
 

Abstract—The Internet of Things (IoT) has introduced issues to 

traditional cloud infrastructure, leading to the emergence of an 

intermediary architectural design called fog computing. Fog 

computing, a subtype of cloud computing, is being utilized to 

address some of the challenges that cloud computing 

infrastructure faces, particularly reducing the response time or 

detection time when fog devices are often powered by limited 

energy sources. In particular, distributed denial of service 

(DDoS) attacks should be mitigated by fog-computing devices. 

This is possible if network traffic is continuously monitored by 

a Network Intrusion Detection System (NIDS) to detect DDoS 

attack patterns. This paper proposes a NIDS model called 

"DDoS-BiLSTM" for detecting DDoS attacks, specifically in fog 

computing, using deep learning (DL). Appropriate 

preprocessing and modeling phases were incorporated into the 

proposed model. The BiLSTM model employing the 

CICIDS2017 dataset was the foundation for the proposed fog-

based NIDS model for detecting DDoS attacks. The results 

obtained were superior, with an accuracy of 99.91%. Numerous 

records of various DDoS attack types from multiple datasets 

were combined into a newly integrated NF-UQ-NIDS dataset. 

The proposed model was trained and validated with 99.62% 

accuracy using this dataset. 

 
Index Terms—Internet of Things (IoT), Fog Computing, 

Intrusion Detection System, CICIDS2017 dataset, NF-UQ-NIDS 

dataset, Deep Learning (DL). 

 

I. INTRODUCTION 

urrent computing technology has been influenced by the 

exponential rise of connected smart devices. The term 

‘Internet of Things’ (IoT) refers to the increase of non-

computer elements (things) that are connected to the Internet. 

Recent advancements in wearable technology, smart cities 

and homes, connected cars, smart traffic lights, smart meters, 

and other areas have made the IoT popular [1]. The main 

purposes of IoT devices are to gather and send data for cloud 

processing and to obtain feedback or outcomes for decision-

making. With billions of IoT devices joining the Internet 

infrastructure, IoT technology has become a vital part of our 

daily lives. Despite the rise in the popularity of IoT devices, 

they suffer from several difficulties, including limited battery 

life, storage, bandwidth, and computing power [2]. 

These issues negatively impact the user experience and 

quality of service (QoS). Cloud computing is regarded as an 

appropriate platform for providing services to customers to 

reduce the difficulties that IoT devices must overcome [3]. 

However, cloud computing does not offer a universally 

applicable answer to the issues affecting IoT performance. In 

2012, Cisco presented Fog Computing as a solution to this 

issue [4].  

By 2020, 50 billion devices were expected to connect to 

the Internet, and by 2025, 500 billion were projected to do so, 

according to Cisco. This suggests that data production will 

increase and that users will demand speedy responses and 

feedback. Therefore, fog computing aims to bring services 

closer to the end users of these devices [5]. Fog computing is 

a subset of cloud computing that offers effective middle-tier 

services to consumers. However, the same cannot be said for 

fog computing, despite the security benefits associated with 

cloud computing. 

Fog computing has come to be recognized as a potential 

paradigm for effective and decentralized data processing in 

today's connected world, where data are produced at an 

unprecedented rate. Fog computing enables data processing 

and analysis closer to the data source by extending cloud 

computing capabilities to the network's edge [6]. This implies 

that the benefits and drawbacks of cloud computing cannot 

be directly transferred to fog computing. 

Fog computing has security issues that are particularly 

relevant to this new paradigm. Security concerns have taken 

center stage due to the exponential growth of data and devices 

in fog computing environments. Distributed Denial of 

Service (DDoS) attacks pose a significant risk to these 

environments. Fog computing can be subjected to DDoS 

attacks that seek to overwhelm the network and disrupt 

services because of its distributed architecture and reliance on 

connected devices [7]. 

Deploying a network intrusion detection system (NIDS) is 

a key aspect of security in fog computing [8]. A NIDS is a 

security tool that monitors network traffic to spot malicious 

activity or unauthorized access attempts and take appropriate 

action. Traditionally, centralized systems such as data centers 

or cloud environments have used conventional NIDS 

solutions. However, because fog computing is distributed and 

heterogeneous, NIDS must be adapted to address this 

particular context. 

Strategic placement of several fog nodes with detection 

sensors or actuators within the fog infrastructure is necessary 

for an NIDS to function effectively in fog computing [9]. 

