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Abstract—Multimodal multiobjective problem (MMOPs) is a
class of multiobjective optimization problems where multiple
Pareto Sets (PSs) in the decision space corresponding to the
same Pareto Front (PF) in the objective space, and they are
widely prevalent in real-life applications. However, a more
realistic situation in engineering problems is when the objective
value of one solution is a little worse than another and these
solutions are far from one another in the decision space.
Furthermore, when dealing with MMOPs, it is common to
search for both global and local PSs. In addition, most state-
of-the-art multimodal multiobjective evolutionary algorithms
(MMEAs) have a poorly convergence and cannot always acquire
all PSs. To tackle these problems, this study proposed an
improved hierarchy ranking method with adaptive weighted
coefficient for MMOPs, called HREA-AWC. Firstly, an adaptive
weighting coefficient method is proposed to avoided falling into
a local optimum and can improved the global convergence
ability. Secondly, crowding distance estimation strategy based
on the 2-norm, which helped the algorithm identify and
maintain multiple PSs, is designed. Thirdly, a dual offspring
generation strategy, which can promote the diversity of the
algorithm in the objective space and decision space, is presented.
Finally, large number of experiments have been conducted,
and the experimental results showed that HREA-AWC has a
better performance than compared algorithms for solving the
benchmark problems.

Index Terms—multimodal multiobjective, evolutionary com-
putation, adaptive weighed coefficients, crowding distance esti-
mation.

I. INTRODUCTION

MULTIOBJECTIVE Optimization Problems (MOPs)
are special optimization problems that need to consid-

er multiple objective functions at the same time[1]. Unlike
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Fig. 2: Multimodal multiobjective optimization.

traditional single-objective optimization problems, there is
usually no one solution that can meet all objectives at
the same time. Therefore, coordination and compromise
between different objectives exits. The goal of multiobjective
optimization problem is to find a set of solutions that provide
the best trade-off between different objectives. The set of
solutions is called the Pareto Set (PS). In general, MOPs
can be formulated as follows: minF (x) = {f1(x), f2(x), . . . , fm(x)}

s.t.
x = (x1, x2, . . . , xn) ∈ Ω

(1)

where F (x) represents m objective functions, and x is a
vector of decision variables. Ω denotes the feasible domain
of all decision variables x.

The dominate relationship is defined as follows: xa is
dominate xb iff ∀i = 1, 2, . . . ,m, fi (xa) ≤ fi (xb) and ∃j =
1, 2, . . ., m, fj(xa) < fj(xb), denoted as xa ≺ xb. Moreover,
a Pareto optimal solution is that the solution isn’t dominated
by any other solutions. As shown in Fig. 1, this is a two-
objective minimizing problem, in which the optimization
direction of f1(x) is from right to left, and the optimization
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direction of f2(x) is from top to bottom. Assuming that
the circle and the triangle in the Fig. 1 represents different
solutions. The purple circles dominate the red triangle. The
green circles are dominated by the red triangle. However,
the red triangle is not dominated by the blue circles and the
yellow circles. As shown left of in Fig. 2, the set consisting
of non-dominated solutions in the decision space is called
the Pareto Sets (PS). As shown right of Fig. 2. The image of
the PS in objective space is known as the Pareto Front(PF).

Many engineering problem can be modeled as a mul-
tiobjective model. In addition, multiple different solutions
have the same or similar objective values, which is called
a multimodal multiobjective problem (MMOPs). As shown
right of in Fig. 2. The study of multimodal multiobjective
optimization problems (MMOPs) is crucial for providing
diverse solutions, offering decision makers multiple high
quality options when faced with complex challenges. These
problems often have multiple global or local optimas in
practical applications such as network optimization [2], path
selection [3], production scheduling [4], VNF service chain
deployment [5], [6], and protein design [7]. MMOPs can
enhance overall understanding of the issues, and can help
to avoid difficulties or economic losses. Furthermore, the
development of multimodal multiobjective evolutionary algo-
rithms (MMEAs) has advanced both evolutionary algorithms
and multiobjective optimization theory, fostering technolog-
ical innovation and addressing real-world problems. Thus,
research on MMOPs holds significant theoretical importance
and valuable practical application.

When addressing multimodal multiobjective optimization
problem, two major challenges are encountered: (1) How to
enhance the search capability of algorithm to discover as
many Pareto optimal solutions as possible during the search
process. (2) How to effectively preserve solutions that are
close in the objective space but distant in the decision space
during environmental selection, while ensuring diversity in
both the decision and objective spaces. To tackle these
two key difficulties, researchers have developed a variety
of multiobjective evolutionary algorithm (MOEA), which
aims to find a set of solutions in the objective space that
not only perform well on individual objectives but also
present a good distribution over the entire solution set. In
multiobjective optimization, researchers usually focus on two
key criteria: convergence and diversity. Convergence refers
to the ability of the algorithm to drive the population towards
the Pareto Front (PF), while diversity refers to its ability to
maintain a broad distribution of the solution set across the
objective space. Therefore, advanced MOEA, like NSGA-
II [8], MOEA/D [9], BoTAPDTA [10], CTBOA [11] and
PICEA [12], perform well in multiobjective optimization
benchmarks. These algorithms can efficiently estimate the
Pareto front while maintaining the diversity of the solution
set through well-designed operators and strategies.

