2 was not as good as LTP at 0.2 

noise amount, yet it can still be regarded as a good one 

considering that it performed better than all the remaining LBP 

variants. 

The accuracy trend for s&p noise on small textures followed 

a similar pattern to that of Gaussian noise on the same textural 

size. Initially, the performance of SBP2 was actually good 

enough. It is seen in Table VII that it ranked second right after 

LBPU when the noise amount was set to 0.05 with the difference 

of 2.5%. However, the classification rate of SBP degraded 

abruptly, causing it to be surpassed by LBP, LTP, and FBLBP at 

noise amounts 0.1 and 0.15. The result became even worse even 

for the best SBP at noise amount 0.2 as it only performed better 

than LBPRIU and ILBP. These results suggest that SBP is not a 

good features to be used when the classification task contains 

small and noisy texture images. 

V. CONCLUSIONS 

Based on the above discussions, it can be concluded that the 

proposed SBP feature has successfully addressed the three 

problems encountered by the conventional LBP, i.e., the need for 

bilinear interpolation, the inability to capture macrostructures, 

and the difficulty in handling noise. First, the proposed sampling 

points determination mechanism allows SBP to omit the bilinear 

interpolation process which causes it to be computationally 

much more efficient than other existing LBP-based algorithms. 

Secondly, even though SBP does not have the best accuracy in 

general texture classification task, yet it is usually ranked third 

just behind LBPu2 and MS-LBP. This essentially indicates that 

SBP is able to work much faster than the two without sacrificing 

too much textural information. It is worth noting that both 

algorithms, especially MS-LBP, have an extremely slow 

computational speed which causes it not to be suitable to be used 

in real-time. Moreover, the same experiment set also proved that 

SBP has a better capability in capturing macrostructures as 

compared to the conventional LBP. Third, the experimental 

results also showed that the classification rate of SBP under 

heavy noise conditions is very good especially when the 

repeating patterns are large.  

Despite all these strengths, this does not necessarily mean that 

SBP has no drawbacks. In fact, there is actually a case where 

SBP can not compete with the others including the conventional 

LBP itself, in which this particular phenomenon usually occurs 

when the dataset contains small-sized and noisy textures. 

Furthermore, it is also necessary to acknowledge that even 

though SBP is able to perform very well under heavy noise in 

large textures, yet its classification rate can still be considered 

low. This behavior is still useful in some cases since the classifier 

did not perform random guess. However, further research to 

improve the accuracy under such conditions is still necessary to 

be done in order to achieve more reliable results. 
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