
A Text-to-SQL Query Parser with Integrating
Instances

Xuxu Cui, Member, IAENG, Derong Shen

Abstract—Text-to-SQL is a natural language processing task
focused on translating natural language queries into Structured
Query Language (SQL), aiming to facilitate interaction be-
tween non-technical users and relational databases. Currently,
many existing Text-to-SQL models based on deep learning
methods concentrate on encoding natural language questions
and database schemas, while often neglecting the inclusion
of database instance information. Additionally, these models
are constrained by SQL syntax during the decoding process,
which limits their generalization ability. This paper presents a
Text-to-SQL query parser that integrates database instances
to address these limitations. By incorporating database in-
stance information, both natural language queries and database
schema-instance pairs are represented as graph structures for
encoding. Predefined relationships are utilized to unify the
encoding of natural language questions, database schemas, and
database instances. An instance-aware query parsing method is
then applied during the decoding phase, allowing the model to
fully leverage database instance information when generating
SQL queries, which improves its scalability. The method is
evaluated using the cross-domain Spider dataset, and pre-
trained language models such as GloVe, GAP, and BERT
are employed to enhance model performance. Experimental
results show that the proposed approach significantly improves
prediction accuracy in Text-to-SQL tasks.

Index Terms—text-to-sql, natural language processing, deep
learning, semantic parsing, database query.

I. INTRODUCTION

IN recent years, the development of deep learning tech-
niques and the availability of large-scale datasets [1]

have led to the increasing application of deep learning
in the field of natural language processing (NLP), driving
significant technological advancements. Specifically, deep
learning has produced notable results in tasks such as named
entity recognition in Chinese electronic medical records [2]
and dimensionality reduction for Internet of Things (IoT)
intrusion detection systems [3]. These developments have not
only advanced NLP technologies but have also reinvigorated
academic interest in the Text-to-SQL task.

The Text-to-SQL task aims to directly convert natural
language queries into database query languages, which is
essential for understanding the implicit semantics of natu-
ral language. Traditionally, rule-based Text-to-SQL systems
have limitations in capturing the deeper meanings of natural
language and face challenges related to model scalability. In
contrast, recent Text-to-SQL systems based on deep learning
methods, as discussed in [4], have demonstrated the ability

Manuscript received September 15, 2024; revised March 17, 2025.
Xuxu Cui is a teaching assistant of School of Computer Science and

Software Engineering, University of Science and Technology Liaoning,
Liaoning 114051, China. (e-mail:515216585@qq.com).

Derong Shen is a professor of School of Computer Science and Engineer-
ing, Northeastern University, Liaoning 110819, China. (corresponding au-
thor to provide phone: +8618698762081; e-mail:shendr@mail.neu.edu.cn).

Fig. 1. Coding and linking issues with existing methods.

to extract more complex semantic information from natural
language, making them a current focus of research.

Today, numerous deep learning-based Text-to-SQL models
have been proposed. Most existing models treat natural
language as a sequence and represent the database schema
as a schema graph during the encoding phase. These models
establish relationships between the natural language query
and the database schema through schema links. Notable
systems employing this encoding approach include RAT-SQL
[5], GNNSQL [6], LEGSQL [7], Proton [8], GASQL [9], and
SADGA [10].

Fig. 1 illustrates the encoding and schema linking process
in an existing model. Given a natural language query, such
as “List students over 20 years of age taught by Professor
Nevo”, and the corresponding database schema, the query
is treated as a sequence, while the database schema is
represented as a directed graph. In this graph, yellow nodes
indicate table names, and green nodes represent column
names. A string matching method or an attention mechanism
is used to establish links between the query and the schema.
However, this method may cause linking errors. For example,
the term “age” in the query is expected to link to the
“age” column in the “student” table, but may also link
to the “age” column in the “Professor” table due to the
reliance on string matching, which creates links to both.
Additionally, important information, such as the number “20”
in the query, is not mapped to the database schema. These
models primarily focus on encoding natural language queries
and database schemas while overlooking database instance
information, resulting in incomplete utilization of available
data.