Although some progress has been made in multimodal
multiobjective optimization, existing researches mainly fo-
cused on the optimization of a single or a few objectives.
When dealing with complex problems that have multiple
conflicting objectives, it is often difficult for designing al-
gorithms to achieve optimal solutions for all objectives. Tra-
ditional multimodal multiobjective evolutionary algorithms
tend to solve multiple Pareto solutions with the same ob-

jective value. However, it is more practical in engineering
problems where one solution is slightly worse than another
in terms of objective value and these solutions are far apart
in the decision space. In other words, these problems have
global and local Pareto fronts. Due to Pareto domination,
the population is likely to convergence quickly to the global
PSs. Most multimodal multiobjective evolutionary algorithms
attempt to abandon the local PS, which may cause the
algorithm to fall into a region of local optima. To tackle
this problem, a novel MMEA based on hierarchical ranking
method called HREA [13] is proposed for obtaining global
PSs and local PSs. Specifically, the algorithm proposes the
use of local convergence quality to maintain all global PS
and local PS in the main population. In the convergence
archive, a hierarchy ranking method is used to improve the
convergence ability and to control the quality of local PFs.
With the hierarchy ranking method, HREA can well balance
the diversity and convergence of the resulting solutions. In
addition, a local convergence quality evaluation method to
better maintain diversity in the decision space.

Inspired by HREA, this study proposed an improved
hierarchy ranking method with adaptive weighted coefficient
for multimodal multiobjective optimization, called HREA-
AWC. The adaptive weighting strategy dynamically adjusts
weights coefficient based on the algorithm’s current iteration
and population distribution. The 2-norm crowding distance
strategy makes the Pareto optimal solution as dispersed as
possible in the objective space by assigning a crowding
distance to each individual, ensuring a uniform distribution
of solutions across the Pareto front and helping to find a more
comprehensive set of optimal solutions. Specifically, the dual
offspring generation strategy produces offspring that can
quickly convergence near the optimal solution, especially in
the early stages of the algorithm, thereby reducing calculative
time and the number of iterations. The HREA-AWC aims
to obtain all global and local PSs while enhancing the
convergence of MMEAs. In summary, the main contributions
of this paper are summarized as follows:

• An adaptive weighting coefficient method, which can
avoid falling into a local optimum and improved the
global convergence ability, is designed.

• To helped the algorithm identify and maintain multiple
PSs, a crowding distance estimation strategy based on
the 2-norm is proposed.

• For the sake of promoting the diversity of the algo-
rithm in the objective space and decision space, a dual
offspring generation strategy is designed.

The rest of this paper is organized as follows: Section
II described the proposed algorithm in detail. Section III
and Section IV demonstrates the experimental setting, effec-
tiveness of proposed algorithm with extensive experiments.
Conclusions are given in Section V.

II. PROPOSED ALGORITHM

A. General Framework of HREA-AWC

Like MOEAs, the framework of HREA-AWC consists of
the following parts: population initialization, environmental
selection, archives update, and offspring generation. The
framework of HREA-AWC is described in Fig. 3. Firstly,
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Fig. 3: Framework of HREA-AWC.

initialize N individuals to form a population P . Then, indi-
viduals in population P are used to environmental selection
and archive updates, resulting in populations P1 and P2.
Secondly, make judgments based on the conditions. When
the conditions are satisfied, the dual offspring (Off1 and
Off2) is generated and merged into P . Finally, the merged
new population P is returned to the environment selection
and archive update for the next iteration. When the conditions
are not met, the algorithm stopped.

In the process of environmental selection, inspiration is
drawn from the ideas of HREA [13]. Firstly, calculate the
non-dominated relationships in the population. Secondly, cal-
culate the local convergence and crowding distance. Thirdly,
a novel adaptive weight coefficient strategy to dynamically
adjust local convergence and crowding distance, which com-
prehensively evaluate the quality of individuals and select
individuals with excellent performance as population P1.

When updating the archives, like most evolutionary algo-
rithms, non-dominated sorting for the population is adopted.
Then, similar to HREA [13], individuals are sorted and the
first front is selected. Finally, generate population P2.

In generating offspring, this paper introduced a dual gen-
eration strategy that can enhance the algorithm’s ability to
discover multiple Pareto solution. There are roughly two
stages: In early stage, offspring are selected from the main
population using genetic operators with differential evolution
operators. In later stage, offspring are randomly chosen from
the archive using genetic operators and differential evolution
operators. In each generation, different offspring are selected
from both the population and the convergence archive. This
co-evolutionary approach, while not novel in the context
of MOEAs tackling MOPs, is exemplified in algorithms
like CCMO [14] and c-DPEA [15] for balancing constraints
and exploration efficacy, and in CPDEA [16] and MMEA-
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Fig. 4: The curves of α and β.

WI [17] for maintaining a balance between diversity and
convergence.

B. Adaptive Weighting Coefficient Strategy

Algorithm 1: Adaptive weighting coefficient strategy
Input: Pop, population size N , α.
Output: Pop1, crowding distance PopCD.

1 LC = LocalC (UnionPop) /*Refer to the [13];
2 PopCD ← sum(dist(1:3,:));
3 NewPop ← sortrow([α · LC , β · PopCD]);
4 PopCD ← Crowding(NewPop);
5 Return Pop1, PopCD.

Algorithm 1 is the main process of adaptive weighting
coefficients. Firstly, calculate the Lc of the population (line
1). At the same time, calculate the crowding distance of
the population and select from first to third columns for
addition (line 2). Then, using a parameter α, adaptively
adjust the weights of Lc and crowding distance to obtain
a new population (line 3). Secondly, using a new crowding
measurement method constructed with 2-norm and harmonic
mean, calculate the crowding distance of the new population
again (line 4). Finally, return the distance between the new
population and the new crowding distance (line 5). The
following method is adopted to adaptively adjust the weights
of Lc and crowding distance:

α = 1− (0.5/(1 + eM×−(gen−1)
GEN )) (2)

where, the adjustment coefficients for α is based on the
current iteration count gen and the maximum iteration count
GEN . After extensive experimental verification, the optimal
value for M is 10.

The calculation of α utilizes the logistic function, which
is a common s-shaped function that typically ranges between
−1 and 1, but here it is adjusted to range between 0 and 1.
As gen approaches GEN , α gradually decreases. As shown
in Fig. 4. The blue line represents α. β is indicated by the
red line. β increases with the number of iterations.