These sensors continuously monitor and analyze network 

data, searching for patterns or anomalies that may indicate 

potential security risks. Network traffic can be monitored in 

real-time by an NIDS in fog computing, which can analyze 

patterns and behaviors to identify signs of DDoS attacks. It 

can detect common indicators of DDoS attacks, such as 

anomalous traffic spikes, unusual packet patterns, or large 

volumes of traffic originating from multiple sources. 

The principal contribution of this paper is a proposal for an 

effective fog-based NIDS to accurately detect DDoS attacks 
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targeting fog nodes and breaching fog services. The following 

is a summary of the contributions made by the proposed 

NIDS model: 

 A lightweight fog-based NIDS for identifying various 

DDoS attacks has been proposed. 

 The proposed fog-based NIDS uses the NF-UQ-NIDS 

dataset to overcome the limitations of the CICIDS2017 

dataset used in existing works, including small size, 

synthetic traffic, confined labeling, outdated attacks, and 

constrained network topology. 

 Preprocessing and optimized feature selection techniques 

are applied. 

 Various deep learning techniques are implemented to 

compare and select the best one, including LSTM, 

BiLSTM, GRU, SimpleRNN, and MLP. 

 Using the CICIDS2017 and NF-UQ-NIDS datasets, a 

comparative analysis is specifically conducted with 

existing fog-based NIDSs. The experimental results show 

that the proposed method outperforms existing works in 

terms of metrics such as accuracy, precision, recall, and F1-

score. 

This paper is organized as follows: Background 

information about fog computing, intrusion detection 

systems, and distributed denial of service attacks is presented 

in Section II. Related work, both in general and specifically 

in the fog computing environment, is discussed in Section III. 

In Section IV, we present the proposed NIDS and several 

foundational concepts. The results, performance, and 

comparisons with other methods are detailed in Section V. 

We outline future work in Section VI. Section VII presents 

the conclusions drawn from the developed method. 

 

II. BACKGROUND 

This section covers intrusion detection systems and fog 

computing as well as how to use them to identify DDoS 

attacks. We began by providing a brief overview of fog 

computing and its significance, followed by an overview of 

intrusion detection systems that work in fog. We discuss 

DDoS and how it affects the fog environment in the last part. 

A. Fog Computing 

Thousands of Internet of Things (IoT) devices coexist at 

the network's edge due to ongoing developments aimed at 

performing daily tasks across a range of industries, including 

smart industrial systems, smart homes, and smart vehicles. 

Fog computing initially emerged in the IoT space to facilitate 

the execution of time-sensitive applications and services. A 

highly virtualized fog-computing platform provides real-time 

networking, storage, and computing services between 

endpoints and traditional cloud data centers [1]. 

Fog computing can be positioned adjacent to IoT devices 

to create a novel network architecture, as shown in Figure 1. 

Fog nodes, or fog servers, are typically placed near the edge 

of the network, close to the IoT devices, within a fog 

computing architecture. By serving as a bridge between IoT 

devices and the cloud, these fog nodes offer local processing 

and storage capabilities. They can perform a variety of tasks, 

including preprocessing, analytics, data filtering, and real-

time decision-making. Fog computing enhances navigation 

assistance, scalability, interoperability, and location 

awareness [6]. 

A fog computing network consists of switches, routers, 

proxy servers, base stations (BS), and other components with 

varying computing, storage, and networking capabilities. 

Effective performance in terms of latency, power usage, and 

network traffic can be achieved using fog computing. 

Possible interactions between the cloud, fog, and edge layers 

include: 

 Fog to Cloud: The fog node is directly connected to the 

cloud data centers. 

 Fog to Fog: The fog nodes are located near one another. 

 Edge to Fog: The fog node is directly connected to edge 

devices, such as cellphones, sensors, and small processor 

boards. 

 

B. Intrusion Detection System 

An Intrusion Detection System (IDS) is a vulnerability 

avoidance system that monitors data obtained from various 

sources to protect the network by identifying potential 

attacks. The purpose of an IDS is to analyze the data, look for 

patterns or attack signatures, check system correlations, and 

create alarms if any matches are found [10]. 

In addition, IDSs maintain records of recognized patterns 

or signatures. Network monitoring collects data from network 

packets. Attackers use various methods to conduct attacks on 

a network. These attacks may target a server that manages all 

network transactions or a host machine that performs 

activities within the network. IDSs utilize deep learning and 

machine learning to recognize network threats. Data can be 

acquired from several IoT device sources for intrusion 

analysis. Depending on the information source, intrusion 

detection systems are divided into two categories: host IDS 

(HIDS) and network IDS (NIDS) [11]. 

