

Abstract—In order to address the challenge of grid stability

posed by the integration of renewable energy sources such as
wind and photovoltaic, a multi-objective fusion energy storage
power allocation strategy based on the GA-APSO algorithm is
proposed as a potential solution. The initial step is to construct a
multi-objective fusion model that incorporates the total profit of
the energy storage system, the loss rate, and the consistency of
the battery charge state. Subsequently, the GA-APSO
algorithm is employed to resolve the multi-objective fusion
model, with the objective of enhancing the operational
efficiency of the energy storage system. Finally, the enhanced
allocation strategy is implemented in two arithmetic scenarios
for simulation, and the power allocation strategy under the
traditional algorithm is evaluated. The results of the simulation
demonstrate that the strategy is an effective means of reducing
the loss of energy in the VRB energy storage system, reducing
the number of charging and discharging cycles of the system,
and improving the overall operational efficiency of the system.

Index Terms—Vanadium redox battery, GA-APSO
algorithm, Power allocation strategy, Multi-objective
optimization

I. INTRODUCTION
S an emerging dispatchable energy source, energy
storage technology has the potential to effectively

address the challenges of intermittency, volatility and
stochasticity inherent in renewable energy generation, and
facilitate the transition from a traditional fossil energy
structure to a cleaner one. Among the various types of energy
storage batteries, liquid current batteries are regarded as one
of the most promising large-scale energy storage
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technologies due to their extended operational lifetime, high
flexibility, and straightforward scalability, particularly in the
case of all-vanadium liquid current batteries (Vanadium
Redox Battery, VRB). However, the voltage of a single
battery as an energy storage unit is insufficient and its
capacity is restricted. Therefore, individual batteries must be
connected in series and then in parallel to expand their
capacity before they can be connected to the grid for unified
management and control. It is therefore imperative that the
safe operation of the Vanadium Redox Battery storage of
energy system is guaranteed, and that its power distribution
is optimised and operating efficiency improved, when the
current storage of energy system is linked to the grid.
In the field of energy storage systems, scholars from both

domestic and international academic institutions have put
forth a series of proposed solutions to the issue of power
allocation following extensive research. Initially, pioneering
scholars put forth conventional power allocation
methodologies, as evidenced in the literature [1]-[3]. These
strategies typically apportion the storage of energy system's
power in conformity with the battery's state of charge or
remaining energy, with a unified control objective. The
control strategy is straightforward and readily
implementable.
The present study proposes the use of intelligent

algorithms to solve the distribution of electricity model of an
established storage of energy system. The literature [4]
suggests a control algorithm based on dynamic programming
and genetic algorithms, which combines spectrum analysis,
dynamic programming and genetic algorithms to optimize
the model. Literature [5] proposes a particle swarm
optimization algorithm to solve the model. Literature [6]
suggests a capacity allocation method combining variational
modal decomposition (VMD) and an adaptive particle swarm
algorithm (APSO). However, the majority of the
aforementioned literature only considers the operating cost of
the energy storage system, without taking into account the
loss of energy storage system capacity following its
operational deployment. Furthermore, the control objective is
overly simplistic. Accordingly, the literature [7] proposes a
power dynamic allocation strategy, establishes a model with
the total life decay discounted cost and tracking performance
of the hybrid storage of energy system as the comprehensive
optimisation objective, and solves the problem by using the
particle swarm algorithm to realise the dynamic allocation of
power; The existing literature [8] establishes a
multi-objective power allocation optimisation model that
includes the depreciation cost, loss rate and the consistency
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of the battery's current state of charge (SOC). Furthermore, it
proposes the use of a particle swarm algorithm with adaptive
weighting, which considers the priority of solving the model.
In literature [9], a loss-accounted power allocation model is
proposed, which establishes a power allocation model with
the system loss and state of charge (SOC) balance as the
objective function. The power demand and SOC higher and
lower limits are set as constraints, and the model is solved by
a virtual particle-adaptive difference evolution algorithm
(VP-ADE). In literature [10], the state of charge and power
balance are established as constraints, with the lowest total
cost of the storage of energy system, the average loss rate and
the best SOC balance serving as the power optimization
objective function. The whale algorithm, according to
adaptable weights and an approach to simulated annealing, is
employed to solve the model, while a simulated annealing
strategy-based whale optimization algorithm is used to
optimize the objective model.
The existing multi-objective model for storage of energy

power allocation introduces both economic and loss
objectives. However, the economic objective often consists
of cost only, whereas the economic benefit of the storage of
energy system in grid-connected operation is more intuitive
than cost as the final objective. This paper therefore
establishes a multi-objective model that takes into account
the maximization of the economic benefit, the lowest system
loss and the best SOC consistency. In order to solve the
multi-objective model and maximize the power allocation of
a VRB energy storage system, it then suggests a hybrid
approach that combines Genetic approach (GA) and
Adaptive Particle Swarm Optimization (APSO).

