

Abstract— The incorporation of the Laplacian Matrix
Theory significantly boosts the predictive prowess of
Graph Neural Networks(GNNs). This module acts as a
preprocessing tool to enhance the generalization capability of
spectral GNNs, and it also functions as a positional encoding
mechanism to boost the expressiveness of graph transformers.
However, most GNNs and graph transformer architectures
didn`t not combine positional encoding with spectral domain
neural networks. Without positional encoding information,
spectral domain GNNs struggled to represent global graph
topology effectively. Despite being grounded in Laplacian
Matrix Theory, graph transformers exhibit also limited their
capabilities in processing noise. To tackle the aforementioned
two challenges, we introduced a novel method named
SPECFORMER-PE, which integrates position-encoded
spectral GNNs with laplacian positional information.
SPECFORMER-PE enhances overall robustness, and refines
the eigenvalue encoder and decoder by integrating scalable
residual connections into spectral graph neural networks meet
transformers(SPECFORMER). This model also supports
stacking multiple transformer layers, thereby deepening the
backbone network to effectively mitigate the risk of
over-fitting. Experimental results on three graph datasets
demonstrate the efficacy of our approach, showing that it
outperforms existing GNNs and graph transformers in graph
regression and node classification tasks. These results validate
the synergy between the spectral domain filter and positional
information encoding module.
Index Terms—Graph Neural Network, Spatial Graph

Neural Network, Spectral Graph Neural Network, Graph
Transformer, Position Encoded

I. INTRODUCTION
raph Neural Networks(GNNs), as initially presented by
Scarselli et al.[1], have emerged as a key area of focus

and interest within the academic community. Their utility
has been amply demonstrated through a wide range of
applications across diverse sectors, including social
networking, recommendation systems, and financial risk
management[2, 3]. The development of GNN theory in
recent years has been diverged into two main branches:
spatial GNNs and spectral GNNs. spectral GNNs
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predominantly employ the message-passing framework for
graph data processing, focusing on local information
learning with global learning as a secondary component[4,
5]. Spectral GNNs leverage the Graph Fourier Transform[6,
7] to transform spatial domain data into the spectral domain
for filtering. This process is then followed by graph
convolution, and afterwards, the Graph Fourier Inversion is
applied to seamlessly complete the transition back to the
spatial domain. In recent years, Graph Attention Networks
(GAT) have made significant progress in the field of spatial
GNNs, demonstrating exceptional performance in both local
and global attention mechanisms[8]. In the realm of spectral
GNNs, the Convolutional Neural Networks on Graphs with
Fast Localized Spectral Filtering, known as ChebyNet,
effectively address the challenge of eigen-decomposition in
large-scale graph structures during graph convolution
operations[6]. The Semi-Supervised Classification With
Graph Convolutional Networks(GCN) model subsequently
streamlines the filter module by truncating the polynomial
chain, enhancing its simplicity and efficiency compared to
ChebyNet[9]. As the theoretical foundation of spectral
domain GNNs has evolved from Graph Fourier Transform
to GCN, spectral filters have been increasingly applied
within the Graph Transformer domain[10].
The Transformer module is initially developed for natural

language processing by Google. It has become increasingly
popular in the field of GNNs in recent years. This is
primarily attributed to its outstanding parallel processing
capabilities and the powerful self-attention mechanism it
employs. It has demonstrated exceptional effectiveness in
recommendation systems[11]. The first use of a transformer
in graph data is the Graph Transformer networks proposed
by Yun et al.[12]. This model enhances the parallel
processing and self-attention mechanisms of the transformer,
improving its effectiveness on large graph datasets.
Bidirectional Encoder Representations from
Transformers(Bert) was subsequently developed to improve
the efficiency of graph representation learning by alleviating
the memory constraints associated with large-scale graphs.
Bert employs a novel sampling approach to produce
sub-graphs, enabling the transformer module to derive graph
representations from these condensed elements[13].
However, through effectively integrates structural and
positional graph data information into Transformers,
encoding graph structure in transformers model(GraphiT)
enables the Graph Transformer model to surpass traditional
GNNs across many datasets[14]. Furthermore, Rethinking
Graph Transformers with Spectral Attention (SAN) has
demonstrated that incorporating positional information as a
trainable module effectively highlights the benefits of
Laplacian positional encoding in enhancing the encoding
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process[15]. In recent years, Recipe for a General, Powerful,
Scalable Graph Transformer(GraphGPS) has developed a
comprehensive taxonomy for positional and structural
encodings and employed in GNNs, successfully integrating
them into GNN layers[16]. Spectral graph neural networks
meet transformers(SPECFORMER) has concurrently
integrated spectral GNNs with transformers, achieving
favorable results in graph classification applications.
While spectral GNNs have exerted significant influence

across diverse domains, they still encounter two notable
limitations.
(1) Although the Laplacian eigen-decomposition's

eigenvalues can be manipulated by filters to reduce
noise, the interrelationships among these eigenvalues
are not fully considered.