C. Distributed Denial of Service 

Distributed Denial of Service (DDoS) refers to a specific 

type of cyberattack in which multiple compromised systems, 

often known as a "botnet," are used to overwhelm a network 

or website with traffic, exceeding its capacity and blocking 

access for authorized users [12]. By flooding a network or 

website with traffic from various sources, DDoS attacks seek 

 
Fig. 1.  Computing's Hierarchical Architecture ([1] and copyright obtained). 
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to prevent normal network operation. As a result, users may 

experience system or service slowness or complete collapse. 

Fog computing environments can also be targeted by 

DDoS attacks [13]. Fog computing extends processing power 

to the edge of the network. While this allows applications to 

operate more rapidly and efficiently, it also opens up new 

attack vectors that DDoS attackers can exploit. Figure 2 

illustrates how DDoS attacks can cause systemic disruption 

by overloading network devices and fog nodes' processing 

and communication capabilities.A person or organization in 

charge of a network of compromised computers, referred to 

as "bots," is called a "bot master." These bots can be remotely 

managed by the bot master without the computer owners' 

knowledge, and they are usually infected with malware. To 

protect fog computing environments from DDoS attacks, 

safety mechanisms must be implemented at every tier of the 

architecture. 

 

III. RELATED WORK 

Several recent studies have addressed NIDSs for DDoS 

attacks. By observing network traffic patterns and spotting 

unusual behavior that can point to an ongoing attack, an NIDS 

for DDoS detection attempts to detect and mitigate DDoS 

attacks. These systems use various methods, including 

statistical analysis, machine learning, and signature-based 

detection, to detect and reduce DDoS attacks. Algorithms for 

machine learning and deep learning can be trained to assess 

network traffic patterns and detect DDoS attack-related 

irregularities.  

These methods can be implemented in fog nodes to provide 

real-time detection and mitigation of attacks on the network 

edge. The most recent advancements in NIDS for DDoS 

detection have concentrated on improving the accuracy and 

effectiveness of detection algorithms, strengthening the 

resistance of systems to complex attacks, and tackling the 

difficulties caused by emergent environments such as fog 

computing. This section discusses the most recent NIDS 

works as well as prior studies in the fog computing 

environment to detect DDoS attacks on IoT. 

To accurately identify various application-layer DDoS 

attacks, Asad et al. [14] presented a novel deep neural 

network-based detection mechanism that uses feed-forward 

backpropagation. On the CICIDS2017 dataset, which 

contains several types of DDoS attacks, the proposed neural 

network architecture can identify and use the most important 

high-level packet flow components with an accuracy of 98%. 

To test this method, only application-layer DDoS attacks are 

used. 

Sabeel et al. [15] suggested two ML models, DNN and 

LSTM, for binary classification of unidentified DoS and 

DDoS attacks. The benchmark CICIDS2017 dataset was used 

to train the models. DNN and LSTM performed these tasks 

with accuracy rates of 98.72% and 96.15%, respectively. 

However, real-time detection was not performed, and the 

authors used only binary classification. 

Haider et al. [16] suggested a deep CNN framework for the 

detection of DoS assaults in SDN. With a total accuracy rate 

of 99.45%, the ensemble CNN technique surpassed other 

competing methods that were already in use. This method 

extends the timeframes. Consequently, the mitigation 

mechanism can be compromised, making attacks more 

harmful. 

Wang et al. [17] suggested using information entropy and 

the DL approach to identify DDoS attacks in an SDN context. 

With a rate of 98.98%, CNN exceeded its competitors in 

terms of precision, accuracy, f1-score, and recall. The time 

detection process in the model was longer. 

An IDS was developed by Monika et al. [18] using a 

combination of a Convolutional Neural Network (CNN) 

integrating Long Short-Term Memory (LSTM) deep learning 

techniques for identifying the attack and the NSGA-II multi-

objective optimization method for data dimension reduction. 

The experiment had a 99.03% accuracy rate and used the 

most recent CISIDS2017 statistics for DDoS attacks. 

Mural et al. [19] developed a deep classification strategy to 

recognize HTTP sluggish DoS attacks. The CICIDS2017 

dataset was used to evaluate classifiers. The obtained findings 

show that the model classifies attacks with an overall 

accuracy of 99.61%. The limitation of this methodology was 

that only slow HTTP DoS attacks were evaluated. 

For IoT intrusion detection at the fog computing layer, 

Souza et al. [20] described a hybrid binary classification 

solution utilizing deep neural networks (DNN) and the k-

nearest neighbor (KNN) technique. They tested their strategy 

using a publicly accessible dataset (CICIDS2017) and found 

that it had a high accuracy of 99.85% in identifying attacks. 

