

Abstract—Infrared imaging technology is capable of

capturing the thermal radiation emitted by the human body in
conditions with insufficient visible light. Consequently,
infrared behavior recognition leverages this capability to
detect and analyze human movements in low-light or complex
environments. However, infrared images are often affected by
noise interference, which can obscure target features. To tackle
these challenges, we propose an infrared human behavior
recognition model. Within this model, human regions in
infrared images are detected by YOLOv8 and passed on to
AlphaPose to predict the locations of skeletal keypoints in the
human body. Subsequently, the acquired skeletal sequences
are employed to predict actions in ST-GCN. Simultaneously,
we introduced the LKA attention mechanism and the PReLU
activation function for structural optimization within the
ST-GCN. These improvements enabled the ST-GCN to extract
action features from skeletal keypoints more effectively,
thereby enhancing the accuracy of infrared behavior
recognition.Through extensive ablation studies, we have
demonstrated that our proposed LPST-GCN model
significantly enhances the performance of infrared action
recognition and achieves excellent results on both the UNISV
dataset (99.02%) and the NTU RGB+D dataset (95.86%).

Index Terms—Action recognition, infrared, alphapose,
yolov8n, st-gcn

I. INTRODUCTION
ith the advancement of Industry 5.0, intelligent factory
production lines are increasingly becoming the

cornerstone of the manufacturing sector due to their high
levels of automation and intelligence. However, in these
advanced production environments, human workers
continue to play an irreplaceable role in critical aspects such
as assembly, quality control, and maintenance. Therefore,
safeguarding the safety and health of these workers is
particularly important.Behavior recognition technology
serves as a vital tool for real-time monitoring and behavior
detection, playing a crucial role in ensuring safety within
intelligent production environments [1].
Although visible light devices are commonly employed in

traditional surveillance systems, their performance can be
significantly hindered in specialized factory settings. These
devices rely on the reflection and refraction of light; thus,
they may experience substantial degradation in image
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quality or even loss of information under harsh conditions
such as inadequate lighting, smoke, dust, or elevated
temperatures. Such challenges render it extremely difficult
to utilize visible light equipment for precise measurement
and observation within complex and dynamic industrial
contexts.
In contrast, infrared cameras present an effective solution

for addressing these challenges due to their distinct
advantages. Infrared technology can detect thermal radiation
emitted by objects, providing highly sensitive and clear
images when visible light is inadequate or restricted. This
capability renders infrared cameras invaluable for
identifying equipment malfunctions, monitoring
temperature anomalies, and ensuring overall safety. In
specialized production environments, the use of infrared
cameras not only exemplifies technological advancement
but also serves as a crucial element in enhancing both
production safety and efficiency.
Currently, research on action recognition predominantly

concentrates on environments illuminated by visible light,
while the domain of action recognition in infrared settings
remains relatively underexplored. In recent years, some
researchers have begun to investigate the application of
infrared cameras within the field of action recognition. For
instance, Gao et al. [2] put forward a method for recognizing
human movements in infrared images by employing
Convolutional Neural Networks (CNN). Wu et al. [3]
introduced NIRExpNet, a three-stream 3D convolutional
neural network model designed to address the challenges
associated with Facial Expression Recognition (FER) under
active near-infrared (NIR) illumination. Liu et al. [4],
focusing on infrared human action recognition, underscored
the importance of global temporal information in
characterizing body part motion within videos. Chen et al. [5]
proposed a method for temporal action detection utilizing
infrared video. They generated the optical flow of infrared
data by constructing a Flow Estimation Network (FEN) and
optimized it in conjunction with the entire network
architecture. Mehta et al. [6] developed a motion- and
region-aware adversarial learning-based model for detecting
fall events from infrared videos. Quan et al. [7] introduced a
knowledge distillation method termed ARCTIC for RGB to
infrared video action recognition, providing an effective
approach to enhance the performance of infrared action
recognition using RGB data.
Although the aforementioned methods have yielded some

results in infrared action recognition, they primarily focus on
end-to-end video classification tasks and still fall short in
accurately recognizing individual actions within specific
frames of a video. To address these limitations, we propose
an action recognition algorithm based on infrared imaging
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for the effective identification of human behaviors in
infrared environments. Given that the accuracy of top-down
keypoint detection models is contingent upon the precision
of target detection frames, we employ the YOLOv8n model
for target detection to enhance the accuracy of keypoint
detection related to human skeletons. Furthermore, we
introduce an attention mechanism and a novel activation
function into the spatio-temporal graph convolutional
network to improve the model's recognition accuracy.