(2) The incorporation of Laplacian matrix eigenvalues in
the spectral domain to augment the expressive capacity
of the global attention mechanism has not been
thoroughly studied.

Furthermore, the Graph Transformer model encounters
several challenges too.
(1) Currently, the majority of improvements to the

Transformer architecture have centered on refining
topological relationships and attention mechanisms
within the spatial domain, while relatively little
attention has been paid to trainable components in the
spectral domain.

(2) It is still uncertain whether topological relationships
and node features, which are conveyed by location and
structural information, carry equal weight or if their
relative importance differs across various datasets.

Previous studies indicate that position-encoded
Information and spectral domain GNN have complementing
impacts on their respective benefits and drawbacks. This
prompts an study into the possible synergistic link between
position encodings and spectrum filters, examining if they
can augment each other's efficacy. Therefore, this study
investigates whether Transformers enhanced with positional
information can improve representational capacity of
spectral GNNs. Based on SPECFORMER, we adopt the
second-order Laplacian operator as the input for the encoder
of the spectral domain signal, Following this, we design a
SPECFORMER-PE model, which incorporate graph
transformer and positional encoding data to enhance the
training of the model.
The contributions of this paper are as follows:

(1) Our model ingeniously integrates positional encoding
with a spectral GNN, augmenting representation by
utilizing deep learning's ability to capture
interconnections.

(2) We present a configurable scaled residual block,
enabling the model to adapt more efficiently to node
features and graph topology.

(3) Experiments in graph regression and node
classification tasks demonstrate our model outperforms
existing state-of-the-art methods across multiple
datasets.

II. RELATEDWORK

Research on GNNs is often divided into two primary

categories: spatial GNNs and spectral GNNs. Moreover, the
Graph Transformer has become a prevalent methodology.
Spatial GNNs are essential for graph data analytics.

Specially, GAT model efficiently uses local attention to
gather information from neighboring nodes. Nonetheless,
efficacy of GAT diminishes in intricate networks due to its
restricted capacity for feature extraction. To address this
issue, the Heterogeneous Graph Attention Network was
created, improving the model's performance in complex
network settings. The primary emphasis of spatial GNN
research is the attention process. Nonetheless, deficiencies
remain in noise reduction and the utilization of higher-order
representations[17]. Conversely, spectral domain GNNs
possess benefits in these areas.
As a unique approach to graph data processing, spectral

GNN provides advantages in noise attenuation. Originating
from graph signal theory, it is constrained by the significant
computational requirements of eigen-decomposition. A
notable contribution of ChebyNET is its employment of
Chebyshev polynomial approximation in the
eigen-decomposition stage, effectively bypassing the
substantial computational load typically associated with
eigen-decomposition while meeting the criteria for
eigenvalue fitting. As a simplification of ChebyNET, GCN
has attained commendable results across several datasets.
Subsequently, GCNII outperforms conventional GCN in
addressing over-smoothing issues, attributed to their
investigation of network depth[18]. Training graph neural
networks with 1000 layers (RevGNN-Deep) significantly
increases the network's depth by an order of magnitude[19].
Giovanni et al.[20] also conducted a series of research on the
breadth. Nevertheless, the majority of these models are
predetermined or manually constructed in the
eigen-decomposition polynomial, so forfeiting the capacity
for learning. Consequently, a recent category of spectral
GNNs relies on partial eigen-decomposition, enabling them
to acquire more expressive representations via spectral
domain filters[10]. Nevertheless, these conclusions lack
sufficient strength to elucidate the connections among
eigenvalues, particularly when dealing with substantial
datasets.
Transformers have become pivotal in natural language

processing due to their efficient handling of token
relationships. Similarly, Graph Transformers are adept at
capturing key characteristics in most cases. Significantly,
the transformer has demonstrated efficacy with large-scale
data. The Graph Transformer model has effectively
transferred the self-attention and parallel processing
qualities of the Transformer to GNNs. This has resulted in
the creation of innovative position encoding modules,
including those derived from random walks and Laplacian
vectors, therefore augmenting the representational capacity
of GNNs[12]. Recent research primarily emphasizes the
integration of Graph Transformers with GNNs, either as a
core component or as an auxiliary module. GraphiT and
SAN integrate structural and positional information inside
Transformers, thereby transforming position encoding into a
learnable module[14, 15]. Subsequently, GraphGPS
categorizes position encoding into distinct blocks to enhance
simulation structure, while SAT employs GNN as a
substructure extractor[21]. Most research on Graph
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Fig. 1 The overview of SPECFORMER-PE based on spectral domain Graph Transformer and posit ion-encoded
information

Transformers focuses on using current methods to integrate
graph topological relationships into node attributes while
overlooking the importance of the weight between node
features and topological connections.

