

Abstract— Local Binary Patterns (LBP) is one of many image

features suitable for enhancing textures within an image. Despite its

popularity, this feature as well as its variants actually still has some

drawbacks: requiring the use of bilinear interpolation mechanism

which leads to a computational bottleneck, being unable to capture

macrostructures, and being prone to noise. The objective of this

research is to propose a novel image feature named Square Binary

Patterns (SBP) which is intended to solve the mentioned problems.

Experiments were conducted using four texture datasets, namely

KTH-TIPS, KTH-TIPS2-b, ALOT, and the texture dataset we

created on our own. The existing LBP-based features including

LBPriu2, LBPu2, LBPri, MS-LBP, LTP, FbLBP and ILBP are

directly compared with SBP. The quality of these features is

obtained by observing the classification accuracy of separate SVM

models. The classifier which produces higher accuracy implies that

its corresponding feature contains a more important information

regarding the textures. Experimental results showed that our best-

performing SBP variant was able to work 2.98 times faster than the

conventional LBP while at the same time capable of producing

accuracy comparable to that of the existing LBP-based features.

This paper makes a significant contribution through the

introduction of the SBP algorithm and the creation of a novel

texture dataset.

Index Terms—Feature Extraction, Local Binary Patterns,

Machine Learning, Texture Classification

I. INTRODUCTION

EXTURE feature extraction is one of the most interesting

topics to be brought up into discussion as it is useful to be

used in many classification tasks, especially when the classes of

the images are distinguishable by looking at its textures, such as

visual-based material analysis. There are actually several

algorithms specialized for extracting texture features, one of

which is LBP (Local Binary Patterns). The algorithm, which was

first introduced by Ojala et al. [1], became popular in this field

thanks to its ability in handling gray-level variations [2]-[4]. This

notion is true because the binary encoding of each pixel within

an image is generated only based on its local neighborhood, thus

not affected by the illumination in the farther part of the image.

Despite its high popularity, this does not necessarily mean that

LBP is flawless. Even though this feature extraction algorithm is

considered to be computationally cheap [3], yet the authors of

this research think that the process can still be further sped up.

This is essentially because the sampling points of LBP follow a

circular pattern, which causes plenty of points to not fall right at

the center of a pixel. In such a case, bilinear interpolation

operation is required to approximate the actual value of these

sampling points, which authors perceive this process as a

bottleneck. To the best of our knowledge, this phenomenon can

be seen in all existing LBP variants, including those proposed by

the same author in their subsequent paper, i.e., LBPu2 (Uniform

LBP), LBPri (Rotation-Invariant LBP), and LBPriu2 (Rotation-

Invariant Uniform LBP) [5]. The second problem encountered

by LBP is that according to [6] the feature extraction method is

unable to capture macrostructures, i.e., large repeating patterns.

This statement makes sense because LBP works by taking into

account local neighborhood, limiting its ability to capture

microstructures only. Third, LBP is also known to be prone to

noise [2], [7], [8] since an extremely high or low value is

captured as is by the algorithm which affects the resulting binary

encoding.

In order to address the above issues, the authors of this

research propose a new texture feature named SBP (Square

Binary Patterns), in which it is intended to tackle the three

problems simultaneously: the need for bilinear interpolation, the

inability to capture macrostructures, and the difficulty in

handling noise. The first one can be achieved since SBP, as the

name suggests, uses square-shaped rather than circular pattern

which guarantees the sampling points lie exactly at the center of

a pixel. To address the macrostructure problem, SBP implements

an adjustable parameter to control the sampling point radius to

be taken into account. This method is actually inspired by MS-

LBP (Multi-Scale LBP) which was previously proposed in [9].

Lastly, the noise problem is addressed by taking the average

features from different radii, in which this process is adopted

from the average smoothing algorithm.

The two main contributions of this paper are listed below:

● The proposal of SBP for addressing the problems of

LBP as well as its existing variants mentioned earlier.

● The creation of a new texture dataset which will later

be used to further validate the performance of SBP.

The remaining parts of this paper will be organized as follows:

the second section explains previous works related to the existing

LBP variants, the third section explains the details of SBP

Square Binary Patterns: A Non-Circular

Approach for Local Binary Patterns

Muhammad Ardi Putra, Member, IAENG, Agus Harjoko*, Member, IAENG, Wahyono, Member,

IAENG, and Kanghyun Jo

T

Manuscript received November 15, 2024; revised March 25, 2025. This

research is supported by Kementerian Pendidikan, Kebudayaan, Riset, dan
Teknologi of Indonesia through PKPI-PMDSU Scholarship Program under

Grant 2069/UN1/DITLIT/PT.01.03/2024. (Corresponding author: Agus

Harjoko.)
Muhammad Ardi Putra is a doctoral student of Computer Science at the

Department of Computer Science and Electronics, Universitas Gadjah Mada,

Yogyakarta, Indonesia (e-mail: muhammadardi2017@mail.ugm.ac.id).
Agus Harjoko is a professor at the Department of Computer Science and

Electronics, Universitas Gadjah Mada, Yogyakarta, Indonesia (e-mail:

aharjoko@ugm.ac.id).
Wahyono is an associate professor at the Department of Computer

Science and Electronics, Universitas Gadjah Mada, Yogyakarta, Indonesia
(e-mail: wahyo@ugm.ac.id).

Kanghyun Jo is a professor at the Department of Electrical, Electronic,

and Computer Engineering, University of Ulsan, Ulsan, South Korea (e-
mail: acejo@ulsan.ac.kr).

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1616-1626

__

algorithm and the experimental procedure, the fourth one

discusses experimental results, and the fifth section concludes

the research.

II. REVIEW ON THE EXISTING LBP VARIANTS

A. The Conventional LBP

Before getting into the details of the proposed SBP, it is

necessary to discuss the conventional LBP feature extraction

algorithm in advance. The original LBP has two main

parameters, namely 𝑃 and 𝑅 in which they represent the number

of sampling points and the sampling radius, respectively. Fig. 1

displays what the sampling points look like when 𝑃 and 𝑅 are

assigned with different values. It is important to note that such a

sampling mechanism is used in all LBP variants.

The circular pattern shown in Fig. 1 can be modeled using

equation (1), where 𝑥 and 𝑦 denote spatial coordinates, 𝑝

represents the index of the sampling point, and 𝑃 is the total

number of sampling points. As seen in the figure, most of the

sampling points do not lie exactly at the center of a pixel. Thus,

bilinear interpolation technique is used in order to obtain its exact

value, which the mathematical expression is displayed in

equation (2). The variables 𝑄11, 𝑄21, 𝑄12 and 𝑄22 represent the

neighboring pixel values where the approximation is made from.

(1)

(2)

After the sampling points have been interpolated, the next step

to do is to generate a binary sequence by comparing the value of

a single pixel with the values of its corresponding sampling

points. The binary number will then be converted back to

decimal prior to being assigned as a new pixel value. Equation

(3) shows the encoding procedure of a standard LBP, where 𝑠 is

a sign function, 𝑔𝑝 is the value of 𝑝-th sampling point, while 𝑔𝑐

is the value of the center pixel.

(3)

(4)

B. LBP-Based Variants

Since its first introduction in 1994, LBP [1] has encountered

plenty of modifications. The same author proposed its variants

several years later, namely LBPu2 (Uniform LBP), LBPri

(Rotation-Invariant LBP), and LBPriu2 (Rotation-Invariant

Uniform LBP) [5]. The creation of LBPu2 was intended to

suppress the influence of non-uniform patterns, as these are

considered to contain less information than uniform patterns.