 

IV. PROPOSED WORK 

Fog computing is susceptible to DDoS attacks. Fog 

computing systems are typically constructed using a large 

number of networked devices and sensors, which makes them 

vulnerable to such attacks. 

As shown in Figure 3, fog layer nodes receive packets from 

IoT devices. These nodes employ deep learning (DL) to 

create a Network Intrusion Detection System (NIDS) model 

that is subsequently applied to data analysis and intrusion 

detection. The NIDS at the fog node gathers traffic, generates 

security alerts, logs warnings, and transmits them to 

neighboring fog nodes and cloud servers when an intrusion is 

detected [21]. 

An NIDS monitors network activity, analyzes data from 

IoT devices, checks system configurations for security flaws, 

identifies suspicious patterns or signs, stores these patterns in 

a database, and sends them to the cloud layer, where a 

warning is issued if any matches are found. An improved 

NIDS becomes feasible through the use of machine learning 

 
Fig. 2.  IoT Botnet Attacks in Fog Computing 
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(ML) and deep learning technologies for detecting network 

threats. 

The proposed fog-based NIDS model has been evaluated 

on the NF-UQ-NIDS dataset and is divided into several 

phases, each with a different purpose. 

 

 Phase 1: Before applying deep learning techniques to the 

data, preprocessing techniques should be employed to 

enhance and prepare the data. Preprocessing involves 

preparing data for analysis and modeling by cleaning and 

enhancing it. The techniques required to preprocess a 

dataset for the proposed model are as follows: 

o Data cleaning removes noisy and irrelevant data and 

ensures that feature types are accurate. 

o Feature selection involves determining the most 

important features of the data using appropriate 

techniques. 

o Feature encoding converts feature values into numerical 

representations. 

o Feature scaling adjusts feature values to a specified 

range. 

 

 Phase 2: In the modeling phase, recurrent neural networks 

(RNNs) of the BiLSTM type can process sequential data 

both forward and backward. BiLSTM is currently one of 

the most powerful deep learning models. The use of 

BiLSTM has made attack detection more precise and 

effective. 

 

As shown in Figure 4, the fog-based NIDS model is 

composed of several phases, the outcomes of which are 

carried over into the subsequent phase. The proposed DDoS-

BiLSTM NIDS is divided into several phases, each of which 

performs a specific task. 

 
Fig. 3.  Graph of the Proposed NIDS Architecture's Flow 

 
Fig. 4.  The Fog-Based DDoS-BiLSTM Model 
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A. Preprocessing Phase 

Data preprocessing prepares data and can be done more 

rapidly and effectively in data science to ensure reliable 

outcomes. Fog nodes exist between IoT devices and the cloud 

layer. IoT devices receive a variety of feature formats, 

including numeric and categorical data, in incoming 

communications. To increase the effectiveness of the 

proposed fog-based NIDS model, the analysis and 

preprocessing of the traffic must be conducted as described 

below. 

1) Data Cleaning Process 

Duplicate data rows should be removed, as their existence 

distorts the data and affects the outcomes. The data cleaning 

process in our work ensures that feature types are accurate, 

eliminates noisy and irrelevant data, balances the data, and 

focuses specifically on DDoS attacks. Undersampling is a 

method for balancing unequal datasets, ensuring that the 

minority class is fully represented while minimizing the size 

of the majority class. Using NearMiss-3, samples from the 

majority class are selected based on their proximity to the 

minority class and their average distance from their k nearest 

neighbors [22]. The advantages of NearMiss-3 include 

optimal noise reduction, improved generalization 

performance, minimized bias, and the preservation of 

important information. 

2) Feature Selection Process 

Feature selection is crucial for deep learning and statistical 

modeling to improve model performance, reduce overfitting, 

and increase interpretability. The most effective solution for 

a particular problem depends on the specific data and 

modeling goals; no single feature selection technique 

addresses all challenges. The Theil's U [23] technique uses a 

filter method and statistics to evaluate the relationship 

between two categorical variables. Theil's U is a normalized 

variant of the mutual information measure that accounts for 

differences in the distributions of the feature and the target 

variable. This approach assesses redundancy among features 

as well as the information exchange between each feature and 

the target variable. 

3) Feature Encoding Process 

Feature values areconverted into numerical representations 

as part of the feature encoding process. Label encoding can 

use less memory and process data faster than other encoding 

techniques, such as one-hot encoding [24]. This is because 

label encoding, unlike one-hot encoding, only requires one 

column to represent a categorical variable. Given the 

abundance of categorical data in the datasets used, label 

encoding is employed. 