Inspired by the aforementioned model, this paper incorpo-
rates database instance information during construction and
encodes both natural language queries and database schema-
instance pairs as graph structures. During the schema linking

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1764-1771

__

Fig. 2. Coding and linking methods for this article.

process, a combination of string matching and attention
mechanisms is used to identify both global and local links
between nodes in the natural language query graph and those
in the database schema-instance graph. This approach helps
identify strong and weak links between natural language
queries and schema instances, effectively reducing structural
discrepancies during the linking process.

As shown in Fig. 2, a purple node is added to the
database schema-instance graph to represent the content of
the database instance. The linking method proposed in this
paper captures not only the weak link between the term “age”
in the natural language query and the “age” column in the
“Professor” table, but also the mapping between the value
“20” in the query and the corresponding database schema-
instance.

Optimization of the existing model at the decoding stage
presents two key challenges. First, when using the Relational
Attention Transformer (RAT) for unified encoding, both
the natural language query and the database schema are
encoded, but the integration of database instance values is
limited. To address this, this paper proposes a multi-feature
fusion method based on RAT, which incorporates relational
information from different features. This method enables
the unified encoding of natural language, database schema,
and database instances. By leveraging the relationships be-
tween these elements, the model’s expressive capability is
enhanced, leading to the generation of more accurate SQL
queries.

Second, during the decoding process of generating SQL
query statements from natural language questions, current
systems focus on generating database tables and columns
while omitting database instance values. At this stage, ex-
isting models do not use intermediate representations; they
generate SQL queries directly from the natural language
input. Systems such as IRNet [11] and RAT-SQL [5] follow
this approach. As a result, these models cannot generate
queries that are independent of a specific database query
language and are subject to the constraints of SQL syntax,
which limits their generalization and scalability. To address
this issue, this paper employs abstract syntax trees (ASTs)

as intermediate representations for generating SQL queries
rather than directly translating natural language into SQL.
This method decouples the generated queries from specific
database query languages and reduces the limitations im-
posed by SQL syntax. In addition, because ASTs possess
a degree of universality and scalability, they can be con-
verted and applied across different database query languages,
thereby enhancing the model’s generalization and scalability.

The main contributions of this paper are as follows:
• A Text-to-SQL graph mapping model is proposed,

which integrates database instance information. By en-
coding natural language questions and database schema
instances as a graph structure, the model fully leverages
instance data, improving both accuracy and generaliza-
tion.

• A multi-feature fusion method based on the Relational
Attention Transformer (RAT) is introduced, which uni-
fies the encoding of natural language questions, database
schemas, and instances, treating them as a whole.

• An instance-aware query parsing method is presented,
using an abstract syntax tree as an intermediate rep-
resentation for generating SQL query statements. This
approach mitigates the limitations of directly generating
SQL from natural language, enhancing both the gener-
alization and scalability of the model.

II. RELATED WORK
Recent developments in deep learning have led to the

creation of many cross-domain Text-to-SQL systems de-
signed to address the challenges of user access to databases
[12]. Although notable advancements have been made in
optimizing both the encoding and decoding stages, current
Text-to-SQL tasks continue to face challenges due to the
inherent complexity and diversity of natural language [13].

RAT-SQL [5] introduces a unified encoding mechanism
to improve the joint representation of questions and patterns.
LGESQL [7] employs line graphs to update edge features in
heterogeneous graphs for Text-to-SQL, focusing on both lo-
cal and non-local, dynamic, and static edge features. SADGA
[10] utilizes a unified dual-graph framework for queries
and database schemas, incorporating a structure-aware graph
aggregation mechanism to effectively capture global and
local structural information in the query-schema links.

IRNet [11] utilizes a string-matching strategy to separately
encode queries and patterns using LSTM, then decodes ab-
stract intermediate representations (IR). BRIDGE [14] seri-
alizes queries and patterns into tagged sequences, leveraging
BERT [15] and database content to capture query-pattern
links. SmBoP [16] introduces the first semi-autoregressive
bottom-up semantic parser for the Text-to-SQL decoding
stage.