II. INFRARED HUMANMOVEMENT RECOGNITION
ALGORITHM

In this study, we propose an infrared target-based action
recognition algorithm comprising three primary components.
Pedestrians in the infrared video are detected using the
YOLOv8n model [8], which facilitates the extraction of
human target regions. The human body region identified by
YOLOv8n is subsequently input into the AlphaPose model
to predict the locations of skeletal key points on the human
body. The resulting skeletal sequences are then utilized for
modeling within Spatio-Temporal Graph Convolutional
Networks (ST-GCN) [10] to extract spatio-temporal features
and accurately predict movements. However, challenges
arise due to low resolution, high noise levels, and unclear
features inherent in thermal infrared images, which hinder
accurate extraction of human skeletal sequences in ST-GCN
[11]. To address these limitations, this study introduces a
novel node attention model termed LPST-GCN that
integrates ST-GCN with Large Kernel Attention (LKA) [12]
and employs the PreLU activation function [13]. LKA
effectively captures long-range dependencies through a
single convolution by utilizing a large kernel size (e.g., 7x7
or larger). This enhancement enables improved
comprehension and modeling of temporal properties
associated with actions, particularly those involving longer
durations. Furthermore, by substituting the original ReLU
activation function [14] with a parameterized PreLU
activation function — known for its superior learning
capabilities and enhanced feature extraction — the
recognition accuracy of our model is significantly elevated.
The processing flow of the proposed method is illustrated in
Fig. 1.

A.Human Target Detection Based on Yolov8n
YOLOv8n, Ultralytics' target detection model released in

the early 2023, is a model of lighter weight and has faster
processing speeds [15]. This model builds upon the strengths
of its predecessors while incorporating several
enhancements in terms of model architecture, loss functions,
and data augmentation techniques. These improvements
have resulted in a substantial increase in performance across
various tasks, including target detection, semantic
segmentation, and image classification. The structure of the
YOLOv8n network is illustrated in Fig. 1(a).
The YOLOv8n model introduces several innovative

methods aimed at enhancing performance. The C2f
(CSPLayer_2Conv) module serves as a foundational
component of the backbone network, providing greater

computational efficiency and reduced parameter redundancy
compared to the C3 module utilized in YOLOv5. This C2f
module not only maintains robust feature extraction
capabilities by integrating depth-separable convolution with
inflated convolution but also significantly decreases both the
model's parameter count and computational cost. Such
structural optimization renders YOLOv8 more suitable for
real-time applications or scenarios characterized by limited
resources, all while preserving high accuracy.Furthermore,
YOLOv8n introduces the concept of a decoupled detection
head, which decomposes complex detection tasks into
multiple independent subtasks, each equipped with a
specialized detection head. This divide-and-conquer strategy
enhances the model's detection performance across targets
of varying scales while effectively reducing its
computational complexity.In terms of feature extraction,
YOLOv8n improves upon the feature pyramid network
(FPN), thereby bolstering the model's ability to detect
human targets at different scales through a multi-scale
feature fusion technique. The top-down pathway and lateral
connections within the FPN structure adeptly integrate
high-level semantic information with low-level spatial
information, enriching hierarchical representations of
features and enhancing their expressive capability.To further
improve inference speed and memory efficiency, YOLOv8n
employs model pruning and quantization techniques during
the inference stage. These techniques effectively reduce
both the number of model parameters and computational
costs without significantly compromising accuracy, thus
meeting stringent requirements for real-time performance
and resource efficiency in practical applications.

