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Abstract—The precise recognition and interpretation of vehi-
cle LPs in variable and uncontrollable environmental conditions
remain significant and enduring challenges for visual surveil-
lance systems. While current approaches achieve acceptable
performance in controlled conditions, conventional methods
exhibit considerable performance degradation when applied
to complex real-world situations. To address these limitations,
we propose a novel computational architecture ICS-Net, to
mitigate these issues. In the detection phase, the Model employs
an improved IC-YOLOv5 algorithm based on YOLOv5 and
introduces Channel Feature Fusion and Pairing (CFFI) between
the backbone and neck networks. This enhancement strengthens
the flow of channel information, leading to improved overall
performance. Additionally, we apply the Channel and CBAM
at the end of the backbone network. This effectively extracts
key channel and spatial information while suppressing re-
dundant features, allowing for more accurate LP detection
and localisation. In the execution of character recognition for
vehicle registration plates, ICS-Net employs an enhanced SE-
LPRNet methodology rooted in neural network architecture.
By analyzing the feature location of the SE module in the
network, we use a standard strategy to insert the SE module,
further optimizing network performance. Moreover, the input
configuration of the network is restructured to enhance the ini-
tial feature set, which not only speeds up training convergence
but also boosts training effectiveness. Extensive experiments
show that the ICS-Net Model performs exceptionally well on
the CCPD, PKUData, and CLPD datasets. Specifically, the
average detection accuracy for LPs is 95%, and the average
recognition accuracy is 99%. Compared to baseline methods,
ICS-Net outperforms others in multiple complex scenarios,
demonstrating its ability to effectively handle LP detection and
recognition tasks in demanding and complex environments and
meet practical application requirements. Compared to baseline
methods, ICS-Net outperforms others in intricate environments,
demonstrating its ability to effectively handle LP detection and
recognition tasks in demanding and complex environments and
meet practical application requirements.

Index Terms—LP recognition, Convolutional network, atten-
tion mechanism, LPRNet, YOLOv5

I. INTRODUCTION

L Icense Plate Recognition technology serves as a critical
component in Intelligent Transport Systems [1], pro-

viding significant value by automatically extracting vehicle
information. This will improve traffic management efficiency,
increase accuracy, and reduce human errors and operational
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costs. Over the past few years, a significant number of
researchers worldwide have introduced diverse Models and
approaches for LP recognition. The following section high-
lights the main research advances of these two types of
methods.

Conventional LP recognition methods rely on image pro-
cessing and machine learning techniques, typically organized
into three fundamental stages: LP localisation, character seg-
mentation and character recognition. Regarding number plate
positioning, common methods are divided into colour-based
[2] and edge features [3]. The colour method aids detection
through rich visual information, but is susceptible to light
changes and difficult to deal with number plates similar to
the background colour; the edge method is efficient and fast
but has low accuracy in fuzzy or obscured situations. To
improve the positioning effect, in [4], the authors proposed
the Edge-LPR system, but it may still miss the detection
of LPs with blurred boundaries. For character segmentation,
the projection method [5], the connected domain method [6]
and the static boundary method [7]are commonly used to
solve the character segmentation problem, but they are less
effective when dealing with character sticking and complex
backgrounds. In the character recognition stage, template
matching [8], support vector machine [9] and neural net-
work [10] are common methods, although, these systems
are affected by background clutter and insufficient datasets,
which compromises their recognition capabilities. Overall,
traditional LP recognition methods perform more stably in
ideal environments but have poor recognition accuracy and
adaptability in practical applications with uneven lighting,
blurred LPs or complex backgrounds. Given the growing
demand for traffic management, the advancement of more re-
silient and efficient LP recognition technologies has emerged
as a critical research focus. Deep learning-based number
plate recognition methods have become the focus of research,
the core of which automatically extracts high-level features
of images through deep neural networks to achieve fast
and accurate recognition in complex scenes. In contrast
to conventional approaches, deep learning eliminates the
need for character segmentation, circumvents segmentation-
related errors, and autonomously learns the holistic features
of LP images, thereby enhancing both recognition accuracy
and robustness. In terms of LP localisatio [11] significantly
reduces the reliance on manual features and improves the
target detection performance; in [12], the research intro-
duces a dual-stage algorithm that integrates YOLOv3 with
an optimized LP recognition network, with experimental
results demonstrating its exceptional performance in complex
environments. To further improve the recognition effect in
multi-lane and urban environments, in [13], the authors used
YOLOv4 for integrated Model and LP recognition while
in low-resolution and multi-vehicle environments; in [14],
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Fig. 1. YOLOv5 network structure