II. ALL-VANADIUM LIQUID CURRENT BATTERY ENERGY
STORAGE SYSTEM

A. All-vanadium Flow Battery Structure
The all-vanadium liquid current battery represents a

pivotal component of the VRB storage of energy system,
serving as the nucleus of the entire storage of energy
apparatus and enabling the system. The system is comprised
of three primary units: an electric stack (power unit), an
electrolyte and storage tank (energy storage unit), and
electrolyte pipelines and pumps and valves (electrolyte
delivery unit). For the purpose of facilitate the real-time
monitoring of battery status, a VRB battery is typically
equipped with a battery management system (BMS) that
enables communication with the upper level. The structure of
this system is illustrated in Fig. 1. The operational principle
of the VRB battery is based on the transfer of electrons
between vanadium ions of four distinct valence states within
the electrolyte. The vanadium ions present in the positive
electrode are in the VO2+/VO2+ state, while those in the
negative electrode are in the V3+/V2+ state. The
aforementioned vanadium ions flow through the electrolyte
and circulating pump, and ultimately undergo a redox
reaction on the electrode surface.

B. Grid-connected Structure of All-vanadium Liquid
Current Battery Energy Storage System

An all-vanadium liquid current battery energy storage system

Fig.1 Diagram of vanadium liquid battery

is a system directly connected to the grid that is capable of
storing and releasing energy. It comprises an all-vanadium
liquid current battery, an inverter and an
upper-level energy management system. The system
comprises an all-vanadium liquid current battery, an inverter
and an upper-level energy management system. The
all-vanadium liquid current battery energy storage system is
capable of realising pre-set operation modes and functions
under the scheduling and management of the energy
management system. The structure of the all-vanadium liquid
current battery energy storage system is illustrated in Fig. 2.
The all-vanadium flow battery storage system comprises

multiple sets of battery storage modules, a battery
management system, a DC/DC converter, and other
components, contingent on the power and capacity
configuration. The battery storage module represents the
smallest unit in the all-vanadium flow battery storage system
that can be dispatched independently. As the smallest unit in
the all-vanadium liquid current battery energy storage system
that can be dispatched independently, the battery storage
module is capable of being started, stopped, charged and
discharged by a single unit. The operational state of the unit
battery energy storage module is subject to regulation by the
battery management system (BMS), while the scheduling of
the entire energy storage system is overseen by the energy
management system.
The BMS and EMS engage in communication in order to

facilitate the transfer of operational state information, and the
EMS also interacts with the BMS to obtain updates on the
status of the batteries. From the EMS, which accepts remote
instructions and schedules the entire energy storage system in
accordance with grid operational requirements. This
ultimately serves to enhance the stability of the power system
and economy. Furthermore, the EMS can be utilized as a
backup power source, providing power for critical loads in
extreme circumstances, thereby improving the reliability of
the power supply.

III. MULTI-OBJECTIVE FUSION MODELLING OF VRB ENERGY
STORAGE SYSTEMS

A. Objective Function
Objective 1: Maximize profits from VRB energy storage
The economic benefit of the energy storage system, which is
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Fig.2 Diagram of vanadium liquid battery for energy storage systems[11]

is computed by deducting the system's cost from its economic
value, is the main factor that determines the system's
profitability. The economic gain of the energy storage system
can be classified into four principal categories:
a. Peak and valley tariff arbitrage
The utilization of the discrepancy between peak and valley

tariffs within the power system enables the generation of
revenue through the storage of electricity during periods of
lower tariffs and its subsequent release during periods of
higher tariffs:

A peakW P E (1)