B.Alphapose-based Human Pose Estimation
Currently, there are two main techniques for human pose

estimation: top-down estimation and bottom-up estimation.
In the top-down approach, the first step is to detect human
positions from a series of images. Subsequently, pose
estimation is carried out, and skeletal key points are
extracted for each individual target. This method prioritizes
the identification of individuals before analyzing their poses.
On the other hand, the bottom-up estimation method
simultaneously detects skeletal key points of all persons in
video frames. These detected key points are then matched to
construct a graph. Through a graph optimization process,
any incorrect connections in the graph are eliminated to
ensure the accuracy of pose estimation. Although the
bottom-up method usually has a faster processing speed, it
does not fully utilize the inherent global spatial information
of human poses. Therefore, compared with the top-down
method, its recognition accuracy is lower [16].
The two primary challenges faced by top-down methods

in multi-person pose estimation are inaccurate bounding box
localization and pose redundancy. To address these issues,
AlphaPose introduces the RMPE framework, which consists
of three main components: the Symmetric Spatial
Transformer Network (SSTN), the Parametric Pose
Non-Maximum Suppression (P-Pose NMS), and the Pose
Guidance Proposal Generator (PGPG). Each component is
specifically designed to tackle problems related to bounding
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Fig. 1. General structure of the infrared behavior recognition model

box localization errors, pose redundancy, and training data
augmentation. Fig. 1(b) illustrates the overall architecture
and workflow of the AlphaPose framework.
The SSTN is developed to mitigate bounding box

localization errors. It comprises a spatial transform network
(STN), a stacked hourglass model for single-person pose
estimation (SPPE), and an inverse spatial transform network
(SDTN). The STN processes inaccurate input frames to
obtain precise target candidate regions; the SPPE estimates
human body poses; finally, the SDTN maps these estimated
poses back to their original image coordinates. Additionally,
parallel processing within SPPE enhances STN performance
by returning larger error margins during training, thereby
facilitating more accurate extraction of human detection
frames.
P-Pose NMS aims to eliminate redundant poses while

enhancing accuracy in human pose estimation. This method
incorporates two criteria for elimination: confidence-based
elimination and distance-based elimination. When either
criterion is satisfied, redundant poses are removed
effectively. This approach addresses redundancies that arise
from independent operations of multiple bounding boxes.

The PGPG component is employed to augment training
samples by synthesizing a substantial amount of training
data through simulated offsets in prediction frames. This
strategy enables improved effectiveness in training for the
SSTN+SPPE module, ultimately enhancing the accuracy of
prediction frames generated by the target detector.

C.Improving the St-gcn Network
The backbone of the Spatio-Temporal Graph

Convolutional Network (ST-GCN) consists of 10 ST-GCN
units. The first four layers are designed with 64 output
channels, the subsequent three layers contain 128 output
channels, and the final three layers feature 256 output
channels. As depicted in Figure 2, each ST-GCN unit
comprises a spatial convolutional layer, a temporal
convolutional layer, and a residual structure , and the
original TCN structure. Within the spatio-temporal graph
convolutional unit, a learnable edge weight parameter is
utilized to evaluate the significance of edges connecting
nodes. In the temporal convolutional layer of the ST-GCN, a
single kernel-sized convolution operation is performed
using a fixed architecture. Successive joint information
serves as input features for the ST-GCN network; these
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input features undergo batch normalization before being
processed through a series of ST-GCN cell layers for
convolution operations and are ultimately pooled using
global average pooling. The input features are represented as
a four-dimensional matrix (N, C, T, V), where N denotes the
number of videos, C represents the number of joint features,
T indicates the number of key frames, and V signifies the
number of joints. The improved ST-GCN is presented in Fig.
1(c).

Fig. 2. Original ST-GCN Cell Layer and Original TCN Structure Diagrams

Since the temporal features of actions often span extended
periods, and ST-GCN primarily learns local features within
a specific neighborhood without adequately capturing
relevant information across all nodes (global information),
its capacity to capture long-distance dependencies is
inherently limited. This limitation adversely impacts the
model's recognition accuracy. To address this issue, this
paper proposes a novel node attention model that integrates
ST-GCN units with Large Kernel Attention (LKA), an
attention mechanism specifically designed to preserve both
channel and spatial dimensions. This approach enhances the
significance of cross-latitude interactions while diminishing
the influence of less important features. When implemented
as a modified LSTGCN model, the model has the ability to
capture longer distance dependencies within a single
convolution through the use of a large kernel convolution
(7x7). This enhancement enables the model to better
comprehend and represent the temporal properties of actions,
particularly for those with extended durations. Furthermore,
it successfully combines global and local features to
construct rich hierarchical structures.
The Large Kernel Attention (LKA) module is a

mechanism that effectively integrates spatial attention and
channel attention. Its primary function is to generate an
attention map through large-kernel convolution, thereby
emphasizing key target regions. The underlying formula can
be expressed as follows:

Attention Map = ���������������(�) (1)

Output = Attention Map ⨂ Input Feature (2)

The Input Feature represents the input feature map, while
⨂ denotes the elemental product. However, large kernel
convolutions are often associated with high computational
costs and an increased number of parameters. To address
this issue, the LKA module ingeniously decomposes the
large kernel convolution into three components, aiming to

alleviate the computational burden and reduce the number of
parameters: (1) Depth Separable Convolution (DW-Conv),
which is utilized to capture local spatial features; (2)
Depth-widening Convolution (DW-D-Conv), which focuses
on capturing long-range dependencies; and (3) Channel
Convolution (Conv1×1), which manages channel
information. This decomposition process, illustrated in Fig.
6, effectively minimizes the computational cost of the LKA
module while preserving its capability to generate attention
mapping.

Fig. 3. Decomposition Diagram of Large Kernel Convolution

The Input Feature denotes the input feature map, while ⨂
represents the elemental product. However, large kernel
convolutions are frequently associated with significant
computational costs and an increased number of parameters.
To mitigate this challenge, the LKA module adeptly
decomposes the large kernel convolution into three distinct
components, aiming to alleviate both the computational
burden and parameter count: (1) Depth Separable
Convolution (DW-Conv), which is employed to capture
local spatial features; (2) Depth-widening Convolution
(DW-D-Conv), which concentrates on capturing long-range
dependencies; and (3) Channel Convolution (Conv1×1),

Fig. 4. Large Kernel Attention (LKA) Module

which processes channel information. This decomposition
process, as illustrated in Fig. 3, effectively reduces the
computational cost of the LKA module while maintaining its
ability to generate attention mapping.
The specific formula is derived as illustrated in Fig. 4,

under the assumption that the initial input feature map is
represented as � ∈ ��×�×� , where c, h and w denote the
number of channels, height, and width, respectively. Initially,
the feature map � undergoes processing through a depthwise
convolution (DW-Conv) submodule that employs a 5 × 5
convolutional kernel with a stride of 2. This operation results
in a local attention feature map denoted as �� ∈ ��×�×�

(refer to Equations 3).
Firstly, � traverses the DW-Conv submodule, which

encompasses a 5×5 convolution kernel, a 2×2 stride
convolution, and outputs a local attention feature map,
designated as �� ∈ ��×�×� (Equation 3).
Subsequently, the local attention feature map �� is passed

through a depthwise separable convolution (DW-D-Conv)
submodule utilizing a 7×7 convolution kernel with a stride
of 9 and an expansion factor of 3. This step produces another
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feature map that captures long-distance dependencies, which
we denote as ��� ∈ ��×�×� (see Equation 4). Following this
process, the long-range dependency feature map ��� is
subjected to further processing via a 1×1 convolution to
generate the channel-adaptive attention map represented by
� ∈ ��×�×� (Equation 5). Finally, this attention map � is
multiplied by the initial feature map � , resulting in the
refined feature representation expressed as ��������� =
�⨂x (Equation 6). This procedure effectively enhances key
features while suppressing non-key features, thereby
improving both the model's expressive capability and its
generalization performance.

�� ∈ ��×�×� (3)

��� ∈ ��×�×� (4)

� ∈ ��×�×� (5)

��������� = �⨂x (6)

To enhance the accuracy of the network and address the
issue of gradient vanishing, which may arise when the
negative domain of the Rectified Linear Unit (ReLU) is zero
during extensive training, this paper employs the Parametric
Rectified Linear Unit (PReLU) to optimize the activation
function of Temporal Convolutional Networks (TCN)
within the Spatio-Temporal Graph Convolutional Network
(ST-GCN), as illustrated in Fig. 8. During training, PReLU
has the capability to learn the slope parameter associated
with ReLU, thereby improving model performance. The
definition of PReLU is as follows:

� �� =
�� �� > 0
���� �� ≤ 0 = max 0, �� + ��min (0, ��) (7)