the authors proposed a method based on YOLOv5s, which
improves the accuracy through data enhancement. In the
domain of character recognition, addressing the segmen-
tation challenge, the study referenced in [15] introduced
an anchor-free approach by identifying boxes to isolate
the target area attributes; concurrently, the work cited in
[16] presented a streamlined CNN-driven ALPR framework,
integrating image enhancement and morphological trans-
formations to augment both image clarity and operational
performance. In [17], the authors proposed a deep learning
method combining Faster-RCNN and improved AlexNet,
which significantly improved the recognition accuracy. In
challenging environments, LP images frequently suffer from
deformation, occlusion, and blurring. To address the problem
of image tilt and deformation, in [18], the authors proposed
a low-illumination LPR method and optimised the VGG
architecture, which achieved better results than the tradi-
tional methods; in [19], the authors improved the perspective
transformation accuracy by improving the CRNN Model and
using an adaptive fusion feature segmentation network; and
in [20], the authors proposed a de-fogging method based
on MPGAN, combining the YOLOv3 and the LPRNet for
LP localisation and recognition, achieving better results; in
[21], the authors propose the YOLOv5-PDLPR Model, which
further improves the recognition effect through a global
information extractor. Despite the significant progress of
deep learning-based number plate recognition methods, more
resilient and efficient algorithms must be further developed to
address the practical application demands posed by variable
factors in complex environments.

In this paper, we propose a new Model, ICS-Net, which
employs the improved YOLOv5 algorithm IC-YOLOv5 in
the LP detection part. Channel information is enhanced by
integrating the Channel Feature Fusion and Fitting in Pair

(CFFI) module between the backbone and neck networks,
thereby improving overall performance. Adding a CBAM
module towards the conclusion of the backbone network’s
architecture can more efficiently extract key channels and
spatial information, reduce redundant features, and improve
the accuracy of localization.

During the LP character recognition stage, an enhanced
version of the neural network algorithm SE-LPRNet is
employed. By optimizing the insertion strategy of the SE
module, the network’s performance is further enhanced,
and its ability to focus on key features is significantly
improved. In addition, the improved input structure enriches
the initial features, improves the training convergence speed,
and enhances the Model’s recognition ability in complex
environments.

Overall, ICS-Net augments the dependability and efficacy
of vehicle registration plate detection and interpretation by
incorporating a range of cutting-edge advancements tailored
to address the intricacies present in practical environments.

II. LICENSE PLATE DETECTION

A. YOLOv5

In this study, YOLOv5 is selected as the experimental
algorithm. The primary architecture of YOLOv5 is illustrated
in Fig. 1.

B. Convolutional Attention Module (CBAM)

YOLOv5 backbone comprises the Conv module, CSP-
Darknet53 (C3), and several SPPF modules. The Conv
module applies 2D convolution, batch normalisation, and
SiLU activation functions. The C3 module, based on CSPNet
[22], is the core component for learning residual features. It
consists of two branches: one with three Conv modules and
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Fig. 2. IC-YOLOv5 network structure

Fig. 3. CBAM network structure

several bottlenecks, and the other with a single Conv module.
These branches are eventually merged and passed to the next
layer.

The SPPF module, placed at the end of the backbone,
is an enhanced version of the SPP module. Instead of
using a large pooling kernel, SPPF uses multiple smaller
cascading pooling kernels, which maintain the functionality
of integrating feature mappings from diverse receptive fields,
while simultaneously enhancing computational efficiency
and enriching feature representation.