Where: peakP is the peak hour tariff of the grid, E is the

amount of extra electricity accepted by the grid.
b. Ancillary services market
Energy storage systems are capable of providing a range of

ancillary services, including frequency regulation, peaking,
standby, and black start, for which they receive service fees
from the power system operator. At present, the objective is
to streamline the calculation and the policies pertaining to the
market revenue of auxiliary services provided by energy
storage systems in each province. Consequently, the revenue
generated from auxiliary services is calculated as follows:

BW hS (2)
Where: h is the number of annual peaking hours, S is the
compensation for peaking (including tax).
c. Energy storage system leasing services
Energy storage system owners may lease energy storage

capacity to customers or other market participants who
require the regulation of electricity demand. The guideline
prices for leasing energy storage systems in various parts of

China are predominantly expressed in kWh per year, with a
typical range of RMB 150-337/(kWh-year) and an average
value of RMB 243.5/(kWh-year).
d. Policy subsidies and incentives
Energy storage systems represent a significant technology

with the potential to enhance the regulatory capability,
comprehensive efficiency and security of the power system.
Consequently, they have received considerable attention
from national and local governments. In order to facilitate the
advancement of the energy storage industry, governments at
all levels have implemented a range of policy subsidies and
incentives. The latest policy in Jiangsu Province is a subsidy
of RMB 0.3/kWh from 2023 to 2024 and RMB 0.25/kWh
from 2025 to January 2026. The subsidy funds will be
derived from the incremental funds allocated to the peak
tariff and disbursed by the provincial power company in
accordance with the pertinent regulations pertaining to
metering and settlement.
The principal investment costs associated with the energy

storage system[12] are as follows:
/battery DC DC otherC C C C   (3)

Where: batteryC is the price of the battery body, /DC DCC the price
of the DC/DC converter, and otherC the total price of other
equipment.
In conclusion, the maximum profit of a VRB energy

storage system can be calculated as follows:

1
1max( ) ( )A B C DF W W W W C
n

     (4)

Where: CW is the energy storage system lease revenue, DW is
the government subsidy and incentive revenue.
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Objective 2: Minimization of power loss of VRB energy
storage system
As illustrated in Fig. 2, the power loss of the VRB energy

storage system can be attributed to two primary sources: the
power loss of the VRB energy storage battery and the power
loss of the DC/DC converter.
a. Power loss of VRB energy storage battery
As illustrated in Fig. 3, the equivalent circuit model

indicates that the power loss of the VRB battery can be
attributed to two distinct categories: internal loss and
parasitic loss.

BL IL PLP P P  (5)
which:

2

2

( )

[ ( ) ]

d
IL d pump resistive

fixed

d
d d pump resistive stack

fixed

reaction

U
P I I R

R

UU I I R V
R

R

  

   



(6)

2
PL d fixed d pumpP U R U I  (7)

Eqs. (5)-(7) in: ILP and PLP represent the battery's internal loss
and parasitic loss, respectively, internal loss is generated by
the equivalent internal resistance and generated by the former,
the latter generated by the loss ratio of about 3:2, parasitic
loss is generated by the parasitic resistance and pumping loss
current, for the charging and discharging currents, for the
voltage of the electric stack.
b. DC/DC converter loss
In the VRB energy storage system, the primary function of

the DC/DC converter is to regulate the voltage through the
frequent on/off operation of the main switching device during
the battery charging and discharging process. This is the
primary source of operating losses. It should be noted that
even when the battery is not undergoing charging or
discharging, the control and auxiliary circuits of the DC/DC
converter still require a certain level of power in order to
maintain their fundamental functions. These functions
include, but are not limited to, monitoring the battery status,
preparing to respond to charging or discharging commands,
and so forth. Accordingly, the loss of the DC/DC converter
can be classified into two principal categories: working loss
and standby loss:

/ (1 )DC DC n work n suspendP P P    (8)

Where: n is similar to a state indication, 1n  indicating
that the DC/DC converter of the VRB energy storage unit is
in the working state, and its loss is shown in equation (9);

0n  indicating that the DC/DC converter of the VRB
energy storage unit is in the standby state, and its loss is
shown in equation (10):

( )work nP P 1- (9)

0.5%suspend DCNP P (10)

Where:  indicates the working efficiency of the DC/DC
converter, according to the national standard of the People's
Republic of China[14], the value is taken as 95%, and the

standby loss of the DC/DC converter should be no more than
0.5% of the rated power; nP is the allocated power of the first
energy storage unit.