4) Feature Scaling Process 

The feature scaling process is one of the most important 

operations. Scaling is crucial when developing a deep 

learning model, as it affects the model's performance. Among 

the scaling techniques, normalization and standardization are 

the most frequently used. Min-Max scaling [25] is employed 

to apply normalization, scaling, and translating each feature 

separately to ensure it falls within the desired range. 

B. Modeling Phase 

Machine learning (ML) and deep learning (DL) techniques 

are applied to model the dataset and produce a predictive 

model that can be used to make predictions or to apply to new 

data points. The goal of modeling is to find relationships and 

patterns in the data that can be used to categorize new data or 

predict future occurrences. Several deep learning techniques 

can be applied to the preprocessed data. The effectiveness of 

each technique must be evaluated before selecting the best 

one. Techniques such as LSTM, BiLSTM, GRU, 

SimpleRNN, and MLP have been used. 

1) Bidirectional Long Short-Term Memory (BiLSTM) 

Bidirectional LSTM (BiLSTM) is a recurrent neural 

network primarily used in natural language processing [26]. 

It is a valuable tool for observing relationships between 

phrases and words in both directions of the sequence since, 

unlike standard LSTM, the input data flows in two directions, 

allowing it to utilize data gathered from both sides. 

The BiLSTM model was developed from the LSTM 

architecture and consists of two LSTMs: one processes input 

in the forward direction and the other in the backward 

direction. The four layers that comprise the BiLSTM include 

the input layer, the forward transmission layer, the reverse 

transmission layer, and the output layer [26]. BiLSTM is 

capable of handling sequential input, capturing both past and 

future context, and addressing vanishing gradient problems. 

It can achieve high performance due to its long-term memory 

capabilities. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

Several attack detection techniques will be evaluated using 

our proposed fog-based NIDS. Experiments were conducted 

on an Anaconda machine using Python and Jupyter 

Notebooks. The TensorFlow and Keras packages employ 

various learning methods. The performance of the proposed 

NIDS is assessed using the NF-UQ-NIDS dataset. These tests 

were carried out on a laptop running 64-bit Windows 10, 

equipped with an Intel® Core i5-8265U CPU at 1.80 GHz 

and 12 GB of RAM. 

A. NF-UQ-NIDS Dataset 

The CICIDS2017 [27] dataset was used in most earlier 

studies to test NIDSs for identifying DDoS attacks. Although 

it is a helpful dataset for network security practitioners and 

researchers, it has several shortcomings that must be 

addressed, including its small size, synthetic traffic, 

constrained labeling, outdated attacks, and limited network 

topology. The proposed NIDS utilizes the NF-UQ-NIDS 

dataset to overcome these issues. 

This dataset is derived from Cisco's NetFlow network 

protocol, which is used to track network traffic flow [28]. 

Datasets created and analyzed with the NetFlow protocol are 

known as NetFlow datasets. NetFlow datasets provide 

valuable insights into network traffic patterns, containing 

information on the protocols and ports used, the sources and 

destinations of the traffic, and the volume of traffic moving 

between various parts of the network. 

The NF-UQ-NIDS [29] dataset combines the UNSW-

NB15 [30], ToN-IoT [31], BoT-IoT [32], and CSE-CIC-

IDS2018 [33] datasets in a NetFlow-based format. This 

newly released dataset demonstrates the benefits of shared 

dataset feature sets, enabling the combination of several 

smaller datasets. Ultimately, a broader and more 

comprehensive NIDS dataset will be produced, 

encompassing flows from various network topologies and 
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attack scenarios. The updated attack categories incorporate 

all parent categories. 

The NF-UQ-NIDS collection includes 9,208,048 records 

of various attack categories, including DDoS, 

reconnaissance, injection, DoS, brute force, password 

attacks, XSS, infiltration, exploits, scanning, fuzzers, 

backdoors, generic attacks, analysis, theft, shellcode, MITM, 

worms, and ransomware [29]. 

B. Experiment Scenarios 

Fog nodes can be configured with NIDS to detect and 

mitigate malicious traffic. To spot irregularities that might 

indicate an ongoing DDoS attack, NIDS can monitor traffic 

patterns. This model focuses specifically on recognizing 

DDoS attacks. The NF-UQ-NIDS dataset contains 763,285 

records for DDoS attacks and 9,208,048 records for benign 

flows. All datasets that comprise the NF-UQ-NIDS dataset 

include records of DDoS attacks, except for the UNSW-

NB15 dataset. 

In contrast to earlier datasets, the NF-UQ-NIDS dataset 

contains a substantial number of novel attacks and their 

feature values. Therefore, it was crucial to address data 

issues, such as removing unnecessary and redundant data, 

ensuring accurate data types, and handling missing data. 