Mat = α× Lc + β ×Dis (3)
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A matrix named Mat is a weighted sum of two matrices.
Lc is local convergence. Dis represents the diversity of the
population, and Dis takes individuals with larger distances.
α is used to weight of Lc and β is used to weight of Dis.
Among them, β is equal to (1−α). Thereby, Mat combines
feature on local convergence and population diversity.

During environmental selection, the population is sorted
by using a parameter that integrates local convergence and
population diversity. In the initial stage, the weight of lo-
cal convergence is relatively high, which helps accelerate
convergence. As evolution progresses, α gradually decreases
and the impact of crowding distance gradually increases,
which encourages the population to search for more diverse
solutions and avoid falling into local optima. The weighting
method enables the optimization process to make adjustments
at different stages according to the needs of the problem,
balancing the relationship between exploration diversity and
convergence. The α dynamically adjusts the weights assigned
to these components at different stages of the algorithm. As
the algorithm advances, the α evolves, enabling a dynamic
adjustment of the sorting strategy.

C. Crowding Distance Estimation Based on the 2-Norm

As shown in Algorithm 1. In this study, we use the 2-
norm and harmonic mean methods to estimate the density of
solutions in the decision space:

Dis = N−1

2

√∑N

j=1
1/∥xj−xi∥2

(4)

where N indicates population size. ∥ xj−xi ∥2 indicates the
Euclidean distance of solutions xi and xj . Note that xi and
xj have been previously normalized. This crowding distance
metric is crucial for maintaining diversity and guiding the
search process in multiobjective optimization problems.

D. A Dual Offspring Generation Strategy

Algorithm 2 is the main process of dual offspring gener-
ation strategy. Initialize the population (line 1). Select the
preserved population Pop1 and crowding distance PopCD
through environmental selection (line 2). Update the archive
to retain population Pop2 and congestion ArcCD (line 3).
Calculate the fitness of Pop2 (line 4). Termination condition
not met, execute loop. In the early stage of iteration, indi-
viduals of crowding distance PopCD will be selected and
the selected individuals will be retained in MPool1 (line 12).
The individuals selected by genetic algorithm in MPool1 are
retained in Offspring1 (line 13). Next, individuals of fitness
will be selected and the selected individuals will be kept
in MPool2 (line 14). The individuals selected by differential
evolution algorithm in MPool1 are retained in Offspring2
(line 15). In the later stage of iteration, individuals of ArcCD
will be selected and the selected individuals will be retained
in MPool1 (line 7). The individuals selected by genetic
algorithm in MPool1 are retained in Offspring1 (line 8).
Next, individuals of fitness will be selected and the selected
individuals will be kept in MPool2 (line 9). The individuals
selected by differential evolution algorithm in Mpool2 are
retained in Offspring2 (line 10). Finally, merge the Offspring1
and Offspring2 obtained in the early and later stages (line

Algorithm 2: A dual offspring generation strategy.
Input: Pop, population size N.
Output: UnionPop (Pop

∪
Off1

∪
Off2).

1 Pop ← Initialization (N);
2 [Pop1, PopCD] ← EnvSel (Pop, N);
3 [Pop2, ArcCD] ← ArcUpdata (Pop, N);
4 Fitness ← CalFitness (Pop2, N);
5 while termination criterion is not fulfilled do
6 if gen ≥ 0.5 ∗ MaxGen and rand > P then
7 MPool1 ← TournamentSel (ArcCD);
8 Offspring1 ← OperatorGA (MPool1);
9 MPool2 ← TournamentSel (Fitness);

10 Offspring2 ← OperatorDE (MPool2);
11 else
12 MPool1 ← TournamentSel (PopCD);
13 Offspring1 ← OperatorGA (MPool1);
14 MPool2 ← TournamentSel (Fitness);
15 Offspring2 ← OperatorDE (MPool2);
16 end if
17 Offspring ← (Offspring1, Offspring2)
18 UnionPop ← (Offspring, Pop)
19 end while

17). Merge Pop and Offspring to obtain a new population
UnionPop (line 18).

As shown in Fig. 5 is the main process of dual offspring
generation strategy. The dual offspring strategy combines
genetic algorithm and differential evolution to enhance ex-
ploration, development capabilities, improve population di-
versity, improve algorithm robustness through competitive
selection and dynamic adjustment of search strategies.

III. EXPERIMENTAL SETUP

A. Experimental Setting

The experimental design used to evaluate the performance
of the proposed HREA-AWC algorithm is introduced in
detail. The experiment includes a series of benchmark prob-
lems, which are designed to comprehensively examine the
performance of the algorithm in a multimodal multiobjective
optimization environment. In addition, in order to quantify
the performance of the algorithm, the study use multiple
performance indicators, including key factors such as con-
vergence and diversity of solutions. These indicators help us
analyze and evaluate the effectiveness of the algorithm from
different perspectives. Furthermore, in order to ensure the
reliability and fairness of the experimental results, the paper
also compare the HREA-AWC algorithm with several other
advanced comparison algorithms. Through these compara-
tive experiments, the advantages and potential improvement
space of the HREA-AWC algorithm in dealing with complex
optimization problems can be more clearly demonstrated.

1) Benchmark Problems: We used benchmark problems
to verify the effectiveness of HREA-AWC in solving M-
MOPs. Yue et al. [18] proposed multimodal multi-objective
test functions (MMF). The MMF test problems consist of 19
test problems designed to evaluate the algorithm’s ability and
maintain multiple local Pareto optimal solutions. Liu et al.
[16] proposed the imbalanced distance minimization prob-
lems (IDMP) with different search difficulties for different

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1712-1726

 
______________________________________________________________________________________ 



Offspring2

MatingPool2

MatingPool2

FE >=0.5*maxFE

&& rand < p

MatingPool1

MatingPool1

Y

N

CalFitness

OperatorGA

OperatorDE

1

2

4

3

ArchiveUpdate

Offspring1

Offspring1

OperatorGA

Offspring

Offspring

EnvirSel

Offspring2

Fig. 5: A dual offspring generation.