Fig.3 VRB equivalent circuit loss model

In conclusion, the power loss of the VRB energy storage
system can be expressed as follows:

2 /
1min( ) ( )BL DC DCF P P
n

  (11)

Objective 3: Optimization of SOC Balance Degree
The term 'variance' is employed as a quantitative metric to

measure the degree of dispersion of a set of data. A smaller
value of variance indicates a more optimal SOC balance:

2
3

1 1min( ) ( ( ) ( ))F S t S t
n n

   (12)

Where: ( )S t denotes the SOC value of the VRB energy
storage unit near the time.

B. Constraints
In order to guarantee the stable operation and performance

optimization of the VRB energy storage system (an
all-vanadium liquid current battery energy storage system), it
is essential to take a variety of constraints into account during
the design and operational phases. The following constraints
are considered in this paper:
a. Technical performance constraint: creep rate
The term 'climbing rate constraint' is typically used to

describe the maximum rate of change in energy storage
system power per unit of time. This concept is closely linked
to the responsiveness of the energy storage system to
fluctuations in the grid and the overall health of the battery:

( ) ( )( ) P t P t tR t
t

  



(13)

Where: ( )R t denotes the climbing rate at the time,
( )P t denotes the power at the time, ( )P t t  denotes the

power at the time, t denotes the unit time.
b. Technical performance constraints: power
In the context of energy storage systems, the term 'power

constraint' typically denotes the maximum charge/discharge
rate that the system is capable of providing. The power
constraint serves to guarantee that the energy storage system
does not exceed its designed maximum charge/discharge
capacity at any given time:

( ) ( )n nP t P t (14)

min maxVRBP P P  (15)
Where: ( )P t denotes the total power demand of the VRB
energy storage system at the time.
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c. Battery Management Constraints: State of Charge
The state of charge (SOC) is an indicator of the current

stored energy of a battery, typically expressed as a percentage.
The upper and lower limits of SOC serve to constrain the
depth of charge and discharge of a battery, thereby
preventing overcharging or over-discharging and thus
prolonging the battery's lifespan:

min maxS S S  (16)
d. Operating condition constraints: temperature
The operational temperature range of VRB energy storage

systems is typically defined to prevent damage to the battery
from overheating or overcooling:

min maxT T T  (17)
In this paper, the Augmented Lagrangian Method

(ALM)[15] is adopted for the constraints Eqs. (13)-(17).

C. Evaluation indexes
In this paper, we make reference to the content of the

document entitled "Operation indexes and evaluation of
electrochemical energy storage power station"[16], and
proceed to summarise the following evaluation indexes,
which are to be employed in a quantitative analysis of the
VRB energy storage system's power distribution:
a. Charge-discharge energy conversion efficiency
The ratio of the energy storage unit's net discharging

volume to its charging volume, plus the total of the auxiliary
energy used during the charging process throughout the
evaluation cycle, is the measure of the energy conversion
process' efficiency during both charging and discharging:

100%sD sD

sC sC

E W
E W




 


(18)

Where: sDE , sCE respectively, represents the VRB energy
storage unit's overall charge and discharge throughout the
assessment cycle, sDW , sCW respectively, represents the
consumption of auxiliary equipment in the VRB energy
storage unit's charging and discharging procedures
throughout the assessment cycle.
b. Utilization factor
The utilization factor of the VRB energy storage unit is

defined as the ratio of the operating time to the statistical time
during the evaluation cycle:

100%UTHUTF
PH

  (19)

Where: UTH indicates the number of hours of operation in
the evaluation cycle; PH indicates the number of hours of
statistical time in the rating cycle, and when the evaluation
cycle is 1 year, it is 8760 h .
c. VRB energy storage unit battery stack relative failure

times
The relative number of battery stack failures will be

determined by dividing the number of battery stack failures in
the energy storage unit by the total number of battery stacks
in the unit throughout the evaluation cycle:

100%FTOPRTOP
BPN

  (20)

Where: FTOP indicates the number of battery stack failures;
BPN is the total number of battery stacks in the energy
storage unit.