After eliminating redundant rows, focusing on DDoS attacks, 

and discarding records from the UNSW-NB15 dataset, the 

total number of network traffic records is 5,747,026 for 

benign and 305,588 for DDoS. 

The Theil's U statistic is a valuable method for feature 

selection in learning techniques and data analysis, as it helps 

identify the most significant features contributing to variation 

or inequality in the target variable. Its non-parametric nature, 

robustness, interpretability, flexibility, and decomposability 

make it an excellent choice for feature selection. Using 

Theil's U, the most important features are selected based on 

their scores, with the highest-scoring features representing 

the top eight. 

Since deep learning models only work with numerical data, 

nominal or categorical features must first be transformed into 

numerical values. The label encoder method is used for 

encoding because it creates a clean data frame and is quick 

and simple to apply. The features are scaled using the Min-

Max scaling method, also referred to as normalization, to a 

range between 0 and 1. Each feature's minimum and 

maximum values in the dataset are identified, and depending 

on where each value falls between these extremes, it is scaled 

to a number between 0 and 1. 

A training set and a test set were created from the dataset, 

with the training set containing 70% of the data and the test 

set holding the remaining 30%. The test set is used to evaluate 

how well the model performs when applied to unlabeled data, 

while the training set is used to train the model on the 

preprocessed features. The dataset underwent preprocessing, 

and the resulting features were then fed into deep learning 

techniques for learning. Several deep learning techniques can 

be applied to the preprocessed data. It is essential to assess 

the performance of each technique using appropriate 

evaluation metrics before selecting the best one. Techniques 

such as LSTM, BiLSTM, GRU, SimpleRNN, and MLP were 

used. 

The proposed model employs a deep learning architecture 

consisting of two BiLSTM layers, each containing 32 units, 

followed by a single-cell output layer with a sigmoid 

activation function for binary classification. To mitigate 

overfitting between training and testing, dropout layers with 

a rate of 0.2 were incorporated after each BiLSTM layer. This 

regularization technique ensures that the model generalizes 

effectively to unseen data, enhancing overall performance. 

In this architecture, BiLSTM layers are responsible for 

capturing complex, bidirectional temporal dependencies in 

the data, improving classification accuracy. The output layer 

uses the sigmoid function, ideal for binary classification, 

converting the final layer’s output into a probability score 

between 0 and 1. The model is trained using binary cross-

entropy loss to measure the error between predicted and 

actual values. 

Optimization is performed with the Adam optimizer, a 

widely used and effective method that adjusts learning rates 

adaptively during training. The model utilizes ReLU 

activation in the BiLSTM layers to introduce non-linearity, 

which enhances the model's ability to learn intricate patterns 

in network traffic data. Training is conducted for 50 epochs 

with a batch size of 32, balancing computational efficiency 

and convergence. 

Figure 5 demonstrates the reconstruction loss for both the 

training and testing phases, showcasing the model's ability to 

effectively learn from the dataset without overfitting. 

Meanwhile, Figure 6 presents the model's accuracy 

progression over time, highlighting the steady improvement 

of both training and testing accuracy as the number of epochs 

increases. After 50 epochs, the model achieves optimal 

accuracy, demonstrating the effectiveness of the architecture 

and training configuration in handling the NF-UQ-NIDS 

dataset. 

 

 
Fig. 5.  Reconstruction Loss for Binary Classification using BiLSTM 

 
Fig. 6.  Accuracy for Binary Classification using BiLSTM 
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A. Evaluation Metrics 

On the CICIDS2017 dataset, we evaluated our proposed 

NIDS model against other models used for the same dataset, 

and we subsequently applied it to the new NF-UQ-NIDS 

dataset that is suitable for the fog computing environment. In 

comparison, our work yields exceptional and extraordinarily 

high results. Several metrics were used to assess 

performance. 

1) Accuracy: 

Accuracy=  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
     (1) 

 

2) Precision: 

Precision=  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
         (2) 

 

3) Recall: 

Recall=  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
          (3) 

 

4) F1-score: 

F1-score= 2* 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
    (4)            

 

Where, 

TP (True Positive): The proportion of instances that were 

successfully identified as attacks. 

FP (False Positive): The proportion of instances that were 

misclassified as attacks. 

TN (True Negative): The number of cases that were 

mistakenly labeled as normal. 

FN (False Negative): The number of instances that were 

wrongly labeled as attack. 