III. MODEL

This section introduces the A spectral Domain Graph
Transformer Model with Position-Encoded Information
(SPECFORMER-PE) model, shown in Fig. 1. The model
consists of three basic components: a spectral domain
eigenvalue encoder, a Laplacian position encoder, and a
decoder. Both encoders undertake the processing of graph
data, thereby generating intermediate representations.
Subsequently, the decoder integrates these intermediate
representations to formulate the final representation. The
encoders function as a preliminary phase for the decoder,
which finally produces the model's predictions. The
SPECFORMER-PE model employs a spectral domain
eigenvalue encoder to extract essential eigenvalue properties
and a Laplacian position encoder to ascertain optimal
positional information from the second-order Laplacian
matrix. This information is then fed into a decoder
comprising a spectral filter, adjustable biases, and a graph
convolution module. These components collectively
function to produce a noise-free graph representation while
preserving the global topological structure. We integrate
learnable modules and unique filtering algorithms into the
spectral domain filter to capture a wide range of spectral
signals. This focused filtering method within the filter
improves the expressive power of GNNs[22, 23]. The Graph
Transformer component pertains to the concept of location
encoding in GraphGPS[16]. During graph convolution, we
incorporate residual connections to mitigate over-smoothing,
hence improving the model's compatibility.

A. Spectral domain Signal Encoder
This module focuses on encoding the spectral domain

graph signal, which is derived from the Laplacian matrix's
eigen-decomposition. The graph signal serves as input, and
its hidden layer representation is produced through
Transformer coding, incorporating the structural

information of the spectral domain signal into the coding
process. The structure encoding of spectral domain graph
signals is similar to the absolute position encoding module in
the Transformer module, and the idea is derived from the
SPECFORMERmodel. This module acts as a powerful filter
to obtain different differences for each feature. Let ��(�,2�) ∈
��×������ map each eigenvalue so that the scalars are
converted into corresponding vectors.
��(�,2�) = ���(100�/100002�/������) (1)
��(�,2�+1) = ���(100�/100002�/������) (2)
Where i denotes the dimension of the location encoding
corresponding to the graph model. The benefits of this
module are as follows: (1) This module can represent the
absolute position information of the eigenvalue and lift the
dimension. (2) its wavelength is from 2π to 10000·2π so that
the value can be quantized in a certain scale. There is a note
that the absolute position information of the Transformer is
similar to that of this module, but the meaning is different.
The former represents the position information of words or
pixels within the overall structure, generally capturing the
topological relationships of discrete values across the entire
dataset. In contrast, the latter represents the relationships
between eigenvalues in the spectral domain. Therefore, the
expression is the topological relationship of a continuous
value in the whole. The above step can be seen as a
dimensionality increase of the graph signal, and the trend is
added after the feature dimension. After the upscaling, it will
be fed into the Feed-Forward network for encoding, let � =
[�1||��(�1), ∙∙∙ , ��||��(��)]� ∈ ��×������ . Then, H first
passes through the normalization layer and then enters the
multi-head attention layer and the Feed-Forward neural
network layer to calculate the self-attention weights. After
the above network structure processing, the encoded spectral
domain graph signal data is obtained.
�� = ���(��(�)) + � (3)
� = ���(��(��)) + �� (4)

B. Laplacian position encoder
Position encodings are crucial for representing a node's

spatial location within a network, ensuring that analogous
nodes possess similar positional encoding. A common
method for graph location encoding is calculating the
distances of feature vectors between pairs of nodes.
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Nevertheless, the drawback of this technique is the
substantial computational effort needed to calculate all
eigenvector distances between the nodes. In graph position
encoding, our objective is to encapsulate the fundamental
nature of the graph's edges. A proficient strategy is to
customize the position encoding to serve this objective. We
utilize the Laplacian position encoding approach from
GraphGPS, which provides a partial answer to the
generalization difficulty. Laplacian position encoding
enhances the backbone network's ability to identify relative
node locations. It is computationally efficient and very
appropriate for extensive graph datasets. In conventional
GNNs, the Laplacian matrix functions as an indicator of
node connection and the overall topology of the network.
The Laplacian matrix facilitates graph convolution by
allowing the extraction of spectral characteristics via
eigen-decomposition, which is essential for graph
classification and regression problems.
Upon inputting the graph data, the initial steps involve