Where �� represents the input on the �-th channel, and ��
denotes the coefficient that governs the slope of the negative
portion of the activation function. It is crucial to note that the
subscript � in �� indicates that the slope of the negative
segment of the PReLU activation function can vary across
different channels, thereby providing enhanced flexibility.
The parameter �� of PReLU can be trained in the same
manner as that of other layers via backpropagation and an
optimizer. furthermore, their updating formulas can be
derived using the chain rule. Assuming that at a particular
layer, the gradient of �� is:

��
���

= ��

��
��(��)

� ��(��)
���

(8)

In the expression provided as (2), the objective function is
denoted by the symbol ε, while its partial derivative ��/
�(��) represents the gradient that is propagated through the
deep network. The gradient of the activation function can be
derived from equation (3).

��(��)
���

= 0 �� > 0
�� �� ≤ 0 (9)

Specifically, the gradient can be expressed as follows:

��
��

= � ��

��
��(��)

� ��(��)
���

� (10)

When the input value exceeds 0, the gradient is equal to 0;
conversely, when the input value is less than or equal to 0,
the gradient is determined by a specific formula. In this
study, we employ a channel-sharing strategy, whereby all
channels within each network layer share identical
parameters. This approach significantly reduces the number
of variables that need to be introduced. In this context, the
gradient of a parameter can be defined as the summation of
the gradients from all channels in a given layer.
Consequently, we are able to update and optimize the
parameters more efficiently.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A.Dataset
All data utilized in the YOLOv8n experiments were

obtained from Google Datasets. In this study, a dataset
designated as Dataset 1 was constructed for infrared image
data.The enhanced ST-GCN network employed the UNISV
infrared dataset [17] as Dataset 2 for training and validation
purposes. Each video was segmented into individual frames,
and the key joints of the human body within each frame were
extracted using the AlphaPose algorithm. Subsequently,
each frame is annotated in accordance with the action
category and stored in pkl file format as the training data for
the enhanced ST-GCN network.A total of ten distinct
actions were selected: walk, squat, singlewave, shakehands,
pushpeople, jump,jogging,fight,embrace,doublewave.
Dataset-1 is fabricated through the labeling of manually

screened and data-enhanced images.The techniques
employed for data augmentation included the following: 1)
mirroring of images; 2) random rotation of angles; 3)
random adjustments to image contrast; and 4) the addition of
Gaussian noise. Ultimately, a total of 5,893 images were
acquired. Image annotation was performed using LabelImg
software to label the collected data, which encompasses
information regarding location, category, recognition
difficulty, and additional attributes. All data will be
converted into PASCAL VOC format.
Dataset-2 is composed of the UNISV dataset.As

illustrated in Figure 5, the UNISV dataset provides a
representative example of the infrared surveillance video
content. The UNISV dataset was constructed using
night-time infrared surveillance videos and encompasses ten
different human behavior categories. During the dataset's
construction phase, original or minimally edited video
samples were selected to ensure authenticity and diversity.
In the compilation process, factors such as sample diversity
and environmental complexity were fully considered. The
recorded behaviors cover various scenarios and were all
captured in outdoor environments, which reflect typical
installation locations of surveillance cameras in the real
world. All recordings were conducted at night to fully utilize
the infrared function. Fifteen individual participants with
different anthropometric characteristics, including height
and body type, were involved in generating the dataset.
These participants performed predefined actions in various
scenarios, ensuring that the dataset contains a wide range of
motion manifestations. This approach helps evaluate action
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recognition algorithms under realistic surveillance
conditions while maintaining the controllability of
experimental parameters.

Fig. 5. Samples of action from UNISV dataset

B.Experimental Platform and Model Evaluation
The model training platform operates on a Windows

system that is equipped with an NVIDIA GeForce RTX
4060 graphics card and employs the PyTorch deep learning
framework. The model testing platform consists of laptops
featuring Intel® Core™ i7-14700HX CPUs.
Target detection experiments were conducted utilizing a

custom-built infrared dataset, designated as Dataset-1. A
variety of YOLO algorithms were employed for
comparative analysis on this dataset, with each algorithm
being trained over 200 epochs. The evaluation of the
algorithms was based on four criteria to determine which
one achieves the optimal balance between detection
accuracy and processing speed. The results of these
experiments are presented in the accompanying Table Ⅰ.
From the experimental results, it is clear that YOLOv8n

demonstrates superior detection accuracy and enhanced
detection speed. In comparing the lightweight versions of
each YOLO model, YOLOv8n stands out with the fastest
detection speed and the fewest model parameters. Therefore,
we have selected YOLOv8n as our thermal imaging human
detection model due to its high accuracy, rapid detection
capabilities, and lightweight design.