Meanwhile, LBPri is an LBP variant specialized to capture a

textural structure regardless of its rotation. Combining both

LBPu2 and LBPri results in LBPriu2, in which it preserves the

rotation invariance of a texture while at the same time

highlighting only the uniform patterns of a texture.

Many other LBP variants proposed by other researchers

started to emerge afterwards. The first one to discuss is the so-

called MSJ-LBP (Multi-Scale Joint encoding of Local Binary

Patterns) [9], in which it is an improvement of MS-LBP (Multi-

Scale Local Binary Patterns). MS-LBP itself is essentially an

ordinary LBP which is performed several times on multiple

scales. The information captured by MSJ-LBP is claimed to be

better than MS-LBP since it also takes into account the

correlation of the encodings between all scales rather than the

encodings alone. Not only that, there were also several other

researchers who attempted to capture multi-scale LBP

information. Dan et al. [10] proposed JLBPW (Joint LBP with

Weber-like responses) while Prema et al. [11] created HDLBP

(Hamming Distance based LBP) to do so. In addition to the

latter, the authors implemented the algorithm for smoke

detection which is similar to PCLBP (Pairwise Comparing LBP)

proposed by Yuan et al. [12] and LBMP proposed by [13].

Next, there are at least two other LBP variants introduced

within the same year as MSJ-LBP, namely LBPV (LBP

Variance) [14] and CLBP (Completed LBP) [15]. The former

works by capturing the contrast information within a small

image region, whereas the latter combines information from the

center pixel (CLBP_C), the magnitude between center and the

sampling points (CLBP_M) as well as its sign (CLBP_S). It

might be worth noting that CLBP_S is equivalent to the

conventional LBP. FbLBP (Feature-based LBP) [3] actually also

captures the similar information to CLBP, in which both

FbLBP_F and CLBP_M are intended to capture the magnitude

of the sampling points yet with different feature representations.

Not only CLBP and FbLBP, but ELBP (Extended LBP) [16]

can also be broken down into smaller components: CI-LBP

(Central Intensity LBP), NI-LBP (Neighboring Intensities LBP),

RD-LBP (Radial Difference LBP), and AD-LBP (Angular

Difference LBP). The idea of this approach is to capture both the

information from each individual sampling points itself and the

difference between one sampling point and another. In the next

couple of years, the same author proposed MRELBP (Median

Robust Extended LBP) [6], in which its objective was to improve

ELBP in terms of its ability in capturing both micro- and

macrostructures. Furthermore, [17] proposes LBPOUS which

consists of three different LBPs, namely LBPO, LBPU, and LBPS.

Fig. 1. The sampling points generated using different 𝑃 and 𝑅 (redrawing

based on [5]).

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1616-1626

__

The authors claimed that these three sub-features contain

different information which are complementary to each other,

allowing LBPOUS to achieve high accuracy.

Different from the previous ones, LTP (Local Ternary

Patterns) [7] employs 3 numbers to generate its encoding: -1, 0,

and 1. This proposed method was proven to be less sensitive to

the presence of noise. Next, LABP (Local Adaptive Binary

Patterns) [18] is similar to the original LBP, except that the

threshold used for creating the binary encoding is determined by

the mean of the corresponding sampling points. This is basically

the reason that this LBP variant is considered to be adaptive to

the neighboring pixels. BELBP (Binarized Edge LBP) [19] is

even more similar to the original LBP. However, what sets it

apart is that BELBP works by applying LBP on edge features

rather than the original image. The authors of this research

utilized this texture features to detect abrupt-shot boundaries.

Talking more specifically about the other possible

implementations of LBP variants, ILBP (Improved LBP) [20]

was proposed and directly used by the authors to extract texture

features from time-frequency image generated by diesel engine

sound. Meanwhile, in the medical field, LMELBP (Local

Maximum Edge Binary Patterns) [21] was proposed to perform

segmentation on brain MR images. Not only that, [22] proposed

MCG-LBP (Multi-Scale Continuous Gradient LBP) for leaky

cable fixture detection in high-speed railway tunnels, whereas

[23] utilized LBP-HF (LBP Histogram Fourier) for detecting

image tampering through copy-move forgery.

Going back to the discussion regarding CLBP [15], there are

actually several research papers that attempted to improve the

algorithm. For instance, [24] proposed PC-LBP (Principal

Curvatures LBP) while [25] combined CLBP with LTP,

resulting in a new features called CLTP (Completed Local

Ternary Pattern). However, [8] mentioned that CLTP is

computationally expensive due to its high dimensionality. Thus,

they propose to make further improvement on this algorithm by

developing another one which is referred to as WCLTP (Wavelet

Completed Local Ternary Pattern).

LBP-TOP (LBP from Three Orthogonal Planes) [26] can be

considered as a special LBP variant thanks to its ability to capture

texture as well as temporal information from a sequence of

images. The idea was then adopted by [27], which proposed

MCLBP (Multiple Channels LBP) to capture the texture features

of a multi-channel image without needing to perform grayscale

conversion. If these two LBPs work on 3D arrays, the ones

proposed in [28] and [29] are specialized to perform LBP feature

extraction on 1D array instead. The thresholding mechanism in

such cases works in a similar way to a standard LBP, except that

the sampling points are stretched along a single axis only,

allowing it to extract meaningful information from waveforms.

The last three LBP variants to discuss are SCLBP (Sorted

Consecutive LBP) [30], PNULBP (Prominent Non-Uniform

LBP) [31], and LBPmr (Magnitude Ranking LBP) [32]. SCLBP

works by exploiting the information contained in the consecutive

bits in the binary encoding. Next, the author of PNULBP

proposed this algorithm because they saw that LBPu2 is missing

some information as it almost completely discards the non-

uniform pattern. The idea of PNULBP is to extract some more

meaningful information from non-uniform patterns and combine

it with LBPu2 afterwards. Lastly, LBPmr was proposed because

the weights used for creating the conventional LBP codes are

fixed. The author of this algorithm regarded this as a problem

and attempted to fix this issue by setting the sampling point with

the largest magnitude as the MSB (Most Significant Bit) of the

resulting binary code.

Among all LBP variations, there is no single one proposed

specifically for handling the three drawbacks of LBP

simultaneously, i.e., the requirement of bilinear interpolation, the

inability to capture macrostructures and the sensitivity towards

noise. Thus, this paper proposes a new LBP-based variant named

Square Binary Patterns to handle these issues.

III. PROPOSED METHOD AND EXPERIMENTAL SETUP

A. Square Binary Patterns

This paper proposes an LBP-like feature which is named SBP

(Square Binary Patterns). The procedure for extracting SBP

features is shown in Fig. 5. The main steps written in the figure

can actually be summarized as follows: center point

determination, sampling points determination, thresholding,

binary sequence generation, decimal conversion, and histogram

generation. Each of the mentioned steps is going to be explained

in the following sub-sections:

1) Center point determination. This stage is very similar to

the conventional LBP. Every single pixel in the image is

going to be indexed as a center pixel one by one starting

from the top-left corner. The process finishes once it has

reached the bottom-right corner of the input image. Later

on, the intensity of each pixel will be compared with its

surrounding neighbors.