decomposing the node features and normalizing the
Laplacian matrix. In this case, batch normalization is used,
although layer normalization is employed in other
transformer modules. This provides the model with a
computational time advantage. The model next utilizes the
output from the preceding stage as input for the
Feed-Forward neural network, including learnable features
into the Laplacian matrix. Ultimately, we encode the
Transformer module, which we might designate as the
BERT model. This enhances the simulation of edge
characteristics in graph convolution, facilitating the
acquisition of relative positional information among nodes.
The transformer comprises a self-attention mechanism, a
multi-head attention mechanism, a Feed-Forward network,
and a residual connection. For instance, Equations (5)
through (8).
� = ����, � = ����, � = ���� (5)

��� = �������( ���

��
)� (6)

���� = ���(��(���)) + �� (7)
���� = ���(��(���� )) + ���� (8)
The above is the work of a Transformer block. This

Laplacian encoder has l such Transformer blocks, where l is
a hyperparameter. Stacking multiple Transformers improves
the expressive power of the model and can capture the graph
topology more accurately.

C. Decoder
The primary functions of this module, as delineated by the

aforementioned encoder, are as follows: (1) Enhancing the
expressive capacity of the graph signal via Multi-Head
Attention and Feed-Forward Networks is crucial for
capturing complex graph relationships, (2) individually
filtering each spectral domain feature using a spectral filter,
(3) concatenating the positional encoding, spectral domain
graph signal, and node features while assigning their
respective weights, (4) producing the final representation
through GNN message passing.

1) Spectral domain Filter
The model utilizes a combination of Multi-Head

Attentionand Feed-Forward Networks to include a wide
spectrum of signal frequencies in the graph space prior to

filtering. The model successively integrates Multi-Head
Attention and Feed-Forward Networks, employing residual
connections and a dropout technique to promote varied
frequency representation in the graph signal. This
representation is subsequently channeled through the filter,
with eachMulti-Head Attentionhead handled independently,
so augmenting the model's capacity to record a broad range
of frequencies.
�� = ���������(���

�, ���
�, ���

�) (9)
�� = ����(����) (10)
Where j denotes the number of multiple heads and Hj

represents the input of the th-j head, λj can be considered

as the th-j eigenvalues of the filter.

2) Learnable bias values
After the above steps the model will generate j

intermediate representations, the model uses Feed-Forward
Networks to redistribute the weights, and then concatenate
them through a final dimension to make it learnable in the
process. In this process, methods related to the graph Fourier
transform are used.
�� = �����(��)�� (11)
��� = ���(�||�1||⋯||��) (12)
Here, U is the eigenvector corresponding to the spectral

domain eigenvalue and represents the spatial representation
generated by the graph Fourier transform of the th-j
head, ����� ∈ ��×������.

3) Graph convolution module
In this module, we aim to aggregate the hidden layer

representations produced in the above modules into the final
representation for the full connection. First, the
representations Znode+pe

1 generated by the above modules
need to be combined. To achieve this, the model introduces a
coefficient into the residual network. Currently, this
coefficient is set to a constant value, k, which is studied as a
hyperparameter. Then, The bias value Zj� generated above
through the graph convolutional layer and the residual
network Znode+pe

l−1 are used for the Hadamard product. Then,
it is entered into the Feed-Forward network to learn the
representation. Equations (14) and (15) compose a graph
convolutional layer, and the graph convolutional layer can
be stacked many times in the module. Finally, if the task
involves node classification, the output will pass through a
fully connected layer and then undergo a softmax operation
to obtain the predicted probabilities. These probabilities are
then used to compute the cross-entropy loss. If the graph
regression task is carried out, there is an average pooling
layer before the full connection, and the binary classification
loss function or 1L loss function is entered.
�����+��

1 = ���� + � ∙ ����� (13)
�����

�−1 = ��� ∗ �����+��
�−1 (14)

�����
�� = ����(�����

�−1 ∗ �����
�−1 ) + �����

�−1� (15)

IV. THEORETICAL ANALYSIS

This work examines spectral filtering and positional
encoding; nevertheless, the integration of positional
encoding in the spatial domain with filtering in the spectral
domain is paradoxical. This work aims to provide a