PSs. IDMP is derived from distance minimization problems
[19] and polygon-based problems [20]. The IDMP test prob-
lems include 12 test problems that assess the algorithm’s
performance in identifying and balancing multiple Pareto
optima across different levels of difficulty. Additionally, it
contains 3 test questions, which is HYL [21].

2) Performance Metrics: Traditional performance evalua-
tion metrics, such as GD [22], IGD [23], and HV [24], are
mainly used to evaluate the aggregation degree and distribu-
tion breadth of populations in the target space. However, for
multimodal multiobjective problems (MMOPs), performance
evaluation only in the target space is not enough, and the
characteristics in the decision space also need to be consid-
ered. Therefore, the evaluation method should be extended
from the target space to the decision space to comprehensive-
ly measure the performance of the algorithm. In this study
used two widely adopted metrics IGDX [25] [26] and PSP
[27] to comprehensively evaluate the performance of HREA-
AWC in both the decision space and objective space.

IGDX measures the convergence and diversity of the
obtained solutions in the decision space. The calculation
method for IGDX performance indicators is as follows:

IGDX(B) =
1

|B∗|

∑
y∈B∗

min
x∈B
{ED(x, y)}

 (5)

where B represents the non-dominated solutions in the entire
population, while B∗ denotes the true Pareto optimal solution
set. ED(x, y) represents the Euclidean distance between x
and y. A smaller IGDX value is better, indicating that the
non-dominated solutions in the population are closer to the
true PF. This suggests that the non-dominated solutions can
more accurately approach the true PF, thereby improving the
performance of the optimization algorithm and the quality of
the solutions.

PSP assesses the diversity of the solution set and its
proximity to the true Pareto front. PSP is the result of CR
divided by IGDX, where CR stands for cover rate. The

calculation method for PSP performance indicators is as
follows:

PSP (B) =
CR(B)

IGDX(B)
(6)

The formula for calculating CR is as follows:

CR(B) =

(
N∏
i=1

δi

) 1
2N

(7)

N represents the dimensionality of the objective space, and
δi the formula is as follows:

δi =

(
min(x∗,max

i , xmax
i )−max(x∗,min

i , xmin
i )

x∗,max
i − x∗,min

i

)2

(8)

where x∗,min
i and x∗,max

i are the minimum and maximum in
the PSs. If x∗,min

i = x∗,max
i , δi is considered as δi = 1. If

xmin
i ≥ x∗,max

i or xmax
i ≤ x∗,min

i , δi is set as 0.
3) Competitor Algorithms: To verify the effectiveness of

HREA in solving MMOPs, this paper compares HREA-
AWC with four state-of-the-art algorithms. These include
TriMOEATAR [28], DNNSGAII [29], MO Ring PSO SCD
[30] and HREA [13]. The parameter settings of all the
comparison algorithms are shown in Table I. Throughout the
entire experimental process, the population size is set to 100,
and the maximum number of iterations is set to 100,000.
The specific parameter for each algorithm are set according
to the original papers. All experiments are conducted using
PlatEMO [31] v4.7 on a PC with an AMD Ryzen 5 4600U
processor with Radeon Graphics and 512MB of memory.

IV. RESULTS AND DISCUSSION

This section mainly analyzes the experimental results on
different indicators. IGDX measures the convergence and
diversity of the obtained solutions in the decision space. PSP
assesses the diversity of the solution set and its proximity to
the true Pareto front. In addition, we discussed the various
components and parameters of HREA-AWC. Subsequently,
in order to obtain comprehensive statistical conclusions, the
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TABLE I: The parameter settings of the comparison algorithms

Algorithm Parameters

TriMOEATAR pcon = 0.5, σniche = 0.1, εpeak =0.01
DNNSGAII -

MO Ring PSO SCD C1 = C2 = 2.05, W = 0.7298, nPBA = 5, nNBA = 15, subsize=5, nGBA = 10 * subsize
HREA p = 0.5, ϵ = 0.3

HREA-AWC p = 0.5, ϵ = 0.3, M = 10

wilcoxon rank sum test [32] was used to compare the results
of HREA-AWC and other algorithms at a significance level
of 0.05. The symbols ”+”, ”-”, and ”≈” indicate that the com-
parison algorithm is significantly better, significantly worse,
or statistically equivalent to HREA-AWC. The average values
and variances of IGDX and PSP over 30 runs are presented,
with the best solutions are marked in bold.

A. Results on Benchmark

Table II shows the IGDX comparison results from which
we can observe that HREA-AWC shows better performance
than other state-of-the-art algorithms on the chosen test
problems. Specifically, HREA-AWC wins 13 instances over
22 test problems. From the table, HREA-AWC, HREA and
TriMOEATAR are shown to be the best two algorithms for
solving the chosen problems. Notably, the DNNSGAII and
MO Ring PSO SCD did not show significant advantages on
all test problems, and their IGDX values were generally high,
indicating their limitations in solving complex multimodal
multiobjective optimization problems. In summary, HREA-
AWC is the most competitive algorithm in this experiment,
demonstrating excellent performance on most test problems.

We also compare the PSP results for these algorithms in
Table III, from which we can find that HREA-AWC, HREA,
TriMOEATAR and DNNSGAII perform better than other
algorithms. Specifically, HREA-AWC wins 15 instances over
22 test problems. From the table, the HREA-AWC exhibits
significant advantages in most test problems. Compared with
other algorithms, HREA-AWC significantly outperforms T-
riMOEATAR on 20 test problems, surpasses DNNSGAII
on 19 test problems, and outperforms MO Ring PSO SCD
on all 22 test problems. Especially in the MMF, such as
MMF1-MMF7 and MMF11-MMF15, their PSP values are
the highest, and most of the results have statistical signif-
icance. Compared with the HREA, HREA-AWC performs
equally well on 17 test problems. Although TriMOEATAR
and DNNSGAII perform better in the MMF9 and MMF14 a,
the proportion of such cases is extremely low. HREA-AWC
is more stable in balancing diversity and convergence.