The structure of IC-YOLOv5 is depicted in Fig. 2. The
conventional YOLOv5 framework comprises three main sec-
tions: the backbone dedicated to feature extraction, the neck
focused on feature fusion and the trio of prediction heads.
Based on the default Model, we propose two improvements:
1) the introduction of the pairwise fusion block (CFFI)
at the beginning of the neck to improve the performance
of the PANet, and 2) the inclusion of the CBAM in the
backbone network. These improvements are designed to
augment the feature extraction and fusion processes, thereby

enhancing the Model’s performance. With these changes, IC-
YOLOv5 significantly enhances feature extraction and fusion
capabilities while maintaining the lightweight nature of the
original Model, thus improving target detection performance
in diverse complex settings.

The CBAM employs a hybrid attention mechanism, con-
sisting of two critical sub-modules, as depicted in Fig. 3.
These modules process the input feature maps by integrat-
ing the resulting attention maps, thereby optimizing adap-
tive features. This mechanism enhances meaningful features
across both channel and spatial dimensions while reducing
redundant or irrelevant information. The channel attention
module first performs global max pooling and global average
pooling on each channel’s feature map separately, then adds
the results element-wise and applies the Sigmoid activation
function to generate the channel attention vectorMC(F ) in
Equ. (1).

MC(F ) = δ(MLP (AvgPool(F ))+MLP (MaxPool(F )))

= δ
(
W1

(
W0(F

C
aνg)

)
+W1(W0(F

C
max))

)
(1)
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The spatial attention module conducts global max pooling
and global average pooling operations on the pixel values
at the same location of each feature map, subsequently con-
catenates these two pooled feature maps, and then performs
a convolution operation followed by the Sigmoid activation
function to generate the spatial attention vector, with the
computational formula in Equ. (2):

MS(F̃ ′) = δ(f7×7([AvgPool(F ′);MaxPool(F ′)]))

= δ
(
f7×7([F ′

avg;F
′
max])

)
(2)

By jointly applying the channel attention and spatial
attention modules, CBAM can effectively enhance the CNN
Model’s focus on critical features and improve the precision
of feature extraction. The integration of CBAM into IC-
YOLOv5 significantly boosts the performance of LP detec-
tion and recognition.

C. Channel feature fusion method (CFFI)

The Neck component of YOLOv5 utilizes PANet as de-
picted in Fig.4. In the original YOLOv5, a 1×1 convolution
is applied at the beginning of the Neck to reduce the number
of channels, thereby enhancing computational efficiency.
However, this method may lead to the loss of channel infor-
mation, which can affect the performance of PANet. To tackle
this problem, this study incorporates an Involution module
between the backbone network and the neck network. This
improvement mitigates information loss in the initial stage
of FPN by enhancing and sharing channel information. The
Involution block efficiently recovers and integrates feature
information, thereby improving the performance of the FPN
and, consequently, the overall effectiveness of the PANet.

Fig. 4. FPN and PANet structures in YOLOv5

Fig. 5. Structure of Involution

D. SE Block

Fig. 5 illustrates the structure of Involution. Its pairwise
kernel is denoted as, where is the width of the feature map,
K represents the kernel size, G indicates the number of
groups, and each group shares the same pairwise kernel.
Specifically, a particular pairwise kernel is designed for
pixels shared between channels. The final output feature map
of the pairwise combining operation can be expressed by the
following Equation(3):

Yi,j,k =
∑

(u,v)∈∆K

Hi,j,u+⌊K/2⌋,v+⌊K/2⌋,⌈kG/C⌉Xi+u,j+v,k

(3)
Where Y(i, j, k) is at position (i, j) at which the channel

on which the output is characterized. The pairwise kernel
H(i, j, p, q, g)provides transformations of inverse attributes
in the spatial and channel domains, thus effectively in-
tegrating feature information from different regions. This
design allows Involution to be more flexible in capturing
and utilizing spatial and channel information in the feature
map while maintaining computational efficiency, helping to
improve Model performance and accuracy.

III. LICENSE PLATE RECOGNITION

A. LPRNet

LPRNet is a groundbreaking lightweight network designed
specifically for LP number recognition, which does not
rely on recurrent neural networks (RNNs) [23]. It supports
recognizing variable-length character sequences and exhibits
strong performance in challenging conditions such as low
light, poor viewing angles, and bright glare.