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1683-1690

 
______________________________________________________________________________________ 



theoretical explanation by referencing the relationship
between the spatial domain and the spectral domain as
outlined by Chen et al.[24]. Corollary 1: Local aggregation
in the spatial domain corresponds to modifying weights
among signals of varying frequencies in the spectral domain,
whereas neighbors of differing orders in the spatial domain
equate to signal components of distinct frequencies in the
spectral domain. Moreover, the position-coding in this
manuscript might be seen as an ancillary variable in the
spatial domain or a deviation metric for the filter.
Brief proof Corollary 1 Take GCN as an example:

� = �� + ��−1
2��−1

2� = (�� + ��−1
2��−1

2)� (16)
� = (�� + ���)� (17)
Equation (16) is the update process of GNN node

embedding in the spatial domain, where X represents the
node characteristics, φ, ψ represents the weight, D
represents the degree matrix, A represents the adjacency
matrix A� , and represents the normalized adjacency matrix. It
can be seen that Equation (16) is simplified to Equation (17).
When φ=0, ψ=1, the GCN Equation (18) can be obtained,
with a slight difference in the degree matrix D� and the
adjacency matrix A� of the self-loop added.

� = ��� = ��−1
2����−1

2� (18)
A lot of work in the spectral domain of GNNs can be

understood as adjusting the weights of frequency
components during the aggregation process. In other words,
the frequency filter g is applied:
� = ( �=0

� ��������
�� )� = ���(�)��� (19)

Equation (19) represents a process of reversing the spatial
domain to the spectral domain and then to the spatial domain.
The first half Equation ui represents the feature vector of the
I-node graph signal, λi represents the eigenvalue, θ
represents the filter function, and X represents the node
feature. The second half Equation represents the matrix form,
U represents the set of eigenvectors, the diagonal matrix Λ is
composed of eigenvalues, and the filter function gθ
parameterized by θ. For GCN, Equation (20) is the spectral
domain interpretation of GCN and is a low-pass filter, that is,
smaller eigenvalues can pass, and the relationship is
explained G(Λ) = 1 − Λ.
� = ��� = (� − ��)� = �(1 − �)��� (20)
When considering the process of high-order neighbors, gθ

is expressed as a polynomial, and the spatial normalization
matrix A� is also more complex. The specific proof process
can be referred to the original paper.
High-order aggregation in spatial domain:

� = (�� + �=1
� ��(�

−1
2��−1

2)�� )� = �(��)� (21)
spectral domain high-order aggregation:

� = ( �=0
�

�=0
� ����

�����
�� )�� = ���(�)��� (22)

Where P, Pθ is a polynomial function.

V. EXPERIMENT

In this section, we perform comparative experiments on
three datasets. In the node-level task and graph regression
task respectively, our model is the state-of-the-art results
(hereafter referred to as SOTA) in most cases.

A. Datasets and Settings
Our model validation work is mainly performed on two

tasks, node classification and graph-level regression tasks.
ZINC is a molecular dataset containing 12000 molecules
corresponding to a graph regression task. Both PATTERN
and CLUSTER are challenging node classification tasks.
PATTERN contains 10,000 graphs with an average of 118.9
nodes, and CLUSTER contains 10,000 graphs with an
average of 117.2 nodes[22].
For hyperparameters, we set different settings for hidden

layer dimensions, number of attention heads, and number of
Transformer layers to make the model more relevant to the
dataset. ZINC uses 128 hidden dimensions, CLUSTER uses
48 hidden dimensions, and PATTERN uses 16 hidden
dimensions. For the number of heads and layers, ZINC has 8
layers with 16 heads, CLUSTER has 8 layers with 4 heads,
and PATTERN has 1 layer with 4 heads, respectively. The
Adam optimizer with warm-up was used for training, and
the model reduced the learning rate with the increase of
epochs to improve the performance. For ZINC, since it is a
graph regression task, the model only uses the l1 foss
function to calculate the mean absolute error. To perform
node classification tasks, both CLUSTER and PATTERN
models utilize the cross-entropy loss function. Subsequently,
they employ a confusion matrix to evaluate accuracy.