Table IV lists the IGDX results obtained by all the
competitor algorithms. As we can see from the table, HREA-
AWC wins 8 instances over 12 test problems. Compared
to HREA, HREA shows a slightly better performance on
IDMPM2T2. At the same time, on the IDMPM4T2 to
IDMPM4T4 test problems, HREA-AWC is slightly inferi-
or to MO Ring PSO SCD. This is because the proposed
HREA-AWC algorithm performs poorly in measuring the
distribution and diversity of the solution set when facing
complex objective functions and constraints.

In table V lists the PSP results obtained by all the competi-
tor algorithms. HREA-AWC performs better than the other

four algorithms on 9 test problems, while its performance
is not satisfactory on the three test problems IDMPM4T2,
IDMPM4T3, and IDMPM4T4. To summarize, HREA-AWC
shows excellent ability in solving multimodal multiobjective
optimization problem.

As shown in Fig. 6 and Fig. 7. By comparing the IGDX
and PSP convergence curves of HREA-AWC and other algo-
rithms on MMF6, HYL5, IDMPM3T2 and IDMPM4T1 test
problems. From Fig. 6, it can be seen that the IGDX values
of HREA-AWC and HREA are the smallest, while the IGDX
values of the other three algorithms are relatively large. The
smaller the IGDX, the better the algorithm performance.
From Fig. 7 (a), (b) and (d), it can be seen that the PSP values
of HREA-AWC and HREA are overall the highest, while the
PSP values of the other three algorithms are relatively small.
The larger the PSP, the better the algorithm performance.
Specifically, the MO Ring PSO SCD in Fig. 7 (c) has the
highest PSP value during the 19 calculations, but during
the last calculation, PSP suddenly decreases. The PSP value
of HREA-AWC is generally good. In brief, it can be seen
that the HREA-AWC algorithm has a faster convergence
speed, indicating its high optimization accuracy. At the same
time, the convergence curve of HREA-AWC shows stability
and robustness, and can maintain excellent performance in
different testing problems. Therefore, HREA-AWC demon-
strates higher efficiency and reliability in various problems,
outperforming other algorithms.

As shown in Fig. 8 to Fig.12 shows the distribution of
the obtained solutions in the objective and decision spaces.
The PSs are shown in the subfigures in upper right. In the
MMF5 test problem, compared with the other three algo-
rithms, HREA-AWC and HREA can simultaneously cover
multiple dispersed Pareto sets in the decision space and
evenly distribute them in the objective space. This indicates
that it can effectively handle multimodal characteristics and
avoid falling into local optima. In the HYL test problem,
HREA-AWC and HREA have a wide distribution of solutions
in the objective space without significant clustering, and the
solutions are mapped to different regions in the decision
space. They can maintain the diversity of high-dimensional
problems and avoid solution set degradation caused by
dimensional disasters. The TriMOEATAR algorithm signif-
icantly aggregates in the decision space, indicating that
complex structures or high-dimensional characteristics may
lead to overlapping solution sets. On MMF5 and HYL
test problems, the solutions generated by the HREA-AWC
algorithm may be more uniform or concentrated, demon-
strating its ability to better balance the needs of various
dimensions when optimizing objectives. HREA-AWC avoids
local optima better than other algorithms and can search for
more globally meaningful solutions in the solution space.
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TABLE II: IGDX results of the proposed algorithm and compared algorithms on MMF and HYL

Problem TriMOEATAR DNNSGAII MO Ring PSO SCD HREA HREA-AWC

MMF1 1.0410e-1 (2.87e-2) − 6.9660e-2 (2.84e-3) − 1.4431e-1 (2.57e-2) − 5.6135e-2 (1.85e-3) ≈ 5.5821e-2 (1.55e-3)
MMF2 9.5242e-2 (7.07e-2) − 1.2510e-2 (3.07e-3) − 5.9282e-2 (4.84e-2) − 8.3425e-3 (2.88e-4) − 8.0601e-3 (2.27e-4)
MMF3 5.7532e-2 (4.52e-2) − 2.0633e-2 (6.80e-3) − 2.4991e-2 (5.28e-3) − 8.3014e-3 (3.20e-4) − 8.0937e-3 (2.44e-4)
MMF4 1.3400e-1 (1.01e-1) − 5.2429e-2 (9.57e-3) − 2.3681e-1 (7.49e-2) − 3.2349e-2 (1.14e-3) ≈ 3.2269e-2 (1.14e-3)
MMF5 1.9221e-1 (5.74e-2) − 1.3021e-1 (7.63e-3) − 2.7977e-1 (4.96e-2) − 9.4380e-2 (2.34e-3) ≈ 9.3455e-2 (1.95e-3)
MMF6 1.5938e-1 (3.03e-2) − 1.1243e-1 (6.47e-3) − 2.2466e-1 (3.38e-2) − 8.4422e-2 (2.37e-3) ≈ 8.3764e-2 (2.22e-3)
MMF7 7.0674e-2 (1.50e-2) − 3.8585e-2 (2.47e-3) − 1.5610e-1 (3.23e-2) − 3.4742e-2 (3.35e-3) ≈ 3.3402e-2 (1.71e-3)
MMF8 1.3682e+0 (6.61e-1) − 1.0642e-1 (1.45e-2) − 6.6490e-1 (2.14e-1) − 6.6450e-2 (3.13e-3) ≈ 6.8614e-2 (6.00e-3)
MMF9 3.4484e-3 (1.54e-6) + 1.1424e-2 (1.51e-3) + 4.4853e-2 (1.80e-2) − 1.7497e-2 (1.24e-3) ≈ 1.7221e-2 (1.29e-3)