The performance of the DL techniques that have already 

been discussed is seen in Table I. The results 

displayed indicate that when compared to all other pertinent 

DL techniques, BiLSTM performs the best. Here, we see that 

the BiLSTM performs noticeably better than the other 

techniques. By comparing the performance of the LSTM 

model and the BiLSTM model, for instance, we find that: 

 The BiLSTM model provides an accuracy that is 0.13% 

better than the LSTM model. 

 In comparison to the LSTM model, we achieve a recall with 

the BiLSTM model that is 0.29% higher. 

 We achieve a precision that is 0.45% higher using the 

BiLSTM model than the LSTM model. 

 When we use the BiLSTM model instead of the LSTM 

model, we can achieve an F1 score that is 0.1% higher. 

 

 
 

The dataset, the quantity and quality of training data, the 

hyperparameter settings, and other variables can all affect 

how well deep learning approaches operate. Therefore, 

to guarantee the robustness and generalizability of the 

performance comparisons, it is advised to take these factors 

into account and carry out thorough assessments, such as 

cross-validation or statistical significance testing. 

Figure 7 displays the time to predict spent on each deep-

learning technique which is the sum of time to train and time 

to predict. We discover that the BiLSTM model takes longer 

than other models even though it performs better. Overall, the 

MLP model takes the least time, although it doesn't work very 

well. Despite BiLSTM having the longest overall time, we 

discover convergence with the LSTM and GRU models at 

this point. 

 

 

The proposed model was chosen because it outperformed 

all other models; however, maintaining or attempting to 

improve these excellent results requires consideration of the 

time factor. Therefore, a two-phased model was 

implemented. Preprocessed data is fed into each deep 

learning technique to determine which one optimizes 

processing speed and performance. When testing the NF-UQ-

NIDS dataset with the proposed model using BiLSTM, high 

result rates of 99.62% for accuracy, 96.86% for precision, 

97.86% for recall, and 99.35% for the F1-score were 

achieved. 

The CICIDS2017 dataset, as previously mentioned, is a 

well-known benchmark for evaluating network intrusion 

detection systems (NIDSs) in various studies. We applied the 

proposed model to the CICIDS2017 dataset to compare our 

results with those of these studies. Therefore, under these 

scenarios, evaluating IDSs becomes a superior choice. 

The recall, accuracy, precision, and F1-score estimates for 

the proposed model using BiLSTM on the CICIDS2017 

dataset are compared with previous works in Table II. High 

result rates of 99.91% for accuracy, 99.88% for precision, 

99.73% for recall, and 99.60% for the F1-score were found 

when evaluating the CICIDS2017 dataset with the proposed 

model using BiLSTM. The prediction time is 3 seconds, 

which is more than a 0.30% increase when using the NF-UQ-

NIDS dataset. 

TABLE I 

PERFORMANCE OF PREVIOUSLY DISCUSSED DEEP LEARNING METHODS ON 

PREPROCESSED NF-UQ-NIDS DATASET 

 Accuracy Recall Precision F1-score 

MLP 99.55% 97.69% 96.69% 99.21% 

SimpleRNN 99.56% 97.73% 96.46% 99.51% 

GRU 99.52% 97.64% 96.49% 99.32% 

LSTM 99.49% 97.57% 96.41% 99.25% 

BiLSTM 99.62% 97.86% 96.86% 99.35% 

 

 

 

Fig. 7.  Time to Predict for Each DL Model 
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However, the computational efficiency of the proposed 

model is higher with the CICIDS2017 dataset, and its 

prediction time is greater compared to the NF-UQ-NIDS 

dataset. The NF-UQ-NIDS dataset indicates a reasonably 

efficient processing time for real-time intrusion detection. 

The findings suggest that the proposed fog-based model 

performs exceptionally well on the CICIDS2017 dataset 

compared to previous studies, making it a promising 

candidate for enhancing network security through effective 

intrusion detection. 

 

 
 

The proposed DDoS-BiLSTM model was also used on the 

ToN_IoT dataset, focusing on DDoS attacks, to compare its 

results with those obtained from the NF-UQ-NIDS dataset, as 

shown in Table III. High result rates of 98.77% for accuracy, 

98.37% for precision, 98.73% for recall, and 99.18% for the 

F1-score were achieved when the ToN_IoT dataset was 

evaluated using BiLSTM. The results support the hypothesis 

that using the NF-UQ-NIDS dataset for detecting DDoS 

attacks in fog computing is advantageous, as it demonstrates 

that applying the proposed NIDS model to the NF-UQ-NIDS 

dataset outperforms its application to the CICIDS2017 

dataset. In light of this, fog computing-based IoT networks 

can benefit from the NF-UQ-NIDS dataset, which is designed 

to leverage the unique features of the fog environment, such 

as diverse data sources, flexible network topology, and 

resource-constrained devices. 