The network structure of LPRNet comprises several key
components: the Feature Extraction Network (Backbone),
Feature Extractor, Sequence Modeling Module, and Con-
nected Timing Classification (CTC) Loss. The Feature Ex-
tractor utilizes Convolutional Neural Networks to extract
relevant features from the LP image. During the feature
extraction process, LPRNet progressively refines and com-
presses image features through multiple convolutional and
pooling layers, aiming to retain essential information while
reducing computational costs.

Additionally, LPRNet incorporates a sequence Modelling
module that employs convolutional layers and batch normal-
ization to Model character relationships. This module gener-
ates probability predictions for each character position. For
training, LPRNet uses a CTC loss function, which addresses
the challenges of sequence length mismatches between the
input and target sequences and accommodates duplicate and
blank characters in the predictions.

B. The SE Block

The SE Block(Squeeze-and-Excitation Block structure is
shown in Fig.6. In this configuration, the input is denoted
as X , where X ∈ RH′×W ′×C′

, and the output is U , with
U ∈ RH×W×C . Here, we treat Ftr as a basic convolution
operation, which produces the output U . For ease of repre-
sentation, the result of the convolution operation is expressed
as a vector V = [v1, v2, . . . , vn], where vc represents the
output of the convolution kernel. The corresponding output
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Fig. 6. Structure of SE Block

Fig. 7. Four integration designs

vector is U = [u1, u2, . . . , un],from which the following
relationship is derived as in Equation(4):

uc = vc ∗X =

C′∑
s=1

v8c ∗ x8 (4)

This formulation provides a clearer understanding of the
SE Block’s underlying working mechanism, thereby offering
a theoretical foundation for subsequent analysis, optimiza-
tion, and potential Model improvements.

To address inter-channel dependencies, we enhance the
Model’s context awareness by compressing global spatial
information into each channel’s descriptor. Traditional convo-
lution operations typically rely only on local receptive fields,
limiting the Model’s ability to capture global context. To
overcome this, we apply global average pooling to generate
channel-wise statistical features, integrating global informa-
tion. Specifically, the statistics are derived by downscaling
the spatial dimensions of U , where each element in the
statistic vector z is calculated by contracting the HXW di-
mensions, as shown in Equation(5). This approach improves
feature representation and provides richer information for
the subsequent Excitation operation, ultimately boosting the
Model’s expressiveness and performance.

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j). (5)

To optimize the utilization of information obtained from
the squeeze operation, an additional step is introduced to
Model the interdependencies among channels. This function

must fulfill two critical criteria: first, it should demonstrate
flexibility and the capacity to learn nonlinear channel inter-
actions; second, it should support non-mutually exclusive re-
lationships, allowing the simultaneous emphasis of multiple
channels. To achieve this, we use a simple sigmoid activation
gating mechanism as in Equation(6) where σ refers to the
ReLU function W1 ∈ R

C
r ×C and W2 ∈ RC×C

r .

s = Fex(z,W) = σ(g(z,W)) = σ(W2δ(W1z)), (6)

C. SE-LPRNet

To strike an optimal balance between recognition precision
and real-time processing efficiency, this study incorporates
the SE (Squeeze-and-Excitation) module into the LPRNet
neural architecture, leading to the creation of the SE-LPRNet
Model. Drawing on prior research, the SE module is imple-
mented using a standardized integration approach, termed
the SE standard strategy. Additionally, the study investigates
four alternative integration configurations, as depicted in Fig.
7. A comparative evaluation of these strategies demonstrates
that the SE standard strategy substantially boosts the neural
network’s operational efficiency. As a result, this research
adopts the SE standard strategy for integrating the SE module
into LPRNet, achieving significant enhancements in overall
performance.

This study introduces an improved methodology to tackle
the problem of redundant convolution kernels and excessive
pooling parameters in the LPRNet recognition framework.
The proposed solution focuses on reconfiguring the convolu-
tion kernel structure within the neural network, eliminating
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Fig. 8. SE-LPRNet structure

TABLE I
THE COMPREHENSIVE DETAILS OF THE LP DATASETS

Datasets Information Year Number of images LP colors Chinese province codes Image size Sequence length

CCPD 2019 10.4GB blue 29 720×1160 7

PKUData 2016 395MB blue+ yellow 27 1082 × 727 7

CLPDs 2019 84.1MB blue + yellow + green 31 220 × 165/4596 × 2388 7/8

TABLE II
A SUMMARY OF THE INDIVIDUAL SUB-DATASETS WITHIN THE CCPD DATASET

Sub-Dataset Description of LP styles

CCPD-Base An ordinary LP image.