Graph encoders have been widely used in the cross-domain
Text-to-SQL field. Literature [6] first introduced graph neural
networks (GNNs) to encode database schemas, while Global-
GNN [17] applied GNNs to soft-select subsets of tables and
columns for query generation. ShadowGNN [18] proposed
a graph projection neural network (GPNN) to abstract the
representation of queries and database schemas using a
simple attention mechanism.

Most of these models treat natural language queries as
sequences and database schemas as graph structures. To

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1764-1771

__

capture more semantic information from natural language
queries and reduce the gap between query sequences and
schema graphs, this paper constructs natural language queries
as graph structures. Additionally, existing models typically
focus only on schema information, such as tables and
columns, without fully utilizing the instance data within the
database. To extract more relevant information, this paper
represents database schema instances as graphs.

Based on this, the paper proposes a Text-to-SQL graph
mapping method that integrates both schema and instance
data, allowing for richer semantic information extraction.
To further enhance encoding, a unified method based on
the Relational Attention Transformer (RAT) is introduced,
encoding natural language queries, database schemas, and
instance data together. During decoding, abstract syntax trees
are used as intermediate representations to overcome SQL
syntax limitations and generate SQL queries.

III. METHOD

A. Method overview

This paper presents a Text-to-SQL query parser that in-
corporates database instances, employing a classic encoder-
decoder architecture. The framework consists of three main
components: a Text-to-SQL graph mapping module, a multi-
feature fusion module based on the Relational Attention
Transformer (RAT), and a query parsing module, as shown
in Fig. 3.

The Text-to-SQL graph mapping module consists of
three submodules: graph construction, graph encoding, and
graph mapping. First, natural language queries and database
schema instances are converted into graph structures. Then, a
Gated Graph Neural Network (GGNN) [19] is used to encode
both graphs. Finally, the mapping relationships between the
nodes in the natural language graph and the database table
names, column names, and instance values are established,
resulting in node representations for both graphs.

The multi-feature fusion module based on RAT integrates
the encoding of natural language queries, database schema,
and database instances. Finally, the instance-aware query
parsing module generates more accurate SQL queries by
emphasizing the decoding of database instance values during
output, ensuring that the generated SQL queries include the
relevant instance information.

B. Instance-integrated text-to-sql graph mapping model

1) Graph Construction: First, a question graph is con-
structed for natural language queries based on predefined
relationships between query terms. Next, a schema graph
is built to represent the relationships between tables and
columns in the database schema. Since database instance
values are discrete, the most relevant instance values to the
natural language query are selected and extracted to form a
database instance graph. Finally, these instance values are
integrated into the schema graph to establish a schema-
instance relationship graph.

The natural language query is represented as a graph
GQ(Q,Rq),where the node set Q represents the words in the
query, and the set Rq denotes the dependency relationships
between the words, with t representing the dependency
between qi and qj .

As shown in Fig. 4, in this natural language query, the
word “taught” has a first-order word distance relationship
with “age” and “by”, meaning these words are adjacent.
Similarly, “taught” has a second-order word distance rela-
tionship with “of” and “Professor”, indicating that there is
one word between them. The relationship between “taught”
and “student” is identified using the StanfordCoreNLP [20],
specifically referring to students who have been taught,
functioning as a modifier in a relative clause.

The database schema graph is constructed by representing
table and column names as nodes, with edges defined by
their relationships in the schema. The schema is formalized
as Gs = (S,Rs), where the node set S consists of table and
column names. Columns are denoted as C = {c1, . . . , c|c|}
and tables as T = {t1, . . . , t|t|}, where each column ci
comprises words ci,1, . . . , ci,|ci|, and each table ti comprises
words ti,1, . . . , ti,|ti|. The set Rs defines the relationships be-
tween table and column names, with a total of six predefined
relationships existing between them [10].

Fig. 5 illustrates the process of constructing a database
schema diagram. In this example, we focus on the column
“professor id”. In the “Student” table, the column “profes-
sor id” shares a same-table matching relationship with the
columns “name” and “age”. Specifically, the “Student” table
and the “professor id” column are in a table-column match-
ing relationship, meaning that the “professor id” column
belongs to the “Student” table. Additionally, since both the
“Student” and “Professor” tables contain the “professor id”
column, they form a primary-foreign key relationship.