 

 
 

The NF-UQ-NIDS dataset offers a more complex and 

realistic testbed for the evaluation of NIDS in fog computing. 

By detecting DDoS attacks in real-world scenarios, the 

proposed model enhances fog computing security through its 

improved performance on the NF-UQ-NIDS dataset. This 

dataset is recommended for assessing DDoS attacks in fog 

computing, as it provides a clearer view of the challenges and 

complexities of this environment. 

This highlights the potential benefits of using the NF-UQ-

NIDS dataset for fog computing-based IoT networks. By 

utilizing the NF-UQ-NIDS dataset, these networks can be 

better equipped to detect, predict, and mitigate DDoS attacks, 

thereby improving their security posture and resilience. 

 

VI. FUTURE WORK 

 The use of NIDS models based on deep learning is a 

popular and effective method for detecting and mitigating 

security risks in fog computing. Future work on this project 

could benefit from employing more sophisticated deep 

learning methods. Transfer learning techniques can enhance 

the performance of deep learning models in fog computing by 

pre-training them on large datasets and then fine-tuning them 

on smaller, domain-specific datasets. Novel techniques such 

as reinforcement learning, attention mechanisms, and one-

shot learning can further improve the precision, efficiency, 

and adaptability of NIDS in fog computing. 

VII. CONCLUSION 

Fog computing is a powerful solution for reducing latency 

in time-sensitive IoT applications. NIDS is one of the most 

important tools for detecting new attack families. This study 

proposes NIDS models based on fog computing, which offer 

more effective and efficient solutions for intrusion detection 

in these environments, demonstrating the promise of deep 

learning-based techniques in addressing the challenges they 

face. 

DDoS attacks pose a significant threat to the security of fog 

computing; thus, novel methods of detection and mitigation 

are required. The proposed fog-based NIDS-specific attack 

detection model includes preprocessing and modeling phases. 

During the preparation stage, the dataset is cleaned and 

balanced, after which significant features are selected using 

Theil's U method, encoded, and scaled for modeling. The 

BiLSTM model is utilized in the modeling step to achieve 

high accuracy compared to other DDoS attack detection 

techniques. 

Numerous testing scenarios were conducted on diverse 

datasets. Many recent studies have used the CICIDS2017 

dataset, which is outdated and does not include recent DDoS 

attacks. In this context, a more appropriate dataset is the NF-

UQ-NIDS dataset, which combines multiple previous 

datasets and includes a large number of records of various 

DDoS attack types. The model was tested using the NF-UQ-

NIDS dataset, yielding excellent results with 99.62% 

accuracy, 96.86% precision, 97.86% recall, and 99.35% F1-

score. Additionally, this model was tested using the outdated 

CICIDS2017 dataset and performed exceptionally well 

compared to earlier research, achieving high rates of 99.91% 

accuracy, 99.88% precision, 99.73% recall, and 99.60% F1-

score. 

TABLE II 

THE PROPOSED MODEL ON THE CICIDS2017 DATASET COMPARED TO 

OTHER EXISTING STUDIES 

Authors Method Dataset Accuracy 

Asad et al. [14] 

Novel Deep 

Neural 

Network 

CICIDS2017 98% 

Sabeel et al. 

[15] 

DNN 
CICIDS2017 

98.72% 

LSTM 96.15% 

Haider et al. 

[16] 
Deep CNN CICIDS2017 99.45% 

Wang et al. 
[17] 

CNN CICIDS2017 98.98% 

Monika et al. 

[18] 
CNN + LSTM CICIDS2017 99.03% 

Mural et al. 

[19] 

Deep 
Classification 

Approach 

CICIDS2017 99.61%. 

Souza et al. 
[20] 

DNN + KNN CICIDS2017 99.85% 

Proposed 

DDoS-

BiLSTM 

Model 

BiLSTM CICIDS2017 99.91% 

 

TABLE III 
PERFORMANCE OF THE PROPOSED FOG-BASED DDOS-BILSTM NIDS ON 

THE NF-UQ-NIDS, CICIDS2017 AND TON_IOT DATASETS 

Dataset Used Accuracy Precision Recall F1-score 

NF-UQ-NIDS 

(DDoS) 
99.62% 96.86% 97.86% 99.35% 

CICIDS2017 

(DDoS) 
99.91% 99.88% 99.73% 99.60% 

ToN_IoT 

(DDoS) 
98.77% 98.37% 98.73% 99.18% 
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