D. Multi-objective fusion
In this paper, the GA-APSO algorithm objective function

is employed for the resolution of the multi-objective function,
which necessitates the preprocessing of said function as
outlined in Section A.
a. In order to eliminate the discrepancies between the

magnitudes and numerical ranges of the various objective
functions, this paper employs the method of Max-Min
Normalization (Min-Max Normalization) to normalize the
aforementioned objective functions:

min

max min
i i

i
i i

F F
F

F F





(21)

Where: min
iF and max

iF are the minimum and maximum

values respectively; iF are the normalized variables.
b. Following the aforementioned normalisation, the

objective function of profit maximisation is initially
minimised through the introduction of a negative sign.
Subsequently, the particle swarm algorithm with adaptive
weights assigns distinct weights to the three objective
functions. Finally, a single objective function is obtained
through summation:

1 1 2 2 3 3min( ) ( )VRBF w F w F w F    (22)

1 2 3 1
0i

w w w
w

  
 

(23)

Where: iw is the weight coefficient of each objective

function, VRBF is the total objective function.

IV. POWER ALLOCATION STRATEGY OF ALL-VANADIUM
LIQUID CURRENT ENERGY STORAGE SYSTEM

A. Power allocation strategy
The layered control strategy of the energy storage system

has the potential to enhance the flexibility and reliability of
the energy storage system. Furthermore, it allows for the
consideration of varying demands and constraints across
different time scales. The main modules of the system are
divided into three main sections, as shown in Fig. 4: the grid
information layer, which responds to grid scheduling; the
power allocation layer, which allocates power in real-time;
and the in-situ control layer, which tracks the state of the
energy storage units.
This paper employs the GA-APSO algorithm to address

the power allocation challenge inherent to energy storage
systems. The block diagram of the power allocation process
is presented as follows. The power allocation layer receives
the total power demand instructions and the operational
constraints transmitted by the grid information layer and
employs the enhanced algorithm to address the issue in
accordance with the established multi-objective optimization
model.

B. Algorithm solving
This paper employs the GA-APSO algorithm to address the
aforementioned objective function. The GA-APSO algorithm,
as detailed in reference [17], is a hybrid optimization algorit-
hm that integrates the Genetic Algorithm (GA) with Adaptive
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Fig.4 Power distribution strategy for energy storage system

Particle Swarm Optimisation (APSO). The objective of this
algorithm is to combine the global search capability of GA
with the fast convergence property of APSO in order to solve
complex optimisation problems. The solution process is
illustrated in Fig. 5.
Prior to solving the objective function using the GA-APSO

algorithm, it is essential to obtain the scheduling information
instruction of the grid information layer, i.e. max ( )P t ,
specifically the total power demand, as well as the SOC
values and the maximum allowable outputs of each storage
unit in the local control layer, and if max( ) ( )P t P t , all the
storage units are operated with the maximum power, and if

max( ) ( )P t P t , then it is crucial for prioritize the SOC
values of the various storage units, and to turn on the selected
storage units participating in the power allocation. DC/DC i.e.

1k  .
Once the energy-storage devices to be included in the

power allocation process have been selected, the optimisation
of the latter is conducted in accordance with the following
steps:
a. Parameter initialization. Establish the starting values for

the settings for optimization, which includes the population
size M , the quantity of iterations S , the highest and lowest
factors of hysteresis maxw and minw , the acceleration factors

1c and 2c , the highest and lowest selection probabilities

max and min , the crossover probabilities cp , the higher and

lower bounds of each particle's position u
ix and l

ix .

(0) ( ), 1,2, ,l u l
i i i ix x rand x x i M     (24)

Generate a random population of size by Eq. (24) and give
the starting location of every particle in the population.
b. Evaluate the fitness value. Based on the multi-objective

fusion function of the optimization problem, the fitness value
of each initially generated particle is evaluated and its
position is ranked. Then, determine the initial best particle

position of the particle swarm as well as the initial global best
position and the worst position, respectively.
c. Update the particle swarm. Update the current positions

and velocities of the particles according to Eqs. (25)-(28).
( 1) ( ) ( )i i ix x v     (25)

1 1

2 2

( 1) ( ) ( ) ( ( ) ( ))
( ( ) ( ))

i i i i i

g i

v w v c r P x
c r P x

    
 

    

 
(26)

Where.

 min max min min max
( )

( ) ( )sin( ) ,
2

i
iw w w w w w

  
    

(27)

 
( ) ( )

( ) 0,1 , 1,2, ,
( ) ( )

i g
i

w g

f f
i N

f f
 

 
 


  


 (28)

Where: ( )f  is the threshold value of the first particle in this

iteration; ( )gf  and ( )wf  are t the optimal and suboptimal

crowd values for fitness in this iteration, respectively. From
Eq. (27) and Eq. (28), the inertia factor is adaptively modified
within the specified range during the iteration process.
(4) Update the best population. Assess the present wellness

rating of each particle, revise the optimal particle location,
and update the top-notch and global dirtiest positions of the
population.
(5) Genetic algorithm operation. Produce novel particles

(offspring) in accordance with the genetic algorithm to
enhance population diversity. Upon satisfying the GA
selection criteria in Eq. (29), both pointwise randomization
and the overlap operator variation operator are used to
modify the locations of the chosen particles and produce new
particles.