2) Sampling points determination. Instead of following a

circular pattern like what LBP does, SBP works by

taking four groups of sampling points. These four groups

are called “upper”, “right”, “lower” and “left” in which

all of those groups are named after its position relative to

the corresponding center pixel as shown in Fig. 2. The

term “square” in SBP itself comes from these four sides

of sampling points. Each group in each SBP level

consists of 3 sampling points. Hence, the combination of

those 4 groups will produce 12 sampling points. In the

subsequent process, the 12 sampling points will be

encoded in a clockwise direction starting from the

leftmost pixel of the “upper” group.

3) Thresholding. SBP adopts the exact same thresholding

method as LBP. The value of center pixel is going to act

as the threshold value, where any sampling point that has

lower value than the center will be encoded as 0, while

the points with equal or higher value will be encoded as

1. See the illustration in Fig. 3.

4) Decimal conversion. With 12 binary digits, the maximum

possible decimal value is 4095. The decimal values of all

SBP levels are averaged and then normalized to ensure that

the resulting value falls within the range of 0 to 255. The

averaging process is inspired by the average smoothing

method, which is useful for reducing noise effects.

Meanwhile, the normalization process is necessary because

the original range of 0 to 4095 is too large and redundant.

5) Histogram generation. Once the entire processes have

been done to all pixels in the image, the resulting output

is going to be in form of 2-dimensional array, which is

referred to as the SBP feature. In order to use the feature

for training a machine learning model, it is necessary to

convert it into a single-dimensional array. This can

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1616-1626

__

simply be achieved by putting the pixel intensity values

into a histogram.

The entire SBP feature extraction (excluding the histogram

generation) can mathematically be expressed in equation (5). In

this equation, 𝑔𝑛𝑝 denotes the pixel intensity at 𝑛-th level and 𝑝-

th sampling point, while 𝑔𝑐 represents the intensity of center

pixel. The binary encoding is then generated by the 𝑠 function

which is basically the same as the one written in equation (4).

The term 17/273 in the equation is employed as an approach to

keep the resulting intensity value to lie within the range of 0 to

255 only. Finally, the process of converting binary to decimal is

done by the 2𝑝 multiplier.

(5)

B. Datasets

The author of this research utilized four datasets: KTH-TIPS

(Kungliga Tekniska Högskolan – Textures Under Varying

Illumination, Pose and Scale) [33], KTH-TIPS2-b [34], ALOT

(Amsterdam Library of Textures) [35], and the one that we

created ourselves named SuroTex (Surrounding Texture) [36].

The original KTH-TIPS dataset comprises 10 texture classes,

each with 9 scales describing the pattern size. There are 81

images in each class, all with the dimensions of 200×200 pixels.

To augment the number of images, the author applied a method

that involved cropping with the size of 100×100 pixels from the

top-left corner, top-right corner, bottom-left corner, and bottom-

right corner of each image. By applying this method to all

images, the dataset now has 324 images per class.

Despite having a similar name, KTH-TIPS2-b is actually

different to KTH-TIPS. This dataset consists of 11 classes in

which each of those has 432 texture images. However, further

processing is required prior to using this dataset since the size of

the images are somewhat not uniform. We decided to resize

them all to 100×100 pixels in order to handle this issue. Next,

ALOT is a dataset of 250 texture classes which contains 100

images each. Similar to KTH-TIPS2-b, since the image size is

not uniform, hence it was resized to 100×100 as well before the

Fig. 2. The four groups of sampling points.

Fig. 3. Raw image to be processed (left) and the thresholding result (right).

Fig. 4. An example of how SBP feature is computed. The initial binary

sequence is based on the dummy image in Fig. 3.

Fig. 1. The sampling points generated using different 𝑃 and 𝑅 [5].

Fig. 5. The algorithm for extracting Square Binary Patterns.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1616-1626

__

features being extracted. It is important to note that the author

conducted the experiments on the first 30 and 50 texture classes

as well as the entire 250 classes. Lastly, the SuroTex dataset was

preprocessed in a similar way to ALOT. While the current

version of this dataset contains 50 texture classes, this research

utilized an earlier version of SuroTex which comprised 40

texture classes.

C. Experiment Steps

The experiments conducted in this research followed the

flowchart displayed in Fig. 7. The first step to be taken was to

preprocess the images. The preprocessing stage consisted of

grayscaling and smoothing with a kernel of size 5×5. In this case,

average smoothing was chosen since it requires the least number

of operations than the other smoothing methods. Once

preprocessing was done, different texture feature extraction

would be performed independently. The features to be compared

in this research were LBP, LBPriu2, LBPu2, LBPri, MS-LBP, LTP,

FbLBP, ILBP and the SBP itself. There were 2 and 3 variations

of MS-LBP and SBP, respectively. Later on, these variations are

going to be referred to as MSLBP2, MSLBP3, SBP1, SBP2, and

SBP3, in which the numbers represent the neighbor distances to

be taken into account. The resulting texture features were then

used to train an SVM model. The training was done 20 times

with different train-test split of ratio 80:20, in which the partition

of each training iteration was selected randomly. Lastly, the

model was evaluated by calculating the average testing accuracy

score.

There were three types of experiments to be conducted. The

first one was an experiment to test whether SBP is able to work

faster than the other algorithms. Secondly, the classification

performance of SBP under different textural scales were tested,

in which this is useful to find out whether the proposed SBP

feature is able to handle macrostructures. Lastly, there were also

experiments done to find out the robustness of SBP under noisy

conditions.

D. Experiment Parameter Settings

Discussing the experimental parameter settings, the two

parameters that we set to be fixed were 𝑃 and 𝑅 with the value

of 8 and 1, respectively for all LBP-based variants. However,

exceptions were made for MS-LBP2 which used 𝑅=1 and 𝑅=2,

and MS-LBP3 which used 𝑅=1, 𝑅=2, and 𝑅=3. The resulting

binary encoding of these MS-LBP radii were then concatenated

to construct the final feature vector. Similarly, this mechanism is

also applied to SBP. SBP1, SBP2, and SBP3 were all using 𝑁=1,

𝑁=2 and 𝑁=3, respectively. The major difference between SBP

and LBP is the number of sampling points, where SBP used

𝑃=12 rather than 8. Lastly, LTP threshold was set to 5 in which

this number was determined arbitrarily.

In addition to the parameters for feature extraction strategies,

we also introduced two other parameters that were used to create

histograms: patchnum and binsperpatch. The term patchnum

refers to the number of divisions an image is partitioned into. The

authors decided to set patchnum to 4 in all experiments. This

basically means that a single image will be divided into 4 rows

and 4 columns so that there will be 16 patches in total. The

illustration shown in Fig. 8 displays an image of size 100×100

Fig. 6. First row: original image from SuroTex [36], LBP, LBPriu2, LBPu2.

Second row: LBPri, LTP lower pattern, LTP upper pattern, FbLBP. Third row:

ILBP, SBP1, SBP2, SBP3. (Images in all rows are arranged from left to right).

Fig. 7. The flowchart of this research.

Fig. 8. How the histogram of each sub-image is concatenated.