In the database, instance values are fixed and discrete,
lacking inherent relationships with each other. To address
this, an embedding neural network is employed to identify
the instance values most relevant to the natural language
query. First, the data in the database is processed and
encoded using one-hot vectors. During training, labels are
used to obtain the specific encoding of the database instance
values. The one-hot vector representation is then mapped
to a continuous vector representation through an embedding
layer, as shown in formula (1).

Vectorv = embedding (Xt) (1)

Among them, Xt represents the one-hot vector representa-
tion of the instance value at the current time t, and V ectorv
represents the vector representation of the current instance
value. The final instance values are selected and embedded
into the database schema through this mapping relationship.

2) Graph coding: After constructing the question rela-
tionship graph and the database model-instance relationship
graph, a neural network with a gated recurrent unit, namely
GGNN [19], is used to encode the nodes in the graph.
GGNN is based on GRU [21] and enables the transmission
of information within the graph. It primarily relies on edge
transmission features and supports multiple edge types, al-
lowing information to be transmitted between two nodes on
an edge. In each time step, it constructs the input and output
edge feature matrices to connect the features obtained from
all edge types. The gated graph module is then used to update
the current feature representation, and the output features are
finally calculated.

Given a graph G (V,E, T), where vi ∈ V represents
the set of nodes, E represents a directed labeled edge

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1764-1771

__

Fig. 3. Overview of the proposed model.

Fig. 4. Overview of the proposed model.

(vs, T, vd), with vs as the source node, vd as the target node,
and T as the edge type. The encoding process consists of
two stages: aggregating information and updating the node
representations.

First, the representations of the neighboring nodes of the
i-th node, h(l−1)

k , are aggregated. The specific calculation is
shown in formula (2), where Wt and bt are the trainable
parameters for each edge type t.

f
(l)
i =

∑
t∈T

∑
(i,k)∈Et

(
Wth

(l−1)
k + bt

)
(2)

Secondly, the aggregate vector f
(l)
i is input to the GRU

layer to update the representation of the node h
(l−1)
i from the

previous step. The specific calculation is shown in formula
(3).

h
(l)
i = GRU

(
h
(l−1)
i , f

(l)
i

)
(3)

The advantage of GGNN is its ability to capture global
semantic information and process any graph data, making it
highly applicable to Text-to-SQL tasks. Compared to tradi-
tional sequence models, GGNN is more effective in capturing
semantic information from natural language queries and
integrating it with database schema and instance data to
generate more accurate SQL queries.

3) Graph mapping: The graph mapping method aggre-
gates information from the database model-instance relation-

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1764-1771

__

Fig. 5. Overview of the proposed model.

ship graph and the natural language question graph into a
unified graph. This method enables the extraction of mapping
information between the question graph GQ and the database
model-instance graph GS . The specific mapping process is
described by formulas (4) and (5). In this approach, the
GS graph is used to update the GQ graph, and vice versa,
the GQ graph can be used to update the GS graph. This
paper demonstrates the implementation of the graph mapping
method by using the GS graph to update the GQ graph.

GMap
Q = GraphMap (GQ, GS) (4)

GMap
S = GraphMap (GS , GQ) (5)

The embedded nodes in the natural language question
graph are denoted as hqi , and the embedded nodes in the
database schema-instance graph are denoted as hkj . These are
vector representations obtained after dual-graph encoding.
The graph mapping method updates the question graph using
both global and local information from the nodes in the
database schema-instance graph. The update process involves
applying global average pooling to the node representation
hqi in the question graph to obtain the global embedding
representation hqglob. Subsequently, to incorporate globally
relevant information, the node embedding hkj in the database
schema-instance graph is updated, as described by formulas
(6), (7), and (8).

hqglob =
1

m

m∑
i=1

hqi (6)

ej = θ
(
hqglob

T
Wgh

k
j

)
(7)

hkj = (1− ej)Wqgh
q
glob + ejWkgh

k
j (8)

Where Wg , Wqg , and Wkg are trainable parameters, θ is
the sigmoid function, and ej represents the correlation score
between the node in the j-th pattern-instance graph and the
global query graph.