CCPD-FN The position of the LP may vary, being either near or distant from the camera’s capture area.

CCPD-Blur LP images that are blurred as a result of camera lens shake.

CCPD-DB LP areas may appear brighter, darker, or unevenly illuminated.

CCPD-Tilt LP with a larger slant angle.

CCPD-Rotate The LP at a smaller angle.

CCPD-Challenge The LP is certain images present greater difficulties and challenges for accurate identification.

CCPD-Weather Images of LPs captured during harsh weather conditions may be significantly affected.

the deactivation layer, and refining both the dataset and learn-
ing strategy. By substituting the deactivation layer’s role with
alternative techniques, the method effectively mitigates issues
related to network parallelism and enhances computational
efficiency. Furthermore, the SE (Squeeze-and-Excitation)
module is incorporated into the neural architecture using a
standardized SE strategy, substantially boosting the network’s
performance, especially in demanding scenarios. As a result,
the research presents an advanced SE-LPRNet Model, which
exhibits enhanced architectural and functional capabilities,
leading to superior accuracy and robustness in LP recognition
tasks.

IV. EXPERIMENTS

The experimental configuration is as follows: this ex-
perimental platform is based on the Ubuntu 18.04 op-
erating system with Python 3.8 as the main program-
ming language. The CPU used is Intel(R)Xeon(R) Platinum
um8260CPU@2.30GHz with 12 available CPU cores and
60GB of available memory. The GPU is NVIDIA Tesla
P100-16 GB, with 16GB of video memory and 732.16GB/s
of video memory bandwidth, supporting 5.18TFLOPS of
floating point operations per second. The algorithm is im-
plemented by PyTorch, and the CUDA version used for
acceleration is 11.3, the cuDNN version is 8, and NVCC is
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also supported for the compilation and acceleration of CUDA
code.

A. Datasets

1) CCPD dataset
CCPD2019 [24] is a large and diverse open-source dataset

specifically designed for research on Chinese urban LPs,
containing 290,000 uniquely annotated LP images. For the
Model evaluation experiment, a portion of the data from the
CCPD-base subset was randomly chosen for training, with
the remainder allocated for validation. Moreover, six subsets
were utilized for model testing, as detailed in Table 2.

2) PKUData dataset
The PKUData dataset [25], contains photographs taken in

various settings, enabling the evaluation of LP recognition
systems across different real-world scenarios. By encompass-
ing a broad spectrum of environmental factors, the dataset
provides valuable resources for testing the robustness and
generalizability of recognition Models.

3) CLPD dataset
The CLPD dataset [26], made available by Zhang et al.,

contains 1,200 LP images collected from 31 provincial-
level administrative regions across China, excluding Taiwan,
Hong Kong, and Macau. This dataset captures a diverse
set of environmental conditions, providing a comprehensive
representation of real-world scenarios. Together with the
PKUData dataset, the CLPD dataset is frequently used to
assess the performance of LP recognition Models. These
datasets are valuable benchmarks, offering a broad range of
challenges to evaluate the robustness and accuracy of such
systems across different environments.

B. Network Model Evaluation Indicators

In this research, the proposed method is evaluated through
experiments conducted on multiple public datasets, including
CCPD, CLPD, and PKUData. Detection performance is
measured using the Intersection over Union (IoU) metric,
which evaluates the overlap between predicted bounding
boxes and ground truth boxes. The IoU threshold is typically
set at 0.5, and when IoU exceeds this value, the detection
result is considered accurate. We calculate both IoU and
recognition results, and a prediction is deemed correct when
IoU exceeds the threshold and the recognition result matches.