TABLE I

FEATURE VECTOR LENGTHS

Feature Name Calculation
Feature Vector

Length

LBP [1] 30 × 16 480
FBLBP [3] 30 × 16 480

LBPRIU [5] 10 × 16 160

LBPU [5] 59 × 16 944
LBPRI [5] 36 × 16 576

MSLBP2 [5] 30 × 16 × 2 960

MSLBP3 [5] 30 × 16 × 3 1440
LTP [7] 30 × 16 × 2 960

ILBP [20] 30 × 16 480

SBP1 (proposed) 30 × 16 480
SBP2 (proposed) 30 × 16 480

SBP3 (proposed) 30 × 16 480

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1616-1626

__

treated with patchnum=4. On the other hand, binsperpatch

denotes the number of bins to be generated for each patch. In this

case, the parameter was set to 30. It is important to note that the

binsperpatch parameter does not apply to LBPu2, LBPri, and

LBPriu2, as these methods have fixed histogram bin counts of 59,

36, and 10, respectively. Table I displays the final feature vector

dimensions after taking into account all the 16 patches.

IV. RESULTS AND DISCUSSIONS

A. Results on the Computation Time

The first experiment to be conducted was related to

computation time, in which it was measured using Kaggle

Notebook without GPU. In this experimental set all algorithms

were tested independently to extract features from 100 images of

size 100×100 pixels. The result in Fig. 9 shows that all SBP

variants required the least time to complete the task, which

essentially proves that our initial hypothesis is correct.

 Before this experiment was done, we manually calculated the

time complexity of all feature extraction algorithms. It was found

that the presence of the bilinear interpolation operation causes

the existing LBP-based algorithms to work much longer. The

bilinear interpolation itself is basically a method for estimating

the approximate value of a sampling point based on a weighted

average of the values of its four neighboring pixels, which the

calculation is done using equation (4). It is important to note that

this equation is run for each sampling point requiring bilinear

interpolation. Referring to Fig. 1, there are 4 sampling points

need to be interpolated when 𝑃=8 and 𝑅=1, which are exactly

the parameters we use for this experimental setup. The

computation time of all LBP-based algorithms is going to be

even longer especially when the number of sampling points 𝑃 is

larger. Still referring to Fig. 1, it is seen that when 𝑃 and 𝑅 are

set to 16 and 2, there are only 4 sampling points lie exactly at the

center of a pixel, leaving the other 12 sampling points required

to be interpolated.

Different from all other LBP-based approaches, SBP

completely discards the bilinear interpolation process thanks to

the square-shaped patterns. Taking a closer look at the algorithm,

SBP appears to be computationally more expensive at first

glance due to its fixed 12 number of sampling points, which

theoretically result in a longer binary-to-decimal conversion

process compared to other LBP-based algorithms that by default

have 8 sampling points. However, our analytical calculation

shows that the higher number of sampling points in SBP has a

less significant impact on computation time compared to the

bilinear interpolation process required by the existing LBP

variants. This analysis is proven by the experimental result in

Fig. 9, where SBP with 𝑁=1 completed the feature extraction

process only in 33.2 seconds, which is approximately 4.6 times

faster than the conventional LBP.

Apart from the bilinear interpolation, there are many other

factors causing the existing LBP variants to work slower than

SBP. The algorithm that we found slowest in this experiment is

MSLBP3. It is seen in the same figure that it took 432.3 seconds

to complete the task, which is 13 times slower than SBP1. This

result makes sense because the algorithm essentially works by

repeating the conventional LBP three times at different radii.

MSLBP2 actually also has the same idea, yet it is faster than

MSLBP3 since it only repeats the LBP process twice. The

computation time of LTP appears to be close to MSLBP2, which

is because the process of extracting lower and upper patterns in

the algorithm is also equivalent to running LBP twice. Next,

LBPRI is slow due to the binary rotation mechanism which is

done to achieve geometrical rotation invariance. Meanwhile,

LBPU is algorithmically similar to the original LBP, yet it is

slightly more expensive due to the pattern uniformity checking

procedure. LBPRIU on the other hand, is computationally faster

than the conventional LBP because it sums the binary values and

treats the result as a decimal rather than performing the typical

binary-to-decimal conversion. Lastly, the modern LBP variants

of FBLBP and ILBP are also considered slow because of the

pixel intensity averaging mechanism adopted in both algorithms.

B. Results on Datasets of Different Textural Scales

The next experiment was related to the feature quality, in

which it was examined by observing the accuracy produced by

an SVM trained with each of the features. Higher accuracy

indicates that the feature used for training contains a more

meaningful information. All datasets mentioned earlier as well

as the smaller version of ALOT, i.e., ALOT-30 and ALOT-50,

would be employed to do the classification task.

Generally speaking, the performance of SBP appeared to be

comparable with other features, as shown in the experimental

results in Table II. It seemed like SBP with 𝑁=2 was the most

optimal one, considering that SBP with other 𝑁 values always

produced lower accuracy. The accuracy of SBP2 was observed

to consistently surpass LBP, LBPRIU, LBPRI, LTP, and ILBP.

FBLBP was able to obtain the exact same result as SBP2 on the

50-class ALOT dataset and was slightly better than SBP2 on our

own texture dataset. Unfortunately, the accuracy of SBP2 was

still lower than LBPU and MSLBP3. The higher accuracy of

LBPU was likely because its smaller feature vector dimension

contains more relevant information. In fact, this aligns with the

principle of the uniform patterns in LBP, which was originally

proposed to suppress the effect of non-uniform, irrelevant

patterns that might appear in a texture. Meanwhile, the higher

accuracy obtained by MSLBP3 might be due to the large amount

of information contained in the resulting feature vector. This

notion makes sense since it works by capturing three LBP

features of different scales at once. Although the averaging

Fig. 9. The computation time of each texture feature extraction algorithm to process

100 images of size 100×100.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1616-1626

__

mechanism adopted by SBP allows it to produce smaller feature

vector dimension while still containing information from

multiple scales, it might cause prominent information to be

smoothed out. However, as demonstrated by the computational

complexity experiments in Fig. 9, the slightly lower accuracy of

SBP2 is a worthwhile trade-off, as it offers significantly higher

computational speed, making it more suitable for real-time

applications. In addition to Table II and the subsequent ones, the

best-performing SBP as well as the accuracy that exactly

matches the best SBP are going to be highlighted in blue.

Meanwhile, all results worse than the best SBP will be

highlighted in orange, yet if it is better, it will be colored in green.

In the upcoming experiments, authors attempted to perform

the same classification task with the KTH-TIPS dataset that had

been divided into three groups based on the scale of its textural

patterns. The first group includes scales 1 to 3 with large textural

patterns, while the next two groups comprise scales 4 to 6 and 7

to 9, presenting medium- and small-sized patterns, respectively.

The results of this experiment are shown in Table III. The trend

displayed in the table appeared to be similar to the previous one,

except that the accuracies on larger textures were lower than that

of the smaller textures. These experimental results essentially

indicate that smaller textures are easier to classify than the larger

ones. While LBPRI surpassed the best SBP in large textures, the

latter was generally only outperformed by LBPU and MSLBP3.

Especially in medium and small textures, SBP2 were only

separated from the two features by a relatively small margin.

 Next, authors are also interested in finding out how each

feature performs compared to the conventional LBP in terms of

the accuracy difference. It is seen in Table IV that MSLBP3

outperformed the original LBP by 2.4%, 3.4%, and 5.6% on

small, medium, and large-sized textures, respectively. Such an

increase in the accuracy difference when the textural scale gets

larger indicates the superiority of multiscale-based LBP variant

in capturing larger repeating patterns as compared to the original

LBP. Thus, it makes sense to say that wider MSLBP radius

somewhat correlates to its ability in recognizing large textures.

This kind of behavior can also be observed in SBP2, where its

accuracy difference towards LBP in small textures (1.8%) are

lower than those of medium (2.9%) and large textures (2.1%).