( ) ( )
0

( )
i g

g

f f
f

 





< (29)

Where: ( )if  is the current fitness value of the first particle

at the next iteration; ( )gf  is the optimal fitness value of the
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Fig.5 Flowchart of the GA-APSO

population at its global optimal position; and  is the

time-varying selection probability from max down to

min during the iteration process.
(6) Re-evaluation of fitness. Assess the lifetime score of

the fresh particle ( )if  and juxtapose it with the optimal and
suboptimal metrics for fitness of the population, respectively.
If ( ) ( )i gf f  , replace the particle. Update the optimal

particle location ( )iP  and the optimal and suboptimal places

of the world population ( )gP  and ( )wP  .

(7)Repeat the preceding stages (4)-(7) until the termination
condition is satisfied, i.e., the predefined number of iterations,
and output the optimal result after satisfying the update
criteria.

V. CASE ANALYSIS

In order to verify the effectiveness of the power allocation
strategy proposed in this paper, two arithmetic cases are used

to simulate different application scenarios during the
operation of the energy storage system. The first case (Case 1)
compares the allocation effect of GA-APSO with GA and
PSO by fixing the total output demand and improving the
grid's dispatching capability. The second case (Case 2)
intercepts the new energy generation and the total load
demand in a regional power grid as test data, and solves the
multi-objective fusion model through GA-APSO algorithm
to optimise the power allocation of the storage of energy
system.

A. Case 1
The energy storage method for all-vanadium liquid current

batteries in Case 1 is constituted by five energy storage units,
with the initial settings of each energy storage unit set out in
Table 1 below. The detailed settings are defined as follows:
the population scale of the particle swarm is 50, the quantity
of iterations is 100, the acceleration constants 1 2 2.05c c  ,

maxw and minw are 0.9 and 0.4, respectively, the adaptive
weights w are updated as shown in Eq. (27), the crossover
probability pc is 0.7, and the variance probability pm is 0.2.
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TABLE Ⅰ
INITIAL PARAMETERS OF THE VRB ENERGY STORAGE UNIT

Parameters No. 1 No. 2 No. 3 No. 4 No. 5

SOC 0.40 0.50 0.60 0.38 0.80
Rating/kW 50 50 50 50 50
Priority Ⅳ Ⅲ Ⅱ Ⅴ Ⅰ

When the overall power demand of the VRB storage of
energy system is 190 kW, the comparative analysis of
GA-APSO with PSO and GA for optimised power allocation
is presented in Table 2 below.
In order to ascertain the veracity of the prioritisation

algorithm in consideration of the SOC, the total power
demand is set at 260 kW and 180 kW, respectively. The
resulting power allocation of the units that store energy is
presented in Table 3 for the reader's convenience.

TABLE Ⅱ
VRB STORAGE UNIT POWER ALLOCATION RESULTS

Algorithm No. 1 No. 2 No. 3 No. 4 No. 5
GA 39.88 38.91 38.05 40.29 33.38
PSO 40.21 39.83 39.91 39.02 36.10

GA-APSO 38.91 37.69 37.50 39.52 36.90

TABLE Ⅲ
CONSIDERING THE RESULTS OF POWER ALLOCATION IN TERMS OF PRIORITY

Total Power
Requirement No. 1 No. 2 No. 3 No. 4 No. 5

260 50.00 50.00 50.00 50.00 50.00
180 45.97 45.00 44.04 46.19 0.00

The final evolution curve of the fitness function, which
was obtained by applying the three algorithms to the
multi-objective fusion model for solving, is shown in Fig. 6.
It illustrates that the GA algorithm is capable of maintaining
diversity throughout the search space and gradually
approaching the optimal solution. However, it is not
particularly adept at precisely locking onto the optimal
solution. The PSO algorithm typically exhibits a faster
convergence speed during the initial phase but may
prematurely converge on a local optimal solution. The
GA-APSO algorithm effectively harnesses the rapid
convergence of the PSO algorithm during the initial phase
and then employs the GA algorithm's capacity to search
globally during the subsequent phase, enabling it to escape
from Locally optimal outcomes and enhance the overall
optimization search process.