C. Experiment of License Plate Recognition Algorithm

1) Detection
This study conducts a thorough performance compari-

son of the IC-YOLO (Algorithm Model 5) LP recognition
Model against Faster-RCNN (Algorithm Prototype 1), C-
RCNN (Algorithm Prototype 2), YOLOv3 (Algorithm Pro-
totype 3), and YOLOv4 (Algorithm Prototype 4) using the
CCPD dataset. Recognition performance is shown in Table
3. ”Detection performance is evaluated exclusively based on
bounding box outcomes. Experimental results indicate that
the proposed IC-YOLO (Model 5) achieves superior accuracy
across most sub-datasets. Model 5 excels in both accuracy
and speed among all Models, with an average accuracy of
94.9%. Its performance is particularly remarkable across all
sub-datasets. It is worth noting that Model 5 achieved an

identification accuracy of 96.0% on both the Base and Rotate
sub-datasets, demonstrating its excellent capability in pro-
cessing standard LP images and rotated images. Additionally,
the accuracy of Model 5 on the Challenge sub-dataset was
94.0%, and it performed well even with more challenging
data. Besides its outstanding accuracy, Model 5 also boasts a
processing speed of 217.2 FPS, giving it a significant advan-
tage in real-time processing tasks. Compared to other Models
such as Prototype 4 (85.4 FPS), Prototype 3 (45.3 FPS), and
Prototype 2 (26.2 FPS), the high speed of Model 5 ensures its
rapid response and ability to handle higher frequency input
data in practical applications. In summary, not only does
Model 5 have significant advantages in accuracy, especially
in complex or more challenging sub-datasets, but its high
speed of 217.2 FPS makes it the best choice for real-time
LP recognition tasks, showcasing its excellent comprehensive
performance.

2) Recognition
We integrated the proposed LP detection method with

recognition algorithms and conducted comparative experi-
ments, including Faster-RCNN (Prototype 1) + LPR, C-
RCNN (Prototype 2) + LPR, YOLOv3 (Prototype 2) + LPR,
YOLOv4 (Prototype 3) + LPR, and our algorithm IC-YOLO
(Model 5) + LPR. Recognition performance is shown in
Table 4. The results show that Model 5 + LPR performs
excellently, achieving an average accuracy of 96.7%, far
exceeding other Models. It performs outstandingly across all
sub-datasets, reaching 99.0% on the Base sub-dataset and
98.5% on the Rotate sub-dataset, demonstrating its strong ca-
pability in handling normal and rotated LP images. Addition-
ally, Model 5 + LPR maintains high accuracy in challenging
sub-datasets such as DB (97.0%), FN (96.5%), Tilt (95.5%),
Weather (95.0%), and Challenge (95.5%), showcasing its
robustness in different environments and conditions. Notably,
Model 5 achieved an accuracy of 96.0% on both the Base and
Rotate datasets, demonstrating its excellent ability to manage
standard LP images and rotationally distorted images. In
contrast, Prototype 1 + LPR has the lowest accuracy and
speed, with a processing speed of only 34 FPS. Other Models
(Prototype 2 + LPR, Prototype 3 + LPR, Prototype 4 + LPR)
perform stably but are inferior to Model 5 + LPR in terms
of accuracy and speed. Therefore, Model 5 + LPR is an effi-
cient Model that performs excellently under various complex
conditions and is highly suitable for practical applications,
making it the best choice for LP recognition on the CCPD
dataset. Example results are shown in Figs 9, 10, and 11.

D. Performances on mixed dataset

The generalization ability of convolutional neural networks
has always been an important criterion for evaluating their
performance. To verify this, we combined the training por-
tions of the CCPD and CLPD datasets, trained an ensemble
model, and embedded it into the test set for validation. The
experimental results presented in Table 5 demonstrate that
the ensemble model can effectively adapt to various types of
LPs. By directly applying this ensemble Model to the PKU
dataset, its effectiveness was further verified. Example results
are shown in Figs 12, 13. In general, the experimental results
show that after training on multiple datasets, the ensemble
Model can accommodate various LP layouts, but the diversity
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TABLE III
CCPD PERFORMANCE OF LP DETECTION ON DIFFERENT SUB-DATASETS (EXPRESSED AS PERCENTAGES). IT WAS COMPARED WITH THE

FASTER-RCNN (ARCHETYPE 1) OBJECT DETECTION ALGORITHM, THE C-RCNN (ARCHETYPE 2) ALGORITHM, THE YOLOV3 (ARCHETYPE 3)
MODEL, AND THE YOLOV4 (ARCHETYPE 4) METHOD. THE RESULTS SHOW THAT OUR METHOD (MODEL 5) IS MORE ACCURATE ON MOST

SUB-DATASETS. ADDITIONALLY, OUR METHOD CAN RUN IN REAL TIME.