Note that these results are obtained on SBP2 with the number of

histogram bins in each patch set to 30. During the experiments,

authors attempted to increase the value of this parameter to 100

both for SBP2 and LBP in order to gain new insights. Using this

configuration, it is found that the accuracy gap between the two

reached 6% on large textures, strengthening the notion that LBP-

based features with multiscale approach allows it to capture

larger repeating patterns.

 In order to support these findings, we performed further

experiment on the 𝑁 parameter of SBP specifically on large

textures, which the results are displayed in Table V. According

to the table, it is seen that classification accuracy tends to

improve as the 𝑁 is increased, with the results being more

apparent when the number of histogram bins in each patch is set

to 100. This confirms that the proposed SBP aligns with our

previous findings where larger textures are able to be recognized

better with multiscale-based feature extraction algorithms.

C. Results on Datasets of Noisy Images

In order to find out the robustness of SBP in noisy conditions,

we carried out more experiments on each textural scale group in

the KTH-TIPS dataset that had been synthesized with noise.

There were two types of noise used, namely Gaussian and s&p

(salt and pepper) noise. In the case of Gaussian noise, variance

was the parameter used to control noise severity. This parameter

was set to 0.05, 0.1, 0.15, and 0.2, in which the latter is the one

that causes the images to look the most unclear. This section is

going to reveal which feature obtained the least accuracy

TABLE II

CLASSIFICATION RESULTS ON DIFFERENT DATASETS

F
ea

tu
re

N
am

e

K
T

H
-T

IP
S

K
T

H
-

T
IP

S
2

-b

A
L

O
T

-3
0

A
L

O
T

-5
0

A
L

O
T

-2
5
0

S
u

ro
T

ex

LBP [1] 0.783 0.806 0.804 0.807 0.747 0.858

FBLBP [3] 0.796 0.815 0.813 0.826 0.761 0.862
LBPRIU [5] 0.768 0.730 0.774 0.745 0.600 0.783

LBPU [5] 0.852 0.858 0.893 0.890 0.855 0.914

LBPRI [5] 0.806 0.733 0.670 0.613 0.380 0.829
MSLBP2 [5] 0.767 0.791 0.779 0.779 0.713 0.844

MSLBP3 [5] 0.828 0.843 0.850 0.850 0.766 0.897

LTP [7] 0.679 0.684 0.670 0.593 0.520 0.735
ILBP [20] 0.704 0.736 0.745 0.743 0.668 0.738

SBP1 (proposed) 0.740 0.785 0.766 0.766 0.689 0.813
SBP2 (proposed) 0.807 0.826 0.819 0.826 0.762 0.860

SBP3 (proposed) 0.776 0.823 0.789 0.794 0.758 0.811

Results matching the best SBP accuracy are highlighted in blue (■), results

below the best SBP are highlighted in orange (■), and results above the best
SBP are highlighted in green (■).

TABLE III

CLASSIFICATION RESULTS ON DIFFERENT SCALES IN KTH-TIPS DATASET

Feature Name
Large

Textures
Medium
Textures

Small
Textures

LBP [1] 0.686 0.898 0.921
FBLBP [3] 0.704 0.903 0.921

LBPRIU [5] 0.692 0.907 0.926

LBPU [5] 0.777 0.947 0.963
LBPRI [5] 0.739 0.920 0.915

MSLBP2 [5] 0.651 0.875 0.891

MSLBP3 [5] 0.742 0.932 0.945
LTP [7] 0.547 0.795 0.731

ILBP [20] 0.613 0.792 0.850

SBP1 (proposed) 0.628 0.854 0.869
SBP2 (proposed) 0.707 0.927 0.938

SBP3 (proposed) 0.684 0.896 0.900

Results matching the best SBP accuracy are highlighted in blue (■),

results below the best SBP are highlighted in orange (■), and results above
the best SBP are highlighted in green (■).

TABLE IV

ACCURACY DIFFERENCE OF EACH TEXTURE FEATURE TOWARDS THE

CONVENTIONAL LBP

Feature Name
Large

Textures
Medium
Textures

Small
Textures

MSLBP3 [5] 0.056 0.034 0.024

SBP2 (bins=30) (proposed) 0.021 0.029 0.018

SBP2 (bins=100) (proposed) 0.060 0.030 0.027

TABLE V

THE CLASSIFICATION ACCURACY OF SBP ON LARGE TEXTURES WITH

DIFFERENT N VALUES

SBP Variant
No of bins per patch

30 100

SBP1 (N=1) 0.628 0.703

SBP2 (N=2) 0.707 0.722

SBP3 (N=3) 0.684 0.740

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1616-1626

__

degradation as the level of noise increases.

The first experiment related to noise was performed by

applying Gaussian noise on images of large texture, in which the

results are displayed in Table VI. Initially in a non-noisy

condition, SBP2 ranked fourth behind LBPU, MSLBP3 and

LBPRI with an accuracy of 70.7%. As the Gaussian noise added,

the accuracy of LBPU and LBPRI drastically dropped to 42.4%

and 37.7% respectively, causing them to be lower than SBP2

which obtained 43.4%. Despite this fact, SBP2 remained in the

third rank since LTP somehow obtained 48.1%, surpassing both

SBP2 and MSLBP3. Nevertheless, LTP dominated only at

Gaussian noise variances of 0.05 and 0.1. Meanwhile, MSLBP3

became the best one at noise 0.15, at which point SBP2 ranked

second with 33.8% accuracy, which was only 0.3% lower than

MSLBP3. SBP2 finally took first place at the most severe noise

level with the accuracy of 32.2%, exceeding MSLBP3 and LTP

which had previously performed better at lower noise levels.

On the other hand, the conventional LBP, which is the main

baseline of this research, was completely unable to surpass SBP2

at all. Similar behavior could also be observed on LBPRIU,

MSLBP2, FBLBP, and ILBP. All these results prove that SBP is

a texture feature suitable to be extracted in the case where the

images contain large repeating patterns with a high level of

Gaussian noise.

In the case when the same noise type was applied to medium-

sized textures, LBPU appeared not to be able to surpass SBP2 at

all despite its superiority over all other features in a normal

condition as shown in Table II. It is interesting to see that LTP,

which used to produce a relatively low accuracy in non-noisy

condition, became the best one across all noise variance,

exceeding both MSLBP3 and SBP2. Despite not being the best

one, the classification rate of SBP2 was ranked third after LTP

and MSLBP3, except that at 0.15 noise it ranked second behind

LTP with a gap of only 0.5%, surpassing MSLBP3 by 2.7%

margin. This essentially proved that SBP2 is a good feature to

consider when it comes to classifying medium-sized textures in

noisy condition since it can still achieve high accuracy while

having much smaller computational complexity as shown in Fig.

9. In addition to this experiment set, the conventional LBP as

well as FBLBP, LBPRIU, LBPRI, MSLBP2, and ILBP were

completely unable to perform as good as SBP2, similar to the

experimental results conducted on large textures.