MMF10 8.0001e-1 (4.76e-7) − 6.5477e-1 (2.09e-1) − 7.9993e-1 (3.95e-4) − 2.4169e-1 (9.57e-2) ≈ 2.2521e-1 (9.48e-2)
MMF11 7.5119e-1 (6.76e-8) − 7.4520e-1 (2.54e-3) − 7.4366e-1 (2.77e-3) − 6.8581e-2 (8.45e-2) ≈ 4.9330e-2 (5.51e-2)
MMF12 7.7304e-1 (6.28e-6) − 7.6943e-1 (2.20e-3) − 7.6566e-1 (3.79e-3) − 3.1094e-1 (3.03e-3) ≈ 3.1165e-1 (3.06e-3)
MMF13 NaN (NaN) NaN (NaN) NaN (NaN) NaN (NaN) NaN (NaN)
MMF14 2.5503e-1 (2.81e-3) − 2.9928e-1 (5.03e-2) − 4.3186e-1 (1.59e-1) − 2.3672e-1 (5.82e-2) ≈ 2.4505e-1 (5.05e-2)

MMF14 a 7.8662e-2 (6.52e-2) − 2.9470e-1 (8.41e-2) − 4.6153e-1 (1.22e-1) − 1.7328e-3 (6.64e-3) ≈ 8.2597e-4 (3.36e-3)
MMF15 7.5539e-1 (7.17e-4) − 7.4268e-1 (2.55e-2) − 6.5118e-1 (1.89e-1) − 2.2898e-1 (6.44e-2) ≈ 2.1773e-1 (7.57e-2)

MMF15 a 2.3142e-1 (1.62e-3) − 2.2729e-1 (6.53e-3) − 2.3483e-1 (7.75e-3) − 1.0154e-1 (4.09e-3) ≈ 1.0155e-1 (4.16e-3)
MMF1 e 7.6852e-2 (8.66e-4) + 8.3218e-2 (1.27e-2) ≈ 8.6668e-2 (1.07e-2) ≈ 1.6295e-1 (1.50e-1) ≈ 1.5508e-1 (1.37e-1)
MMF1 z 2.8929e-1 (4.36e-1) ≈ 1.0290e-1 (3.81e-2) ≈ 8.9761e-2 (2.27e-2) ≈ 9.1857e-2 (2.15e-2) ≈ 8.5549e-2 (1.23e-2)

HYL1 1.3123e+0 (6.23e-1) − 2.6179e-1 (3.43e-2) − 3.7757e-1 (2.77e-2) − 1.7363e-1 (1.02e-2) ≈ 1.7718e-1 (1.05e-2)
HYL2 7.0842e-1 (6.15e-2) − 8.7262e-1 (1.04e-1) − 1.7017e+0 (4.16e-1) − 5.0339e-1 (4.92e-2) ≈ 5.2339e-1 (5.84e-2)
HYL5 5.2759e+0 (4.28e+0) − 2.9927e-1 (2.19e-2) − 4.5047e-1 (5.77e-2) − 2.4573e-1 (4.40e-3) ≈ 2.4399e-1 (3.90e-3)

+/ − / ≈ 2/18/1 1/18/2 0/19/2 0/2/19

TABLE III: PSP results of the proposed algorithm and compared algorithms on MMF and HYL

Problem TriMOEATAR DNNSGAII MO Ring PSO SCD HREA HREA-AWC

MMF1 9.9665e+0 (2.36e+0) − 1.4377e+1 (5.92e-1) − 6.6745e+0 (1.25e+0) − 1.7813e+1 (5.59e-1) ≈ 1.7915e+1 (4.83e-1)
MMF2 1.6519e+1 (1.24e+1) − 8.2147e+1 (1.11e+1) − 2.4720e+1 (1.49e+1) − 1.2001e+2 (4.11e+0) − 1.2416e+2 (3.48e+0)
MMF3 2.3727e+1 (1.43e+1) − 5.2181e+1 (1.27e+1) − 4.0948e+1 (8.82e+0) − 1.2062e+2 (4.38e+0) − 1.2366e+2 (3.67e+0)
MMF4 9.3473e+0 (3.48e+0) − 1.9570e+1 (2.88e+0) − 3.9668e+0 (1.64e+0) − 3.0940e+1 (1.08e+0) ≈ 3.1023e+1 (1.12e+0)
MMF5 5.3432e+0 (1.23e+0) − 7.7006e+0 (4.36e-1) − 3.2945e+0 (7.14e-1) − 1.0592e+1 (2.60e-1) ≈ 1.0697e+1 (2.23e-1)
MMF6 6.2460e+0 (1.37e+0) − 8.9202e+0 (5.03e-1) − 4.0837e+0 (8.81e-1) − 1.1848e+1 (3.31e-1) ≈ 1.1933e+1 (3.12e-1)
MMF7 1.3580e+1 (4.04e+0) − 2.5969e+1 (1.64e+0) − 5.3712e+0 (1.64e+0) − 2.8964e+1 (2.48e+0) ≈ 2.9970e+1 (1.48e+0)
MMF8 6.7707e-1 (4.45e-1) − 9.5426e+0 (1.31e+0) − 1.4218e+0 (5.03e-1) − 1.5041e+1 (7.23e-1) ≈ 1.4577e+1 (1.17e+0)
MMF9 2.8999e+2 (1.30e-1) + 8.8799e+1 (9.99e+0) + 2.5269e+1 (8.65e+0) − 5.7408e+1 (3.78e+0) ≈ 5.8379e+1 (4.31e+0)