In the global linking process, each node in the problem
graph evaluates the link score with nodes in the database
schema-instance graph, represented by the global attention
score αi,j . This score is computed by assessing the similarity

between the node embedding hqi in the problem graph and the
node embedding hkj in the database schema-instance graph.
The specific calculation procedure is outlined in formula (9).

αi,j = softmaxj
{
σ
(
hqiWq

(
hkj +RE

ij

)T)}
(9)

Where α is a nonlinear activation function, and RE
ij

represents the relationship feature of the pre-defined database
pattern-instance graph between the i-th problem node and the
j-th pattern-instance node.

In the local linking process, each node in the prob-
lem graph evaluates the link score between itself and the
neighboring nodes in the database schema-instance graph,
represented by the local attention score βi,j,t. This score is
computed by assessing the similarity between the i-th node
in the problem graph and the t-th neighboring node of the j-
th node in the database schema-instance graph. The detailed
calculation procedure is provided in formula (10).

βi,j,t = softmaxt
{
σ
(
hqiWnq

(
hkt +RE

ij

)T)}
(t ∈ Nj)

(10)
Among them, Nj represents the set of neighboring nodes

of the j-th node, and hkt is the vector representation of the
t-th neighboring node of the pattern-instance graph.

C. Multi-feature fusion method based on RAT

In the multi-feature fusion method based on RAT, the RAT
framework is used to learn a unified representation from
three inputs: natural language queries, database schemas, and
database instances. RAT, an extension of the Transformer
model proposed by Vaswani et al. [5], incorporates prede-
fined relationships into the self-attention mechanism. This
enhancement allows the framework to integrate information
from the graph mapping module, unifying the representations
of natural language queries and database schema instances.
The method combines these embedding representations and
processes them through a multi-layer RAT neural network to
achieve the fusion of the three features.

Given a set of inputs X = {xi}ni=1, where xi ∈ Rd, rij
represents the relationship between any two elements xi and
xj in the input set X . The RAT layer consists of H head
attentions, and each self-attention layer operates on the input

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1764-1771

__

sequence xi. Each information update transformation with
respect to the relationship of xi is represented as yi.

In Text-to-SQL parsing, if certain relationships between
inputs are known in advance, it is desired that the encoder
prioritize them during encoding. Therefore, this paper pro-
poses an encoding method that incorporates known relation-
ships into the attention mechanism, as shown in formulas
(11) and (12).

e
(h)
ij = xiW

(h)
k

(
xiW

(h)
k + rKij

)T

(11)

z
(h)
ij =

n∑
j=1

α
(h)
i,j

(
xiW

(h)
K + rVij

)
(12)

The term rij encodes the known relationship between two
elements in the input. To obtain a unified encoding of the
entire input graph and the question, this paper proposes
the use of a relation-aware self-attention mechanism. The
encoder’s input consists of the joint representation of all
nodes in the graph, including the table, column, value,
and question. At each layer, self-attention is applied to all
elements of the input graph to generate a new contextual
representation that integrates the question terms with the
database structure.

D. Instance-aware query parsing method

The instance-aware query parsing method uses a tree
structure system [22] for decoding. This process translates
the SQL query into an abstract syntax tree using a depth-
first traversal order. Initially, the operation sequence of the
abstract syntax tree is generated using LSTM [23]. Subse-
quently, the abstract syntax tree is converted into a sequential
SQL query.

For input, the decoder receives the final representations of
the question words, database table names, column names, and
values from the RAT encoder. It has two output actions: first,
it can expand the last generated node using the APPLYRULE
grammar rule, which involves appending nodes to the derived
abstract syntax tree (AST). Second, it selects a column,
table, or value from the schema when finalizing a leaf node,
corresponding to SELECTCOLUMN, SELECTTABLE, and
SELECTVALUE. The goal of the decoder is to produce a
series of rules that generate the SQL abstract syntax tree.