Different from the previous two textural sizes, the

experimental result on small textures highlights the weakness of

SBP. According to Table VI, even the conventional LBP was

able to obtain better results than the best SBP at noise variance

0.05, 0.1, and 0.15 with the margins of 0.9%, 3.9% and 0.9%,

respectively. At noise variance 0.2, the accuracy of the best SBP

was indeed better than LBP, yet the difference between the two

was only 0.1%. This indicates that SBP is not suitable for

TABLE VI

THE EFFECT OF GAUSSIAN NOISE ON LARGE, MEDIUM, AND SMALL TEXTURES

Feature Name

Large Textures Medium Textures Small Textures

No

Noise

Variance No

Noise

Variance No

Noise

Variance

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

LBP [1] 0.686 0.401 0.333 0.314 0.276 0.898 0.517 0.459 0.406 0.393 0.921 0.578 0.518 0.435 0.387

FBLBP [3] 0.704 0.398 0.345 0.324 0.274 0.903 0.527 0.460 0.408 0.387 0.921 0.591 0.519 0.447 0.394

LBPRIU [5] 0.692 0.362 0.325 0.306 0.280 0.907 0.420 0.358 0.339 0.291 0.926 0.492 0.394 0.371 0.306

LBPU [5] 0.777 0.424 0.386 0.318 0.301 0.947 0.539 0.469 0.420 0.395 0.963 0.594 0.519 0.468 0.403

LBPRI [5] 0.739 0.377 0.326 0.299 0.282 0.920 0.491 0.422 0.373 0.349 0.915 0.513 0.451 0.410 0.369

MSLBP2 [5] 0.651 0.359 0.307 0.277 0.253 0.875 0.484 0.425 0.372 0.349 0.891 0.557 0.472 0.399 0.340

MSLBP3 [5] 0.742 0.465 0.387 0.341 0.296 0.932 0.569 0.491 0.440 0.415 0.945 0.575 0.490 0.428 0.372

LTP [7] 0.547 0.481 0.390 0.336 0.308 0.795 0.614 0.529 0.472 0.443 0.731 0.640 0.554 0.503 0.441

ILBP [20] 0.613 0.370 0.325 0.298 0.267 0.792 0.428 0.369 0.353 0.324 0.850 0.500 0.432 0.392 0.378

SBP1 (proposed) 0.628 0.352 0.308 0.287 0.259 0.854 0.491 0.434 0.376 0.365 0.869 0.533 0.455 0.422 0.375

SBP2 (proposed) 0.707 0.434 0.358 0.338 0.322 0.927 0.556 0.483 0.467 0.413 0.938 0.569 0.479 0.426 0.381

SBP3 (proposed) 0.684 0.434 0.379 0.329 0.288 0.896 0.529 0.439 0.400 0.368 0.900 0.519 0.461 0.402 0.388

Results matching the best SBP accuracy are highlighted in blue (■), results below the best SBP are highlighted in orange (■), and results above the best
SBP are highlighted in green (■).

 TABLE VII

THE EFFECT OF S&P NOISE ON LARGE, MEDIUM, AND SMALL TEXTURES

Feature Name

Large Textures Medium Textures Small Textures

No

Noise

Amount No

Noise

Amount No

Noise

Amount

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

LBP [1] 0.686 0.597 0.513 0.462 0.425 0.898 0.775 0.658 0.577 0.508 0.921 0.783 0.712 0.663 0.619

FBLBP [3] 0.704 0.598 0.522 0.480 0.427 0.903 0.775 0.664 0.580 0.512 0.921 0.780 0.719 0.672 0.618

LBPRIU [5] 0.692 0.568 0.492 0.416 0.380 0.907 0.822 0.649 0.559 0.463 0.926 0.800 0.682 0.596 0.538

LBPU [5] 0.777 0.658 0.569 0.494 0.438 0.947 0.843 0.719 0.618 0.544 0.963 0.830 0.738 0.687 0.634

LBPRI [5] 0.739 0.606 0.519 0.457 0.423 0.920 0.788 0.684 0.565 0.535 0.915 0.761 0.665 0.619 0.582

MSLBP2 [5] 0.651 0.569 0.483 0.418 0.388 0.875 0.746 0.631 0.543 0.469 0.891 0.752 0.682 0.630 0.592

MSLBP3 [5] 0.742 0.656 0.571 0.517 0.466 0.932 0.797 0.694 0.608 0.526 0.945 0.775 0.692 0.645 0.592

LTP [7] 0.547 0.532 0.517 0.487 0.441 0.795 0.697 0.666 0.642 0.592 0.731 0.741 0.719 0.700 0.668

ILBP [20] 0.613 0.501 0.428 0.392 0.353 0.792 0.564 0.506 0.444 0.403 0.850 0.695 0.611 0.544 0.501

SBP1 (proposed) 0.628 0.547 0.462 0.421 0.394 0.854 0.720 0.634 0.564 0.485 0.869 0.749 0.660 0.621 0.560

SBP2 (proposed) 0.707 0.644 0.553 0.495 0.443 0.927 0.792 0.693 0.608 0.550 0.938 0.805 0.699 0.648 0.582

SBP3 (proposed) 0.684 0.624 0.519 0.469 0.420 0.896 0.731 0.610 0.537 0.482 0.900 0.735 0.617 0.576 0.509

Results matching the best SBP accuracy are highlighted in blue (■), results below the best SBP are highlighted in orange (■), and results above the best
SBP are highlighted in green (■).

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1616-1626

__

conditions with small, noisy textures. Meanwhile LBPU, which

previously struggled to surpass SBP2 in medium-sized textures,

is now able to do so across all noise levels. This phenomenon

probably happened because both LBP and LBPU work by taking

into account the pixels exactly next to it, enabling it to pay more

attention to the smaller repeating patterns. On the other hand,

SBP did not perform as effectively since it works by capturing

the information from multiple levels and taking the average from

them. Such an averaging mechanism causes it to lose some

textural information, especially when noise starts to disrupt the

images. Even though MSLBP3 also takes into consideration

pixel values from multiple scales, yet it did not encounter this

problem because these features of different scales are

concatenated rather than averaged.

Similar experiment was also conducted using s&p noise,

where the accuracy scores are shown in Table VII. In this type

of noise, the value of 0.05, 0.1, 0.15 and 0.2 represent the

proportion of noise compared to the total number of pixels within

an image. Table VII shows the influence of s&p noise on textures

of different sizes.

It is seen in the table that initially LBPU performed better than

both SBP2 and MSLBP3 at noise amount 0.05 in large textures,

but its accuracy got surpassed by both of them at noise amount

0.15 and 0.2. Even though SBP2 never achieved the best score

in this texture size, yet its classification performance ranked

second right after MSLBP3 at the two most severe noise levels

with the difference of 2.2% at noise amount 0.15 and 2.3% at

noise amount 0.2. The reason that it could not perform better than

MSLBP3 is probably because the presence of noise, which

should be able to be handled by SBP, was not as significant as

the presence of large textures, which the information can be

captured better by MSLBP3. Furthermore, the table also shows

that there is no other feature performed better than SBP2 except

LBPU and MSLBP3 across all noise amounts in large texture

category, in which this behavior supports the notion that SBP is

a good feature to be extracted when the dataset contains large

repeating patterns especially when s&p noise is present.

Examining the impact of s&p noise on medium-sized

textures, LBPU, MSLBP3 and LBPRIU initially obtained better

accuracy than the best-performing SBP at noise amount 0.05.

However, LBPRIU suddenly dropped significantly at the

subsequent noise amounts such that its accuracy became lower

than SBP2. The accuracy gap between LBPU to SBP2 and

MSLBP3 to SBP2 were also getting narrower as the noise

amount increased. This trend continued until eventually SBP2

surpassed both of those at the highest noise level. This

experimental results proved that SBP2 is more robust against

noise as compared to LBPU and MSLBP3. We do acknowledge

that the result obtained by SBP2 was not as good as LTP at 0.2

noise amount, yet it can still be regarded as a good one

considering that it performed better than all the remaining LBP

variants.