TABLE Ⅰ
COMPARISON WITH OTHER MODELS ON DATASET-1

Model Params/
M mAP/% GFLOPs/G ModelSize/

MB

YOLOv3-tiny 10.12 66.7 13.5 17.4

YOLOv5n 7.21 68.3 15.8 14.4

YOLOv7-tiny 6.03 64.2 13.1 12.3

YOLO8n 3.09 74.5 8.1 6.3

Target behavior recognition experiments were conducted
utilizing the thermal infrared video dataset, referred to as
Dataset-2. During the training phase, the number of epochs
was set to 100, with Stochastic Gradient Descent (SGD)
employed as the optimizer. The learning rate was established
at 0.01, momentum was set to 0.9, and weight decay was
configured at 1e-5.
To identify the optimal integration point for incorporating

the LKA attention mechanism, a series of experiments were
performed in this study. These experiments were

categorized into ten groups; Group 1 represented the original
STGCN network, while the remaining nine groups reflected
results from experiments where LKA attention was
integrated into various GCN+TCN modular layers of the
STGCN architecture. The findings from these ablation
experiments are summarized in Table Ⅱ. As indicated in
Table Ⅱ, integrating LKA attention within Layer 5 resulted
in superior performance, achieving an accuracy rate that is
1.56% higher than that of the original STGCN model.
Therefore, in this paper, we will incorporate LKA attention
in Layer 5 to construct LSTGCN.

TABLE Ⅱ
COMPARISON OF DIFFERENT ST-GCN LAYERS FOR ADDING LKA ON THE

DATASET-2
Group number Model Accuracy% Loss%

1 St-GCN 0.9564 0.1063

2 St-GCN1+Lka 0.9607 0.1033

3 St-GCN2+Lka 0.9428 0.1111

4 St-GCN3+Lka 0.9528 0.1085

5 St-GCN4+Lka 0.9695 0.1009

6 St-GCN5+Lka 0.9720 0.1014

7 St-GCN6+Lka 0.9516 0.1113

8 St-GCN7+Lka 0.9657 0.1021

9 St-GCN8+Lka 0.9491 0.1095

10 St-GCN9+Lka 0.9610 0.1062

Our final model represents an optimization of the
proposed LTGCN framework, wherein the activation
function has been replaced with the Parametric Rectified
Linear Unit (PReLU) function. The original
Spatio-Temporal Graph Convolutional Network (ST-GCN)
employs the Rectified Linear Unit (ReLU) activation
function, which effectively addresses the vanishing gradient
problem associated with s-curves. However, the output of
ReLU to negative inputs is zero, which can easily lead to
neuronal “death”.To mitigate this limitation, we have
substituted ReLU with PReLU, which provides enhanced
learning capabilities and more effective feature
representation. PReLU allows for the gradient values of the
negative half-axis to be transformed into dynamically
learnable parameters, thereby offering greater flexibility in
adjusting these parameters throughout the training process to
achieve optimal results. The experimental results presented
in the Table Ⅲ indicate that our model utilizing PReLU
achieves an accuracy improvement of 1.82% compared to
the original model employing ReLU.

TABLE Ⅲ
RESULTS OF ABLATION EXPERIMENTS ON THE DATASET-2

Group
number Model Accuracy% Loss%

1 St-GCN 0.9564 0.1063

2 St-GCN5+Lka 0.9720 0.1014

3 St-GCN5+Lka+Prule 0.9902 0.0950

Figure 6 illustrates the changes in experimental accuracy
over time. Overall, the Ours model demonstrates a faster
convergence rate compared to the ST-GCN model,
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indicating that the enhancements made to the original
architecture facilitate more effective learning. The curve
representing the ST-GCN model exhibits pronounced local
fluctuations during the early stages of training, suggesting
instability in its performance. In contrast, as training
progresses into later stages, both models' curves tend to
stabilize; however, the average AUC value for the Ours
model remains slightly higher and displays a smoother
trajectory. This observation underscores the advantages of
our proposed model throughout the entire training process.
The experimental results indicate that in terms of accuracy,
the LPST-GCN model has achieved an improvement of 3.38
relative to the original STGCN model.