The probability of generating an abstract syntax tree is
shown in formula (13).

Pr (P | h) =
∏
t

Pr (Rulet | Rule<t, h) (13)

Where P represents the SQL statement corresponding to
the final generated abstract syntax tree, h = [hq, ht, hc, hv]
represents the final encoding of the natural language problem
and the database schema-instance, Rulet is the rule gener-
ated at time t, and Rule<t represents all the rules before
time t.

To select the table/column rule, the alignment matrices
MT , MC , and MV between the entity (problem word, table,
column, value) and the table, column, and value are con-
structed. The relation-aware self-attention mechanism is then
used as the pointer mechanism. The detailed implementation
process is shown in formulas (14), (15), and (16).

M
T

i,j = hiW
t
Q

(
htjW

t
K

)T
, M

T

i,j = softmaxj
{
M

T

i,j

}
(14)

M
C

i,j = hiW
c
Q

(
hcjW

c
K

)T
, M

C

i,j = softmaxj
{
M

C

i,j

}
(15)

M
V

i,j = hiW
v
Q

(
hvjW

v
K

)T
, M

V

i,j = softmaxj
{
M

V

i,j

}
(16)

Where MT ∈ R(|q|+|t|+|c|)×|t|, MC ∈ R(|q|+|t|+|c|)×|c|,
and MV ∈ R(|q|+|t|+|c|)×|v|. Finally, the score for the j-
th column/table/value is calculated. The specific calculation
process is shown in formulas (17) to (19).

Pr (Rulet = Table[j] | Rule<t, h) =

|q|+|t|+|c|∑
i=1

αiM
T
i,j

(17)

Pr (Rulet = Column[j] | Rule<t, h) =

|q|+|t|+|c|∑
i=1

αiM
C
i,j

(18)

Pr (Rulet = Value[j] | Rule<t, h) =

|q|+|t|+|c|∑
i=1

αiM
V
i,j

(19)

IV. EXPERIMENTS

A. Dataset

The Spider [24] dataset is the most widely used and chal-
lenging cross-domain Text-to-SQL benchmark. It is divided
into three subsets: the training set, the development set, and
the test set. The training set consists of 146 databases and
contains 8,659 examples; the development set includes 20
databases with 1,034 examples; and the test set consists of
40 databases with 2,147 examples. The official Spider test set
has not been released for evaluation, making it unavailable
for direct benchmarking. However, the Spider dataset enables
transfer learning by allowing Text-to-SQL systems to train on
queries against the databases in the training set and evaluate
their performance on queries against unseen databases in the
development set.

B. Metrics

The exact match rate [25] is defined as the percentage of
cases where the predicted SQL statement exactly matches
the reference SQL statement. This metric measures whether
the predicted query is identical to the ground truth query. It
evaluates only the database schema, without considering the
underlying data. The specific calculation method is shown in
formula (20).

Accqm =
Problems predicting success

All questions
(20)

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1764-1771

__

C. Embedding Initialization

To enhance the robustness of the model, this paper initial-
izes the embeddings for tables, columns, values, and natural
language question words using pre-training methods. Among
the embedding methods, GloVe is the most commonly used
for initialization. For pre-trained language models, BERT is
the most widely adopted embedding initialization method,
specifically utilizing two models: BERT-base and BERT-
large. Additionally, some pre-trained language models are
specialized for specific fields, such as GAP, which leverages
prior Text-to-SQL knowledge more effectively. Therefore,
this paper employs four pre-training methods—GloVe, GAP,
BERT-base, and BERT-large in the experiments.

D. Implementation

In the experimental parameter settings, the batch size is set
to 20, the initial learning rate to 7×10−4, and the maximum
number of steps to 4,000. The Adam optimizer with default
hyperparameters is used. For BERT configurations, a separate
learning rate of 3×10−6 is applied for fine-tuning, the initial
learning rate is adjusted to 2×10−4, and the maximum num-
ber of training steps is increased to 90,000. All other settings
remain unchanged and follow the original configurations.