The accuracy trend for s&p noise on small textures followed

a similar pattern to that of Gaussian noise on the same textural

size. Initially, the performance of SBP2 was actually good

enough. It is seen in Table VII that it ranked second right after

LBPU when the noise amount was set to 0.05 with the difference

of 2.5%. However, the classification rate of SBP degraded

abruptly, causing it to be surpassed by LBP, LTP, and FBLBP at

noise amounts 0.1 and 0.15. The result became even worse even

for the best SBP at noise amount 0.2 as it only performed better

than LBPRIU and ILBP. These results suggest that SBP is not a

good features to be used when the classification task contains

small and noisy texture images.

V. CONCLUSIONS

Based on the above discussions, it can be concluded that the

proposed SBP feature has successfully addressed the three

problems encountered by the conventional LBP, i.e., the need for

bilinear interpolation, the inability to capture macrostructures,

and the difficulty in handling noise. First, the proposed sampling

points determination mechanism allows SBP to omit the bilinear

interpolation process which causes it to be computationally

much more efficient than other existing LBP-based algorithms.

Secondly, even though SBP does not have the best accuracy in

general texture classification task, yet it is usually ranked third

just behind LBPu2 and MS-LBP. This essentially indicates that

SBP is able to work much faster than the two without sacrificing

too much textural information. It is worth noting that both

algorithms, especially MS-LBP, have an extremely slow

computational speed which causes it not to be suitable to be used

in real-time. Moreover, the same experiment set also proved that

SBP has a better capability in capturing macrostructures as

compared to the conventional LBP. Third, the experimental

results also showed that the classification rate of SBP under

heavy noise conditions is very good especially when the

repeating patterns are large.

Despite all these strengths, this does not necessarily mean that

SBP has no drawbacks. In fact, there is actually a case where

SBP can not compete with the others including the conventional

LBP itself, in which this particular phenomenon usually occurs

when the dataset contains small-sized and noisy textures.

Furthermore, it is also necessary to acknowledge that even

though SBP is able to perform very well under heavy noise in

large textures, yet its classification rate can still be considered

low. This behavior is still useful in some cases since the classifier

did not perform random guess. However, further research to

improve the accuracy under such conditions is still necessary to

be done in order to achieve more reliable results.

REFERENCES

[1] T. Ojala, M. Pietikäinen, and D. Harwood, “Performance
Evaluation of Texture Measures with Classification Based on

Kullback Discrimination of Distributions,” in Proceedings of 12th

International Conference on Pattern Recognition, IEEE, Oct.
1994. doi: 10.1109/ICPR.1994.576366.

[2] A. K. Bedi, R. K. Sunkaria, and S. K. Randhawa, “Local Binary

Pattern Variants: A Review,” in ICSCCC 2018 - 1st International
Conference on Secure Cyber Computing and Communications,

Institute of Electrical and Electronics Engineers Inc., Dec. 2018,

pp. 234–237. doi: 10.1109/ICSCCC.2018.8703326.
[3] Z. Pan, Z. Li, H. Fan, and X. Wu, “Feature based local binary

pattern for rotation invariant texture classification,” Expert Syst

Appl, vol. 88, pp. 238–248, Dec. 2017, doi:
10.1016/j.eswa.2017.07.007.

[4] F. Bianconi, E. González, and A. Fernández, “Dominant local
binary patterns for texture classification: Labelled or unlabelled?,”

Pattern Recognit Lett, vol. 65, pp. 8–14, Jul. 2015, doi:

10.1016/j.patrec.2015.06.025.
[5] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution Gray

Scale and Rotation Invariant Texture Classification with Local

Binary Patterns,” IEEE Trans Pattern Anal Mach Intell, vol. 24,
no. 7, pp. 971–981, 2002, doi: 10.1109/TPAMI.2002.1017623.

[6] L. Liu, S. Lao, P. W. Fieguth, Y. Guo, X. Wang, and M.

Pietikäinen, “Median Robust Extended Local Binary Pattern for
Texture Classification,” IEEE Transactions on Image Processing,

vol. 25, no. 3, pp. 1368–1381, Mar. 2016, doi:

10.1109/TIP.2016.2522378.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1616-1626

__

[7] X. Tan and B. Triggs, “Enhanced Local Texture Feature Sets for

Recognition Under Difficult Lighting Conditions,” IEEE
transactions on image processing, vol. 19, no. 6, pp. 1635–1650,

2010, doi: 10.1109/TIP.2010.2042645.

[8] A. M. D. Shamaileh, T. H. Rassem, L. S. Chuin, and O. N. Al
Sayaydeh, “A New Feature-Based Wavelet Completed Local

Ternary Pattern (Feat-WCLTP) for Texture Image Classification,”

IEEE Access, vol. 8, pp. 28276–28288, 2020, doi:
10.1109/ACCESS.2020.2972151.

[9] X. Qi, Y. Qiao, C. G. Li, and J. Guo, “Multi-scale joint encoding

of local binary patterns for texture and material classification,” in
BMVC 2013 - Electronic Proceedings of the British Machine

Vision Conference 2013, British Machine Vision Association,

BMVA, 2013. doi: 10.5244/C.27.40.
[10] Z. Dan, Y. Chen, Z. Yang, and G. Wu, “An improved local binary

pattern for texture classification,” Optik (Stuttg), vol. 125, no. 20,

pp. 6320–6324, Oct. 2014, doi: 10.1016/j.ijleo.2014.08.003.
[11] C. E. Prema, S. Suresh, M. N. Krishnan, and N. Leema, “A Novel

Efficient Video Smoke Detection Algorithm Using Co-occurrence

of Local Binary Pattern Variants,” Fire Technol, vol. 58, no. 5, pp.
3139–3165, Sep. 2022, doi: 10.1007/s10694-022-01306-2.

[12] F. Yuan, J. Shi, X. Xia, L. Zhang, and S. Li, “Encoding pairwise

Hamming distances of Local Binary Patterns for visual smoke
recognition,” Computer Vision and Image Understanding, vol.

178, pp. 43–53, 2019, doi: 10.1016/j.cviu.2017.00.000.

[13] Yuanbin Wang, Qian Han, Yuanyuan Li, and Yujie Li, “Video
Smoke Detection Based on Multi-feature Fusion and Modified

Random Forest,” Engineering Letters, vol. 29, no. 3, pp. 1115-

1122, 2021.
[14] Z. Guo, L. Zhang, and D. Zhang, “Rotation invariant texture

classification using LBP variance (LBPV) with global matching,”

Pattern Recognit, vol. 43, no. 3, pp. 706–719, 2010, doi:
10.1016/j.patcog.2009.08.017.

[15] Z. Guo, L. Zhang, and D. Zhang, “A completed modeling of local

binary pattern operator for texture classification,” IEEE
Transactions on Image Processing, vol. 19, no. 6, pp. 1657–1663,

Jun. 2010, doi: 10.1109/TIP.2010.2044957.

[16] L. Liu, L. Zhao, Y. Long, G. Kuang, and P. Fieguth, “Extended
local binary patterns for texture classification,” Image Vis Comput,

vol. 30, no. 2, pp. 86–99, 2012, doi: 10.1016/j.imavis.2012.01.001.
[17] Y. Song, J. Sa, Y. Luo, and Z. Zhang, “A comprehensively

improved local binary pattern framework for texture

classification,” Multimed Tools Appl, 2024, doi: 10.1007/s11042-
024-19877-3.