Method Avg Base DB FN Rotate Tilt Weather Challenge Speed(FPS)

Prototype 1 89.0 92.5 93.0 89.5 85.5 90.5 89.5 83.5 17.5

Prototype 2 91.5 93.5 91.0 89.5 92.5 93.5 89.0 93.5 26.2

Prototype 3 91.5 94.0 93.5 89.0 89.0 90.5 91.0 93.5 45.3

Prototype 4 91.6 95.0 94.0 88.5 91.0 90.0 91.5 91.5 85.4

Model 5Model 5Model 5 94.994.994.9 96.096.096.0 95.095.095.0 96.096.096.0 95.595.595.5 94.594.594.5 93.093.093.0 94.094.094.0 217.2217.2217.2

TABLE IV
PERFORMANCE OF LP RECOGNITION ON DIFFERENT SUB-DATASETS OF CCPD (EXPRESSED AS PERCENTAGES). IT WAS COMPARED WITH

FASTER-RCNN (PROTOTYPE 1) + LPR, C-RCNN (PROTOTYPE 2) + LPR, YOLOV 3 (PROTOTYPE 2) + LPR, AND YOLOV 4 (PROTOTYPE 3) +
LPR. THE RESULTS SHOW THAT OUR METHOD (IC-YOLO (MODEL 5) + LPR) IS MORE ACCURATE ON THE SUB-DATASETS.

Method Avg Base DB FN Rotate Tilt Weather Challenge Speed(FPS)

Prototype 1 +
LPR 89.9 91.5 92.0 89.5 85.5 91.5 90.5 88.5 34

Prototype 2 +
LPR 91.2 91.0 91.0 90.0 92.5 92.0 90.0 92.5 40

Prototype 3 +
LPR 92.5 94.5 93.5 91.5 90.0 92.5 93.0 92.5 45

Prototype 4 +
LPR 92.6 95.0 94.5 90.5 91.5 92.0 93.5 91.0 26

Model 5 + LPRModel 5 + LPRModel 5 + LPR 96.796.796.7 99.099.099.0 97.097.097.0 96.596.596.5 98.598.598.5 95.595.595.5 95.095.095.0 95.595.595.5 606060

TABLE V
PERFORMANCES (AS PERCENTAGES) ON MIXED DATASET.

Performance(%) Unified Model(%) Single Model(%) Gap

CCPD 96.5 96.0 0.5

CLPD 95.5 94.5 1

PKUData 95.0 93.0 2

and distribution of the training dataset will to some extent
affect the overall efficacy of the Model.

E. Ablation study

To verify the effectiveness and rationality of the proposed
method, ablation study experiments were conducted entirely

based on the CCPD dataset. This dataset is large and di-
verse, thus avoiding the influence of accidental factors. To
assess the contributions of various modules, we designed a
series of comparative experiments, with the results presented
in Table 6. First, we analyzed the impact of introducing
Channel feature fusion and CFFI on Model performance
through comparative experiments. The experimental out-
comes revealed that the Model’s efficacy exhibited a sig-
nificant enhancement on the Rotate sub-dataset (95.5% vs.
92.0%) and Weather (94.5% vs. 93.0%) sub-datasets, but
slightly decreased on the Challenge sub-dataset (93.0% vs.
94.0%). To evaluate the improvement of CBAM on Model
performance, we compared Models with and without CBAM.
The experimental results showed that CBAM significantly
improved Model performance, especially on the Base (96.5%
vs. 93.0%) and Rotate (95.5% vs. 92.0%) sub-datasets,
and also achieved significant accuracy improvements in
complex scenarios such as Challenge (95.0% vs. 91.0%).
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TABLE VI
AN ABLATION STUDY OF THE PROPOSED METHOD WAS CONDUCTED. WE COMPARED THE DETECTION ACCURACY OF MODELS WITH AND WITHOUT
CHANNEL FEATURE FUSION (CFFI), AS WELL AS THE RECOGNITION ACCURACY OF MODELS WITH AND WITHOUT THE SE AND CBAM MODULES.