E. Results

Table I presents the experimental results of the exact match
between our model and other benchmark models on the
Spider development and test sets.

As shown in Table I, without using any language pre-
training model, the model proposed in this paper outperforms
the RATSQL model, which only considers pattern links, by
2.1%; the GASQL model by 1.2%; the ValueNet model,
which focuses only on instance value generation, by 2.8%;
and the SADGA model, which considers both pattern links
and instance value generation, by 0.1% in the Spider devel-
opment set. The experiments demonstrate that the Text-to-
SQL graph mapping model with integrated instances and the
RAT-based instance-aware query parsing model proposed in
this paper effectively improve the accuracy of Text-to-SQL
tasks.

TABLE I
ACCURACY RESULTS ON THE SPIDER DEVELOPMENT SET AND TEST

SET (%)

Model Dev Test

GNN 40.7 39.4

Global-GNN 52.7 47.4

IRNet 53.2 46.7

RAT-SQL 62.7 57.2

GASQL 63.6 58.5

ValueNet 62.0 -

SADGA 64.7 -

Ours 64.8 -

The comparative experimental results presented in Fig. 6,
Fig. 7, and Fig. 8 show that the Text-to-SQL query parser
model developed in this study effectively predicts correct

Fig. 6. Experimental results using GAP augmentation on the Spider
development and test set (%).

Fig. 7. Experimental results using BERT-base enhancements on the Spider
development set (%).

SQL query statements. The model outperforms other bench-
mark models when enhanced with GloVe, BERT-base, and
BERT-large pre-trained language models. Specifically, with
GAP enhancement, the model achieves an accuracy of
73.2%, which is 1.4% higher than RATSQL and 0.1% higher
than the SADGA experiment. Additionally, on the Spider test
set, the model demonstrates compatibility with BERT-large
and GAP models, confirming its effectiveness in improving
Text-to-SQL tasks.

V. CONCLUSION

This paper presents a Text-to-SQL query parser that in-
tegrates database instance content with a neural semantic
parser. By utilizing database instance information and em-
ploying a relation-aware self-attention mechanism, the ap-
proach achieves effective fusion encoding of natural language
questions and database schema-instance graphs. This method
improves the model’s accuracy and generalization capabil-
ities. Additionally, a stack-based decoder and an abstract
syntax tree are used to generate SQL query statements,
further enhancing the model’s precision. Future work will
explore the application of transfer learning techniques to
enable the model to adapt across different domains.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1764-1771

__

Fig. 8. Experimental results using BERT-large enhancements on the Spider
development and test set (%).

REFERENCES

[1] D. Gao, H. Wang, Y. Li, X. Sun, Y. Qian, B. Ding, and J. Zhou, “Text-
to-sql empowered by large language models: A benchmark evaluation,”
arXiv preprint arXiv:2308.15363, 2023.

[2] G. Ding, “Research on record named entity recognition of chinese elec-
tronic medical based on lstm-crf,” in Lecture Notes in Engineering and
Computer Science: Proceedings of The International MultiConference
of Engineers and Computer Scientists, 2023.

[3] A. Ajiboye, M. Olumoye, D. Aleburu, A. Olayiwola, D. Olayiwola,
and S. Ajose, “Dimensionality reduction for deep learning based in-
trusion detection systems for iot,” in Lecture Notes in Engineering and
Computer Science: Proceedings of The International MultiConference
of Engineers and Computer Scientists, 2023, pp. 76–81.

[4] A. B. KANBUROĞLU and F. B. TEK, “Text-to-sql: A methodical
review of challenges and models,” Turkish Journal of Electrical
Engineering and Computer Sciences, vol. 32, no. 3, pp. 403–419, 2024.

[5] B. Wang, R. Shin, X. Liu, O. Polozov, and M. Richardson, “Rat-sql:
Relation-aware schema encoding and linking for text-to-sql parsers,”
arXiv preprint arXiv:1911.04942, 2019.

[6] B. Bogin, M. Gardner, and J. Berant, “Representing schema structure
with graph neural networks for text-to-sql parsing,” arXiv preprint
arXiv:1905.06241, 2019.