[18] D. Sharma and A. Selwal, “An intelligent approach for fingerprint

presentation attack detection using ensemble learning with
improved local image features,” Multimed Tools Appl, vol. 81, no.

16, pp. 22129–22161, Jul. 2022, doi: 10.1007/s11042-021-11254-

8.
[19] H. M. Nandini, H. K. Chethan, and B. S. Rashmi, “Shot based

keyframe extraction using edge-LBP approach,” Journal of King

Saud University - Computer and Information Sciences, vol. 34, no.
7, pp. 4537–4545, Jul. 2022, doi: 10.1016/j.jksuci.2020.10.031.

[20] Y. Cai, G. Xu, A. Li, and X. Wang, “A Novel Improved Local

Binary Pattern and Its Application to the Fault Diagnosis of Diesel
Engine,” Shock and Vibration, vol. 2020, 2020, doi:

10.1155/2020/9830162.

[21] N. Venu, “Segmentation Analysis for Local Maximum Edge
Binary Patterns using Medical Images,” IJFANS International

Journal of Food and Nutritional Sciences, vol. 12, no. 1, 2023,

[Online]. Available:
https://www.researchgate.net/publication/361923631

[22] Y. Zhang, Z. Song, and W. Guo, “Multi-Scale Continuous

Gradient Local Binary Pattern for Leaky Cable Fixture Detection

in High-Speed Railway Tunnel,” IEEE Access, vol. 9, pp. 147102–

147113, 2021, doi: 10.1109/ACCESS.2021.3124676.

[23] Badal Soni, Pradip K. Das, and Dalton Meitei Thounaojam, “Dual
System for Copy-move Forgery Detection using Block-based

LBP-HF and FWHT Features,” Engineering Letters, vol. 26, no. 1,

pp. 171–180, 2018.
[24] Q. Kou, D. Cheng, L. Chen, and K. Zhao, “A Multiresolution

Gray-Scale and Rotation Invariant Descriptor for Texture

Classification,” IEEE Access, vol. 6, pp. 30691–30701, 2018, doi:
10.1109/ACCESS.2018.2842078.

[25] T. H. Rassem and B. E. Khoo, “Completed Local Ternary Pattern

for Rotation Invariant Texture Classification,” The Scientific
World Journal, vol. 2014, 2014, doi: 10.1155/2014/373254.

[26] Feng D and Ren F, “Dynamic Facial Expression Recognition based

on Two-Stream-CNN with LBP-TOP,” 5th IEEE International

Conference on Cloud Computing and Intelligence Systems (CCIS),

2018.
[27] X. Shu, Z. Song, J. Shi, S. Huang, and X. J. Wu, “Multiple

channels local binary pattern for color texture representation and

classification,” Signal Process Image Commun, vol. 98, Oct. 2021,
doi: 10.1016/j.image.2021.116392.

[28] J. Prasanna, S. T. George, and M. S. P. Subathra, “Detection of

neurodegenerative diseases using hybrid MODWT and adaptive
local binary pattern,” Neural Comput Appl, Nov. 2024, doi:

10.1007/s00521-024-10222-1.

[29] A. K. Jaiswal and H. Banka, “Local pattern transformation based
feature extraction techniques for classification of epileptic EEG

signals,” Biomed Signal Process Control, vol. 34, pp. 81–92, Apr.

2017, doi: 10.1016/j.bspc.2017.01.005.
[30] J. Ryu, S. Hong, and H. S. Yang, “Sorted Consecutive Local

Binary Pattern for Texture Classification,” IEEE Transactions on

Image Processing, vol. 24, no. 7, pp. 2254–2265, Jul. 2015, doi:
10.1109/TIP.2015.2419081.

[31] P. Kiran and K. Reddy, “Texture Classification Using Prominent

Non Uniform Local Binary Patterns,” International Research
Journal of Engineering and Technology, vol. 3, no. 9, pp. 730–733,

2016.

[32] Y. Luo, J. Sa, Y. Song, H. Jiang, C. Zhang, and Z. Zhang, “Texture
classification combining improved local binary pattern and

threshold segmentation,” Multimed Tools Appl, vol. 82, no. 17, pp.

25899–25916, Jul. 2023, doi: 10.1007/s11042-023-14749-8.
[33] M. Fritz, E. Hayman, B. Caputo, and J.-O. Eklundh, “THE KTH-

TIPS database,” 2004.

[34] P. Mallikarjuna, A. T. Targhi, M. Fritz, E. Hayman, B. Caputo, and
J.-O. Eklundh, “THE KTH-TIPS2 database,” 2006.

[35] G. J. Burghouts and J. M. Geusebroek, “Material-specific

adaptation of color invariant features,” Pattern Recognit Lett, vol.
30, no. 3, pp. 306–313, Feb. 2009, doi:

10.1016/j.patrec.2008.10.005.

[36] M. A. Putra, Wahyono, and A. Harjoko, “SuroTex: Surrounding
Texture Dataset,” Data Brief, vol. 59, p. 111292, Apr. 2025, doi:

https://doi.org/10.1016/j.dib.2025.111292.

Muhammad Ardi Putra was born in Yogyakarta,
Indonesia in 1998. He received a Bachelor of

Computer Science degree in Computer Science from

Universitas Gadjah Mada, Yogyakarta, Indonesia in

2021. Currently he is pursuing a Doctoral degree in the

same university. His research interests include

computer vision, machine learning, and deep learning.

Agus Harjoko received the Bachelor of Electronics

and Instrumentation degree from Universitas Gadjah
Mada, Indonesia in 1986, the Master of Computer

Science from University of New Brunswick, Canada

in 1990, and Ph.D. degree also from University of New
Brunswick, Canada in 1996. He is currently a lecturer

in the Department of Computer Science and

Electronics, where he has been a professor since 2023.
His research interests involve computer vision, pattern

recognition and instrumentation.

Wahyono received his bachelor’s degree in computer

science from Universitas Gadjah Mada, Yogyakarta,

Indonesia in 2010 and Ph.D. degree from University

of Ulsan in 2017. He is currently a lecturer in the

Department of Computer Science and Electronics,
Universitas Gadjah Mada. His research area involves

digital image processing, pattern recognition, machine

learning, computer vision, surveillance systems and
software engineering.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1616-1626

__

Kanghyun Jo received the Ph.D. degree in computer-

controlled machinery from Osaka University, Osaka,
Japan, in 1997. After a year of experience with ETRI

as a Postdoctoral Research Fellow, he joined the

School of Electrical Engineering, University of Ulsan,
Ulsan, South Korea, where he is currently the Faculty

Dean of the School of Electrical Engineering. His

current research interests include computer vision,
robotics, autonomous vehicles, and ambient

intelligence. He was the Director or an AdCom

Member of the Institute of Control, Robotics and
Systems and the Society of Instrument and Control Engineers, the IEEE IES

Technical Committee on Human Factors Chair, an AdCom Member, and the

Secretary, until 2019. He has also been involved in organizing many international
conferences, such as the International Workshop on Frontiers of Computer

Vision, the International Conference on Intelligent Computation, the International

Conference on Industrial Technology, the International Conference on Human
System Interactions, and the Annual Conference of the IEEE Industrial

Electronics Society. He is currently an Editorial Board Member for international

journals, such as the International Journal of Control, Automation and Systems
and Transactions on Computational Collective Intelligence.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1616-1626

__