Performance(%) Base FN DB Rotate Weather Tilt Challenge

without channel feature fusion and CFFI 95.0 94.0 90.5 92.0 93.0 93.5 94.0

with channel feature fusion and CFFI 95.595.595.5 94.094.094.0 94.094.094.0 95.595.595.5 94.594.594.5 95.595.595.5 93.093.093.0

without SE Block 94.5 93.0 92.5 92.0 93.0 94.5 94.0

with SE Block 96.096.096.0 95.095.095.0 94.594.594.5 93.593.593.5 95.595.595.5 94.094.094.0 93.093.093.0

without CBAM 93.0 93.0 92.5 92.0 93.5 92.5 91.0

with CBAM 96.596.596.5 95.095.095.0 94.094.094.0 94.594.594.5 95.595.595.5 94.594.594.5 95.095.095.0

(a) (b) (c) (d) (e) (f)

Fig. 9. ICS-Net in CCPD-Base recognition results as in figs. (a) and (b); in CCPD-DB recognition results as in figs (c) and (d); in CCPD-FN recognition
results as in figs (f) and (g).

(a) (b) (c) (d) (e) (f)

Fig. 10. ICS-Net in CCPD-Rotate recognition results as in (a) and (b); in CCPD-Tilt recognition results as in (c) and (d); in CCPD-Weather recognition
results as in (f) and (g).

(a) (b)

Fig. 11. ICS-Net in CCPD-Challenge recognition results as shown in (a)
and (b).

This indicates that CBAM excels in capturing spatial and
channel information, effectively enhancing feature extraction
capabilities. Finally, to verify the role of SE Block, we
compared Models with and without SE Block, showing that

adding SE Block significantly improved Model performance
on multiple sub-datasets, particularly on Base (96.0% vs.
94.5%) and FN (95.0% vs. 93.0%), indicating that SE Block
helps the Model better focus on key features. Overall, the
three methods effectively improved Model performance on
all sub-datasets, especially in handling challenging data,
demonstrating stronger robustness.

V. CONCLUSION

This research introduces an innovative algorithm called
ICS-Net, specifically developed to address the challenges
of LP detection and recognition. Unlike traditional feature
extraction techniques, ICS-Net uses IC-YOLOv5 for LP de-
tection. To further optimize network performance, a Channel
Feature Fusion and Inversion (CFFI) module is incorporated
between the backbone and neck networks, enhancing the
transmission and processing of channel information, thereby
significantly improving overall detection accuracy. In addi-
tion, the Channel and Spatial Attention Module (CBAM)
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(a) (b) (c) (d)

Fig. 12. ICS-Net in PKUData recognition results are shown in (a) and (b) and (c) and (d)

(a) (b) (c) (d)

Fig. 13. ICS-Net in CLPD recognition results are shown in (a) and (b) and (c) and (d)

was introduced into the backbone network, enabling it to
precisely extract key channel and spatial information while
automatically filtering out redundant features, thereby achiev-
ing more accurate LP detection and localization. For LP
character recognition, ICS-Net utilizes an advanced version
of the SE-LPRNet neural network algorithm. This approach
integrates the Squeeze-and-Excitation (SE) module, strategi-
cally positioned within the network to prioritize key features
and suppress irrelevant information effectively. By adhering
to the standard SE module insertion strategy, the network’s
recognition capability is substantially enhanced, while train-
ing performance is also optimized. Furthermore, the input
structure of the network is modified to enrich the diversity
of initial input features, accelerating Model convergence and
improving the overall efficiency of the algorithm.

To validate the effectiveness and robustness of the ICS-Net
algorithm, initial training was performed on the CCPD-base
dataset, followed by testing on six subsets of this dataset
to comprehensively evaluate the model’s performance across
diverse scenarios. To further evaluate the algorithm’s detec-
tion and recognition capabilities in complex environments,
additional testing was performed using the PKUData and
CLPD datasets. Experimental results demonstrate that ICS-
Net maintains a high level of recognition accuracy across var-
ious challenging environments, highlighting its exceptional
robustness and efficiency. These research results indicate the
method’s substantial potential for application in LP detection
and recognition tasks, particularly in real-world scenarios
characterized by diverse and complex conditions.
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