B. Case 2
From the power allocation block diagram, it can be seen

that the total power demand of the VRB storage of energy
system originates from the scheduling centre at the grid
information layer. This paper employs the total power
demand for the purpose of stabilising the fluctuations of
photovoltaic and wind power, as documented in literature
[18], to have to assess the efficacy of the improved algorithm
in terms of power allocation. The total power demand is
illustrated in Fig. 7, comprising 60 scheduling cycles (06:
The time interval is set to 15 minutes, with the remaining
time set to the same interval. The remaining parameter setting
are identical to those described in Section A, with the interval
set to 15 minutes.
Fig. 9 illustrates the histogram of power distribution utili-

Fig.6 Algorithm objective function evolution curve

Fig.7 Total power demand for energy storage systems

sing the conventional PSO algorithm. A comparison of Fig. 8
and Fig. 9 reveals that the traditional PSO algorithm
prioritises meeting the total power demand when solving, for
instance, in the initial scheduling cycle, the five VRB storage
units are activated, ultimately satisfying the total power
demand (i.e. It can be observed that during grid-connected
operation, the DC/DC converter will repeatedly commence
and then cease operation. This not only results in a loss of
energy from the VRB energy storage system, but also affects
the overall efficiency of the energy storage system due to the
significant discrepancy in the state of charge (SOC) values of
each energy storage unit after 60 scheduling cycles.
The optimization process is conducted using the highest

total profit of the energy storage battery unit as the goal
function, and the power allocation results are computed by
substituting them into the total profit function. As shown in
Fig. 10, the comparative results of the total profit of the VRB
energy storage cell under the conventional strategy and the
GA-APSO method were obtained after the total profit of the
VRB energy storage cell was finally used as the objective
value.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1784-1794

 
______________________________________________________________________________________ 



Substituting the results of power allocation during the
scheduling cycle between the traditional strategy and the
GA-APSO strategy into the established loss mathematical
model, the loss objective function is used to further calculate
the loss rate target value of the VRB energy storage unit. The
parameter settings of the equivalent circuit model in the
optimisation objective are shown in Table 2 in the Appendix,
and the comparison outcomes of the loss rate target values
under the traditional strategy and the GA-APSO strategy are
shown in Fig. 11.
An analysis of the SOC simulation curves obtained by

different algorithms in Fig. 12 and Fig. 13 reveals that when
the method for storing energy is operated in grid-connected
mode, each VRB energy storage unit is involved in the
solution process using the PSO algorithm. However, the
value of SOC does not converge after 60 scheduling cycles.
Conversely, when the GA-APSO algorithm is employed, the
value of SOC converges.

VI. CONCLUSION
In order to solve the power allocation issue of a VRB

energy storage system, this research suggests a power

allocation approach based on the GA-APSO algorithm.
Through a case study of several scenarios, the efficacy of the
suggested approach is confirmed, and the primary findings
are as follows:
a. The power allocation issue of a VRB energy storage

system is addressed in this study using a multi-objective
fusion model that takes profit, loss, and SOC consistency into
account;
b. A method for allocating electricity depending on the

GA-APSO algorithm is proposed as a means of effectively
improving the solution speed of power allocation and
improving the SOC balance;
c. The algorithm presented in this paper offers a valuable

reference point for the allocation of power in all liquid-flow
storage battery energy storage systems;
d. The VRB battery model presented in this paper employs

a basic equivalent approach that does not account for the
impact of voltage and current fluctuations resulting from
particle diffusion within the battery. This limitation can be
addressed through the development of a more precise
real-time VRB equivalent battery model and the utilisation of
actual numerical values to construct a multi-objective fusion
model.

Fig.8 Power distribution histogram(PSO)

Fig.9 Power distribution histogram(GA-APSO)
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Fig.10 Total VRB Storage Battery Profit under PSO and GA-APSO Strategies Fig.11 Comparison diagram of VRB energy storage unit loss rate

Fig.12 SOC curve of VRB energy storage unit(PSO) Fig.13 SOC curve of VRB energy storage unit(GA-APSO)
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