Fig. 6. Accuracy on the Dataset-2

(a)

(b)
Fig. 7. Confusion Matrix

Fig. 7(a) depicts the original model, and Fig. 7(b) presents
the modified one, with the confusion matrix employed to
identify the ten operational categories with maximum
accuracy.
Our model exhibits superior recognition accuracy,

reflecting its predictive performance across each action
category. Most action categories are predicted correctly with
high probability, indicating that the model excels in this task.
Although there is some degree of confusion among a few
categories, it does not significantly affect the overall
accuracy. The results suggest that the enhanced model
achieves a high recognition rate and demonstrates strong
robustness.

TABLE Ⅳ
COMPARISON WITH MAINSTREAM MODELS

Group
number Model Accuracy%

1 I3D[18] 76.70%

2 SlowFast[19] 84.20%

3 MDJ+TPN[17] 91.40%

4 YOLOv3-Alphapose-ST-GCN 94.05%

5 Ours 99.02%

To further validate the efficacy of our proposed model, we
compared the research method employed in this study with
the more typical behavior recognition methods in recent
years, and the results are presented in Table Ⅳ . The
proposed modeling method achieves a recognition accuracy
that is 7.62% higher than the MDN+TPN [17] method,
14.82% higher than the SlowFast [19] network, and 22.32%
higher than the I3D model [18]. These results demonstrate
that our algorithm significantly outperforms existing
methods in detecting human actions in infrared
environments.

TABLE Ⅴ
VERSATILITY AND ROBUSTNESS VERIFICATION EXPERIMENTS ON NTU

RGB+D DATASET

Group
number Model Accuracy%

1 YOLOv3-Alphapose-ST-GCN 90.15%

2 Ours 95.86%

To further verify the universality and robustness of the
LPST-GCN algorithm, the baseline algorithm LPST-GCN
was tested on the NTU RGB+D public dataset. NTU
RGB+D is a comprehensive action recognition dataset
developed by Nanyang Technological University (NTU) in
Singapore. It comprises 56,880 video samples across 60
distinct action categories. These actions were performed by
40 participants from three different viewpoints, ensuring
both diversity and breadth in the dataset. Each sample
includes recordings from three modalities: RGB video,
depth map, and infrared image, providing rich multimodal
resources for research. For dataset partitioning, two
approaches are employed: Cross-Subject (CS) and
Cross-View (CV). The CS approach divides the dataset into
two groups based on participant IDs, facilitating the
separation of training and test sets. Conversely, the CV
approach partitions the dataset according to camera views to
ensure balanced data distribution from various perspectives
during training and testing. Given the large scale and high
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hardware requirements of the NTU RGB+D dataset[20], this
study focuses on validating methods using a subset of the
infrared video clips corresponding to specific action
categories. The results are shown in Table V.

IV. CONCLUSION
An enhanced ST-GCN model, in conjunction with the

AlphaPose pose estimation algorithm, is proposed for
intelligent monitoring and recognition of behaviors under
poor lighting conditions. This approach aligns with the
advanced concept of smart environments and contributes to
reducing major safety incidents. The main contributions and
experimental findings of this study are as follows: Existing
research has primarily focused on action recognition in
well-lit environments, often neglecting the complexities
involved in accurately analyzing human motion under poor
lighting conditions.A top-down, high-precision AlphaPose
pose estimation model is employed to detect key points of
the human skeleton within image sequences.An improved
YOLOv8 model is utilized for human target detection,
addressing off-target detection issues and enhancing the
model's robustness against interference in complex
environments.We propose a fusion of a spatio-temporal
graph-based convolutional neural network (ST-GCN) with
an LKA attention module, which not only captures local
features but also enhances the understanding of global
information.The ReLU activation function is replaced with
the PReLU activation function to improve learning
capabilities and feature representation.After optimization,
our training network was evaluated on a self-constructed
dataset, achieving an accuracy of 99.02%, representing a
3.38% improvement over the original model.
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