[7] R. Cao, L. Chen, Z. Chen, Y. Zhao, S. Zhu, and K. Yu, “Lgesql:
line graph enhanced text-to-sql model with mixed local and non-local
relations,” arXiv preprint arXiv:2106.01093, 2021.

[8] L. Wang, B. Qin, B. Hui, B. Li, M. Yang, B. Wang, B. Li, J. Sun,
F. Huang, L. Si et al., “Proton: Probing schema linking information
from pre-trained language models for text-to-sql parsing,” in Proceed-
ings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2022, pp. 1889–1898.

[9] Y. Liu, Y. Hu, Z. Li, and Z. Zhu, “Graph alignment for cross-domain
text-to-sql,” in 2022 7th International Conference on Intelligent Com-
puting and Signal Processing (ICSP). IEEE, 2022, pp. 1937–1940.

[10] R. Cai, J. Yuan, B. Xu, and Z. Hao, “Sadga: Structure-aware dual graph
aggregation network for text-to-sql,” Advances in Neural Information
Processing Systems, vol. 34, pp. 7664–7676, 2021.

[11] Y. Zhou, H. Chen, J. Xu, Q. Dou, and P.-A. Heng, “Irnet: Instance
relation network for overlapping cervical cell segmentation,” in Med-
ical Image Computing and Computer Assisted Intervention–MICCAI
2019: 22nd International Conference, Shenzhen, China, October 13–
17, 2019, Proceedings, Part I 22. Springer, 2019, pp. 640–648.

[12] Z. Gu, J. Fan, N. Tang, L. Cao, B. Jia, S. Madden, and X. Du,
“Few-shot text-to-sql translation using structure and content prompt
learning,” Proceedings of the ACM on Management of Data, vol. 1,
no. 2, pp. 1–28, 2023.

[13] S. Abbas, M. U. Khan, S. U.-J. Lee, A. Abbas, and A. K. Bashir,
“A review of nlidb with deep learning: findings, challenges and open
issues,” IEEE Access, vol. 10, pp. 14 927–14 945, 2022.

[14] X. V. Lin, R. Socher, and C. Xiong, “Bridging textual and tabular
data for cross-domain text-to-sql semantic parsing,” arXiv preprint
arXiv:2012.12627, 2020.

[15] J. Devlin, “Bert: Pre-training of deep bidirectional transformers for
language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[16] A. Vaswani, “Attention is all you need,” Advances in Neural Informa-
tion Processing Systems, 2017.

[17] B. Bogin, M. Gardner, and J. Berant, “Global reasoning over database
structures for text-to-sql parsing,” arXiv preprint arXiv:1908.11214,
2019.

[18] Z. Chen, L. Chen, Y. Zhao, R. Cao, Z. Xu, S. Zhu, and K. Yu,
“Shadowgnn: Graph projection neural network for text-to-sql parser,”
arXiv preprint arXiv:2104.04689, 2021.

[19] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” arXiv preprint arXiv:1511.05493, 2015.

[20] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard,
and D. McClosky, “The stanford corenlp natural language processing
toolkit,” in Proceedings of 52nd annual meeting of the association for
computational linguistics: system demonstrations, 2014, pp. 55–60.

[21] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On
the properties of neural machine translation: Encoder-decoder ap-
proaches,” arXiv preprint arXiv:1409.1259, 2014.

[22] S. Hochreiter, “Long short-term memory,” Neural Computation MIT-
Press, 1997.

[23] P. Yin and G. Neubig, “A syntactic neural model for general-purpose
code generation,” arXiv preprint arXiv:1704.01696, 2017.

[24] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li,
Q. Yao, S. Roman et al., “Spider: A large-scale human-labeled dataset
for complex and cross-domain semantic parsing and text-to-sql task,”
arXiv preprint arXiv:1809.08887, 2018.

[25] U. Brunner and K. Stockinger, “Valuenet: A natural language-to-sql
system that learns from database information,” in 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 2021,
pp. 2177–2182.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1764-1771

__