TABLE I
COMPARISON OF OUR MODEL WITH THE SOTA MODEL IN GRAPH REGRESSION

TASK AND NODE CLASSIFICATION TASK

Methods ZINC↓
MAE

CLUSTER↑
ACC

PATTERN
↑

ACC
GCN 0.367±

0.011
68.498±
0.976

71.892±
0.334

GIN 0.526±
0.051

64.716±
1.553

85.387±
0.136

Graph
Transformer-sparse

0.226±
0.014

73.169±
0.622

84.808±
0.068

Graph
Transformer-full

0.598±
0.049

27.121±
8.471

56.482±
3.549

SAN-sparse 0.198±
0.004

75.738±
0.106

81.329±
2.150

SAN-full 0.139±
0.006

76.691±
0.247

86.581±
0.037

Graphormer 0.122±
0.006

- -

SAT 0.094±
0.008

77.856±
0.104

86.865±
0.043

GraphGPS 0.070±
0.004

78.016±
0.180

86.685±
0.059

SPECFORMER 0.066±
0.003

- -

SPECFORMER-PE
(ours)

0.064±
0.005

78.711±
0.034

90.822±
0.055

B. Baseline
We will examine many prominent GNN and Graph

Transformer models, including the latest SOTA model. The
GNN baselines comprise GCN and GIN. GCN is a
traditional convolutional model in GNNs that serves as a
benchmark across several domains, whereas GIN employs
the WL-test to accommodate graph topology for graph
isomorphism networks. Graph Transformer methodologies
encompass Graph Transformer[12], SAN[15],
Graphormer[25], SAT[21], and SPECFORMER[10]. The
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Graph Transformer innovates the utilization of
Transformers for graph architectures, demonstrating
potential on sparse datasets. SAN improves spectral domain
attention by using learnable location data and Transformers.
Graphormer provides three types of encodings-centrality,
spatial, and edge position to correspond with graph
topologies. SAT, a structure-aware Transformer
methodology, has exhibited robust performance recently.
SPECFORMER, by incorporating spectrum filters into its
Graph Transformer technology, has achieved success across
several datasets.

C. Main Results
TABLE I encapsulates the experimental outcomes of our

model concerning graph regression and node categorization,
using data from various baseline models received from the
research. Our model exceeds the leading methodologies by
around 1% in accuracy on both the CLUSTER and
PATTERN datasets, and by about 0.002 in mean absolute
error on the ZINC dataset. This result illustrates that the
Graph Transformer significantly improves both global and
local attention by using the Laplacian filter with Laplacian
position encoding, especially in node classification tasks.

D. Hyperparameter Study
Previous research on spectral domain GNNs indicated

that each eigenvalue of the Laplacian matrix corresponds to
a class of frequency graph signals, suggesting potential
relationships among graph signals. When integrated with the
prior distinct filtering technique, it may be posited that each
head in the multi-head attention represents a synthesis of
various frequency graph signals, and the optimal number of
graph signal types for achieving the optimum results
remains undetermined. Consequently, we do a
hyperparameter analysis on the ZINC dataset pertaining to
multiple heads. ZINC was chosen because the assessment
metric for this dataset is the average variance error, which
explicitly indicates the discrepancy between the anticipated
and actual values. The quantity of heads must obscure the
common divisor of the layer dimension, impacting video
memory; so, more traditional head counts are used, as seen

in Fig. 3 below. In the scenario of 128 dimensions, selecting
16 heads yields optimal results for both the test and training
datasets, with outcomes of 0.0935 and 0.0640, respectively.

We previously examined the hyperparameter of the
number of heads, which indicates the extent of graph signal
representation in spectral domain neural networks. Another
aspect worthy of examination is the residual connection
associated with the parameter. The value of k delineates the
correlation between point characteristics and graph topology
throughout the graph convolution process. Extensive
experimentation with this hyperparameter has revealed that
its value has a nonlinear feature, as illustrated in Fig. 2
below.

Fig. 2 Multi-head attention experiments on zinc data sets

Furthermore, we conduct hyperparameter studies on the
CLUSTER and PATTERN datasets. The experiment
demonstrates that the diversity of layers across various data
sets results in fluctuations in accuracy. Fig 4 and 5 illustrate
that CLUSTER exhibits superior performance at an elevated
level, but PATTERN demonstrates inferior performance at a
lower level. In the PATTERN dataset, over-smoothing
manifests at layer 2 and above, with an accuracy of
82.378%.

Fig. 3 Experiments on hyperparameter k values in zinc data sets
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Fig. 4 The accuracy of CLUSTER varies with layers

Fig. 5 The accuracy of PATTERN varies with layers

E. Ablation studies
This study presents ablation experiments on the

CLUSTER and PATTERN datasets for node classification
tasks, where the Laplacian coding module and the scaled
residual connection are individually ablated to assess the
impact of each module on the model. TABLE II illustrates
the significance of the Laplacian coding module for the
model, with the use of scaled residual connections
enhancing its accuracy. The SPECFORMER model has not
been tested experiments on the CLUSTER and PATTERN
datasets. We adapt the associated embedding module of
SPECFORMER and incorporate softmax and cross-entropy
loss functions for evaluation. The impact of the Laplacian
module is more pronounced in the CLUSTER dataset, and
there is a little enhancement in the residual connection.