MMF10 0.0000e+0 (0.00e+0) − 9.3501e-1 (1.14e+0) − 5.0096e+0 (1.62e+0) − 6.5583e+1 (6.53e+0) + 6.1725e+1 (6.59e+0)
MMF11 0.0000e+0 (0.00e+0) − 5.2909e-1 (4.47e-2) − 1.0313e+0 (5.23e-1) − 7.5033e+0 (5.91e-1) − 8.0523e+0 (4.20e-1)
MMF12 2.0424e-3 (1.05e-2) − 3.7396e-1 (3.50e-2) − 1.0769e+0 (5.52e-1) − 4.6710e+0 (4.80e-2) ≈ 4.6902e+0 (4.52e-2)
MMF13 8.8109e-1 (6.72e-2) − 9.8503e-1 (7.93e-3) − 1.1295e+0 (1.98e-1) − 7.8391e+0 (1.58e+0) ≈ 8.2142e+0 (1.73e+0)
MMF14 2.0623e+1 (3.74e-1) + 1.2158e+1 (1.77e+0) + 8.0277e+0 (1.12e+0) − 1.0978e+1 (7.05e-1) ≈ 1.0964e+1 (9.90e-1)

MMF14 a 8.0987e+0 (8.84e-1) − 1.0787e+1 (1.03e+0) + 7.0368e+0 (1.21e+0) − 1.0200e+1 (8.30e-1) ≈ 1.0201e+1 (7.41e-1)
MMF15 0.0000e+0 (0.00e+0) − 2.9904e+0 (3.40e-1) − 4.2890e+0 (4.40e-1) − 6.5131e+0 (4.10e-1) − 6.7642e+0 (3.72e-1)

MMF15 a 3.4282e+0 (3.07e-2) − 3.6441e+0 (2.23e-1) − 3.6869e+0 (3.15e-1) − 9.8629e+0 (3.98e-1) ≈ 9.8634e+0 (4.04e-1)
MMF1 e 2.2032e+0 (4.98e-1) − 3.3242e+0 (5.62e-1) − 2.9944e+0 (3.71e-1) − 4.0705e+0 (4.30e-1) ≈ 4.1021e+0 (4.68e-1)
MMF1 z 3.6168e+0 (1.12e+0) − 5.1785e+0 (1.17e-1) − 3.7987e+0 (5.71e-1) − 5.7303e+0 (1.22e-1) ≈ 5.7706e+0 (7.68e-2)

HYL1 6.3961e-1 (3.41e-1) − 3.8772e+0 (4.64e-1) − 2.6488e+0 (1.90e-1) − 5.7780e+0 (3.29e-1) ≈ 5.6631e+0 (3.37e-1)
HYL2 1.3779e+0 (1.27e-1) − 1.1619e+0 (1.39e-1) − 5.8986e-1 (1.51e-1) − 2.0044e+0 (1.90e-1) ≈ 1.9323e+0 (2.03e-1)
HYL5 1.4503e+0 (1.99e+0) − 3.3521e+0 (2.25e-1) − 2.2536e+0 (2.76e-1) − 4.0661e+0 (7.47e-2) ≈ 4.0944e+0 (6.83e-2)

+/ − / ≈ 2/20/0 3/19/0 0/22/0 1/4/17

TABLE IV: IGDX results of the proposed algorithm and compared algorithms on IDMP

Problem TriMOEATAR DNNSGAII MO Ring PSO SCD HREA HREA-AWC

IDMPM2T1 6.5183e-1 (1.17e-1) − 6.0616e-1 (2.05e-1) − 3.0356e-1 (3.29e-1) − 1.1773e-3 (1.67e-4) − 1.0578e-3 (1.16e-5)
IDMPM2T2 6.0735e-1 (2.01e-1) − 4.7190e-1 (3.13e-1) − 7.0020e-3 (5.11e-3) − 1.3860e-3 (1.14e-4) + 1.5440e-3 (7.37e-5)
IDMPM2T3 4.4234e-1 (3.11e-1) − 2.1181e-1 (3.08e-1) − 4.0461e-3 (1.09e-3) − 2.3737e-3 (5.49e-4) − 1.8240e-3 (9.26e-5)
IDMPM2T4 6.7328e-1 (2.97e-5) − 6.2858e-1 (1.71e-1) − 9.8821e-3 (8.00e-3) − 2.2685e-3 (3.87e-3) − 1.0580e-3 (9.54e-6)
IDMPM3T1 6.7305e-1 (2.63e-1) − 6.7845e-1 (2.86e-1) − 2.5309e-1 (2.08e-1) − 1.2379e-2 (3.20e-4) − 1.2217e-2 (2.22e-4)
IDMPM3T2 7.5858e-1 (2.41e-1) − 6.7157e-1 (2.38e-1) − 1.8264e-1 (1.73e-1) − 1.3115e-2 (2.11e-3) − 1.2226e-2 (2.62e-4)
IDMPM3T3 6.7903e-1 (2.41e-1) − 6.5217e-1 (3.10e-1) − 3.0620e-2 (4.46e-2) − 1.4852e-2 (3.29e-3) − 1.2682e-2 (3.19e-4)
IDMPM3T4 8.5772e-1 (2.41e-1) − 8.2122e-1 (2.51e-1) − 2.5462e-1 (2.01e-1) − 1.3582e-2 (2.66e-3) − 1.2169e-2 (2.33e-4)
IDMPM4T1 1.1631e+0 (1.12e-1) − 1.1168e+0 (1.63e-1) − 1.0106e+0 (2.68e-1) − 7.3251e-1 (3.71e-1) − 2.1040e-1 (2.09e-1)
IDMPM4T2 1.1195e+0 (1.21e-1) − 1.0598e+0 (1.68e-1) − 5.1494e-1 (2.74e-1) ≈ 9.7951e-1 (3.14e-1) − 7.7024e-1 (2.97e-1)
IDMPM4T3 1.0883e+0 (1.39e-1) − 9.7604e-1 (1.88e-1) − 1.1480e-1 (1.18e-1) ≈ 8.2107e-1 (3.18e-1) − 2.7634e-1 (2.24e-1)
IDMPM4T4 1.1000e+0 (1.07e-1) − 1.0927e+0 (1.25e-1) − 4.8810e-1 (3.00e-1) + 1.0634e+0 (2.09e-1) − 8.1183e-1 (3.01e-1)
+/ − / ≈ 0/12/0 0/12/0 1/9/2 1/11/0
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TABLE V: PSP results of the proposed algorithm and compared algorithms on IDMP