TABLE II
COMPARE THE EFFECT OF EACH MODULE IN CLUSTER AND PATTERN

CLUSTER PATTERN

ACC
Valid

ACC
Test

ACC
Valid

ACC
Test

SPECFORMER 77.843±
0.311

77.924±
0.242

89.753±
0.102

89.837±
0.204

SPECFORMER-P
E

78.342±
0.231

78.623±
0.123

90.621±
0.342

90.771±
0.122

SPECFORMER-P
E+

residual connection

78.893±
0.151

78.711±
0.134

90.703±
0.101

90.822±
0.131

VI. DISCUSSION

Comparison of GNN models: The fundamental concept of
GNN is to represent the interconnections among nodes
inside a graph structure, which constitutes both its advantage
and its limitation. The advantages of GNN lie in its requires
computing nodes individually, hence facilitating the

integration of global information and ensuring the model's
invariance, equivariance, and robustness in learningthe
spectral domain filter and the Laplacian position encoding
within extensive graph structures. The drawback is that
GNNmust process each node sequentially, resulting in serial
calculations on extensive graph topologies, which is
detrimental. Consequently, in comparison to GNN, the
primary attribute of our model is its parallel computing
capability derived from the Transformer architecture.
Additionally, the self-attention mechanism enhances focus
on the local neural network, while the Laplacian positional
encoding demonstrates effective performance in global
attention.
Comparison with Graph Transformer model: The
fundamental concept of Graph Transformer is to explore
whether the edge relationships within a graph structure can
be captured by a nonlinear function. In this framework, each
node is treated as part of a fully connected graph, allowing it
to exchange messages with other nodes. This approach
currently incorporates elements of spatial GNN; nonetheless,
it exhibits inadequate graph representation capabilities, and
noise inside the spatial domain adversely impacts the
resulting representation. Our model has been partially
examined in the spectrum domain by mitigating some noise
effects using filters and integrating Laplacian positional
encoding. The spectral domain filter and the Laplacian
positional encoding, both derived from the properties of the
Laplacian matrix, are likely interconnected. The utilization
of the Transformer block to model this connection is
commendable.

VII. CONCLUSIONS
This paper proposes a novel integration of spectral

domain filters with Laplacian positional encoding,
emphasizing node classification when Laplacian encoding is
essential. Our model utilizes dual encoding modules to
highlight the benefits of Laplacian-based methods in graph
problems. The exceptional performance across several
datasets highlights the pedagogical significance of
integrating Graph Transformer with spectral GNN
methodologies.
Limitations: Our model employs a Laplacian matrix for
eigen-decomposition, necessitating substantial
computational resources to compute the eigenvalues of the
Laplacian matrix. Consequently, for a singular network
structure with extensive nodes, this level of processing is
catastrophic. Furthermore, the model requires extensive
training time because of the computational intricacies
associated with the two Transformer blocks and the
second-order Laplacian operator, namely self-attention and
the aggregation of multi-layer networks.
Future work: Given the limitations mentioned above, we
can consider adding a lightweight module. In addition, there
is an important question of whether we can go further
in-depth so that the Transformer can simulate the
topological relationship on the graph structure more
comprehensively. Finally, this model may have good
performance in the field of molecular graphs, and it has good
computing power and learning ability based on the datasets
with multiple graphs but a small average number of nodes.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1683-1690

 
______________________________________________________________________________________ 



REFERENCES

[1] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. J. I. t. o. n.
n. Monfardini, "The graph neural network model," IEEE transactions
on neural networks, vol. 20, no. 1, pp. 61-80, 2008.

[2] X. Li, L. Sun, M. Ling, and Y. Peng, "A survey of graph neural
network based recommendation in social networks," Neurocomputing,
vol. 549, p. 126441, 2023.

[3] L. Yang et al., "Dgrec: Graph neural network for recommendation
with diversified embedding generation," in Proceedings of the
sixteenth ACM international conference on web search and data
mining, 2023, pp. 661-669.

[4] P. W. Battaglia et al., "Relational inductive biases, deep learning, and
graph networks," arXiv preprint arXiv:1806.01261, 2018.

[5] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
"Neural message passing for quantum chemistry," in International
conference on machine learning, 2017, pp. 1263-1272.

[6] M. Defferrard, X. Bresson, and P. J. A. i. n. i. p. s. Vandergheynst,
"Convolutional neural networks on graphs with fast localized spectral
filtering," Advances in neural information processing systems, vol. 29,
2016.

[7] J. Bruna, W. Zaremba, A. Szlam, and Y. J. a. p. a. LeCun, "Spectral
networks and locally connected networks on graphs," arXiv preprint
arXiv:1312.6203, 2013.

[8] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. J.
s. Bengio, "Graph attention networks," arXiv preprint
arXiv:1710.10903, vol. 1050, no. 20, pp. 10-48550, 2017.

[9] T. N. Kipf and M. J. a. p. a. Welling, "Semi-supervised classification
with graph convolutional networks," arXiv preprint
arXiv:1609.02907, 2016.

[10] D. Bo, C. Shi, L. Wang, and R. J. a. p. a. Liao, "Specformer: Spectral
graph neural networks meet transformers," arXiv preprint
arXiv:2303.01028, 2023.

[11] Q. Wang and W. Zhang, "Session-based Recommendation Algorithm
Based on Heterogeneous Graph Transformer," IAENG International
Journal of Computer Science, vol. 50, no. 4,pp1347-1353, 2023.

[12] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. J. A. i. n. i. p. s. Kim,
"Graph transformer networks," Advances in neural information
processing systems, vol. 32, 2019.

[13] J. Zhang, H. Zhang, C. Xia, and L. J. a. p. a. Sun, "Graph-bert: Only
attention is needed for learning graph representations," arXiv preprint
arXiv:2001.05140, 2020.

[14] G. Mialon, D. Chen, M. Selosse, and J. J. a. p. a. Mairal, "Graphit:
Encoding graph structure in transformers," arXiv preprint
arXiv:2106.05667, 2021.

[15] D. Kreuzer, D. Beaini, W. Hamilton, V. Létourneau, and P. J. A. i. N.
I. P. S. Tossou, "Rethinking graph transformers with spectral
attention," arXiv preprint arXiv:1806.01261, 2021.

[16] L. Rampášek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, and D. J.
A. i. N. I. P. S. Beaini, "Recipe for a general, powerful, scalable graph
transformer," Advances in Neural Information Processing Systems,
vol. 35, pp. 14501-14515, 2022.

[17] X. Wang et al., "Heterogeneous graph attention network," in The
world wide web conference, 2019, pp. 2022-2032.

[18] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, "Simple and deep
graph convolutional networks," in International conference on
machine learning, 2020, pp. 1725-1735.

[19] G. Li, M. Müller, B. Ghanem, and V. Koltun, "Training graph neural
networks with 1000 layers," in International conference on machine
learning, 2021, pp. 6437-6449.

[20] F. Di Giovanni, L. Giusti, F. Barbero, G. Luise, P. Lio, and M. M.
Bronstein, "On over-squashing in message passing neural networks:
The impact of width, depth, and topology," in International
Conference on Machine Learning, 2023, pp. 7865-7885.

[21] D. Chen, L. O’Bray, and K. Borgwardt, "Structure-aware transformer
for graph representation learning," in International Conference on
Machine Learning, 2022, pp. 3469-3489.

[22] [M. Yang, Y. Shen, R. Li, H. Qi, Q. Zhang, and B. Yin, "A new
perspective on the effects of spectrum in graph neural networks," in
International Conference on Machine Learning, 2022, pp.
25261-25279.

[23] X. Wang and M. Zhang, "How powerful are spectral graph neural
networks," in International Conference on Machine Learning, 2022,
pp. 23341-23362.

[24] Z. Chen et al., "Bridging the gap between spatial and spectral domains:
A survey on graph neural networks," arXiv preprint
arXiv:2002.11867, 2020.

[25] C. Ying et al., "Do Transformers Really Perform Bad for Graph
Representation?(2021)," arXiv preprint arXiv:2106.05234., 2021.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1683-1690

 
______________________________________________________________________________________ 


	I.INTRODUCTION
	II.RELATED WORK
	III.MODEL
	A.Spectral domain Signal Encoder
	B.Laplacian position encoder 
	C.Decoder
	1) Spectral domain Filter
	2)Learnable bias values
	3)Graph convolution module


	IV.THEORETICAL ANALYSIS
	V. EXPERIMENT
	A.Datasets and Settings
	B.Baseline
	C.Main Results
	D. Hyperparameter Study
	E.Ablation studies

	VI.DISCUSSION
	VII.CONCLUSIONS
	REFERENCES