Problem TriMOEATAR DNNSGAII MO Ring PSO SCD HREA HREA-AWC

IDMPM2T1 3.3805e-2 (1.67e-1) − 1.1610e-1 (3.27e-1) − 5.7296e-1 (4.90e-1) − 1.0787e+0 (3.46e-3) − 1.0809e+0 (1.73e-3)
IDMPM2T2 1.0898e-1 (3.10e-1) − 3.3681e-1 (4.95e-1) − 1.0509e+0 (4.02e-2) − 1.0817e+0 (1.14e-3) − 1.0824e+0 (1.01e-3)
IDMPM2T3 3.4772e-1 (4.48e-1) − 7.0408e-1 (4.58e-1) − 1.0324e+0 (1.08e-2) − 1.0338e+0 (5.41e-3) − 1.0385e+0 (1.17e-3)
IDMPM2T4 3.5057e-3 (1.40e-3) − 7.9146e-2 (2.71e-1) − 1.0305e+0 (4.64e-2) − 1.0761e+0 (1.42e-2) − 1.0814e+0 (3.00e-4)
IDMPM3T1 3.3056e-1 (3.10e-1) − 4.0989e-1 (4.21e-1) − 8.7491e-1 (2.67e-1) − 1.2217e+0 (2.35e-2) ≈ 1.2291e+0 (1.50e-2)
IDMPM3T2 2.5910e-1 (3.08e-1) − 3.8890e-1 (3.77e-1) − 1.0425e+0 (2.25e-1) − 1.2210e+0 (1.98e-2) ≈ 1.2226e+0 (1.83e-2)
IDMPM3T3 3.8275e-1 (3.42e-1) − 4.0796e-1 (4.00e-1) − 1.1781e+0 (6.67e-2) ≈ 1.1675e+0 (5.77e-2) − 1.2139e+0 (2.05e-2)
IDMPM3T4 1.3254e-1 (2.93e-1) − 2.4827e-1 (3.76e-1) − 8.8208e-1 (3.02e-1) − 1.2093e+0 (3.33e-2) ≈ 1.2235e+0 (1.83e-2)
IDMPM4T1 2.0744e-2 (6.08e-2) − 5.1101e-2 (8.84e-2) − 2.1301e-1 (3.36e-1) − 4.3918e-1 (4.09e-1) − 1.0227e+0 (2.69e-1)
IDMPM4T2 1.7803e-2 (4.73e-2) − 5.4188e-2 (8.75e-2) − 5.9016e-1 (3.26e-1) + 1.7909e-1 (3.08e-1) − 3.0531e-1 (3.30e-1)
IDMPM4T3 3.2687e-2 (4.88e-2) − 9.2892e-2 (1.15e-1) − 1.0789e+0 (1.64e-1) ≈ 3.0855e-1 (3.44e-1) − 9.2408e-1 (3.30e-1)
IDMPM4T4 7.8151e-3 (3.87e-3) − 2.3724e-2 (4.55e-2) − 6.7954e-1 (3.76e-1) + 7.6139e-2 (1.45e-1) − 3.0504e-1 (3.67e-1)
+/ − / ≈ 0/12/0 0/12/0 2/8/2 0/9/3
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Fig. 6: The convergence profiles of IGDX obtained by the algorithms.
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Fig. 7: The convergence profiles of PSP obtained by the algorithms.

As shown in Fig. 13 to Fig. 16. Objective space distribu-
tion under test problem MMF14 a when the number of eval-
uations reaches 25%, 50%, 75%, 100%. At the 25% stage,
TriMOEATAR exhibits significant exploration ability in the
objective space, with its solution set widely distributed in
multiple potential regions of the Pareto front (PF). The solu-
tion set of MO Ring PSO SCD is excessively concentrated
on the left end of PF. HREA-AWC, HREA, and DNNSGAII,
although their partial decomposition deviates from the true
PF, cover more than half of the PF region in their distribution
range. At the 50% stage and 75% stage, the solution sets
of HREA-AWC and HREA gradually converge towards the
true PF. In contrast, TriMOEATAR, MO Ring PSO SCD,

and DNNSGAII did not show significant changes compared
to the 25% stage. At the 100% stage, the solution sets of
HREA-AWC and HREA are widely distributed in multiple
potential regions of the objective space. The performance
indicators IGDX and PSP values of HREA-AWC are the
best among them, indicating that HREA-AWC has a certain
improvement in the accuracy of the solution.

V. CONCLUSION

This paper proposed an improved hierarchy ranking
method with adaptive weighted coefficient for multimodal
multiobjective optimization. During population production,
offspring were generated using genetic and differential evolu-
tion strategies. In the environmental selection phase, adaptive
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Fig. 8: Distribution of the obtained by TRiMOEATAR in the decision and objective space.
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Fig. 9: Distribution of the obtained by DNNSGAII in the decision and objective space.
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Fig. 10: Distribution of the obtained by MO Ring PSO SCD in the decision and objective space.
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Fig. 11: Distribution of the obtained by HREA in the decision and objective space.
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Fig. 12: Distribution of the obtained by HREA-AWC in the decision and objective space.

coefficients determine the priority of each individual, while
the crowding distance between individuals was calculated
using the 2-norm. On 34 test problems, this algorithm
remains competitive compared to four other algorithms that
are widely used. The proposed algorithm can more closely
approach the true Pareto front and the convergence of the
obtained non-dominated solutions. Although HREA-AWC
has shown competitiveness, more work is still needed.In
future, the HREA-AWC will be evaluated through additional
test questions improving the distribution and diversity of the
solution set.
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Fig. 15: Objective space distribution on MMF14 a when the number of evaluations reaches to 75%.
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Fig. 16: Objective space distribution on MMF14 a when the number of evaluations reaches to 100%.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1712-1726

 
______________________________________________________________________________________ 




