

Abstract—To address the challenges of detecting small traffic

signs, low detection accuracy, complex detection network
models, and large parameter counts, this paper proposes a
lightweight traffic sign detection framework called GSD-YOLO.
This framework integrates the GCSconv module, SENetV2
module, and DySample module. Specifically, the Slim-net
architecture, formed by combining the GCSconv and
VOVGSCP modules, is employed to replace the Conv and C2f
modules in the original YOLOv8 neck network. This
substitution not only reduces the number of parameters and
computational load during training but also achieves a
lightweight design. The lightweight SENetV2 module is
incorporated into the backbone of the detection model, further
lightening the backbone. In the neck network, the DySample
module replaces the original upsampling module, enhancing the
model's upsampling capability while reducing the parameter
count. Compared to the original YOLOv8 detection network,
Grad-CAM visualization shows that traffic signs in the detected
regions appear darker and more concentrated. On the
CCTSDB dataset, the proposed framework achieves an
mAP@0.5 of 95.5%, which is 2.3% higher than the original
YOLOv8 (93.3%). The model size is reduced to 4.2MB, which is
32.2% smaller than the original YOLOv8. The GFLOPs are
reduced by 35%, and the overall parameter count is decreased
by 40%. The lightweight detection framework proposed in this
paper effectively reduces model size, simplifies model
complexity, decreases parameter count, and improves detection
accuracy, achieving significant improvements in the field of
traffic sign detection.

Index Terms— GSConv, Lightweight Framework, Traffic
sign Detection, YOLOV8

I. INTRODUCTION
s a crucial element of unmanned driving technology,
traffic sign detection plays an essential role in ensuring
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driving safety and the efficiency of intelligent transportation
systems. It enables driverless vehicles to accurately
understand road regulations and make informed decisions.
The accuracy of traffic sign detection is of paramount
importance in unmanned driving, as it indirectly affects
vehicle safety and can significantly reduce the likelihood of
traffic accidents. Enhancing the detection accuracy of traffic
signs is therefore vital for the success of unmanned driving.
However, deploying detection models on embedded devices
presents unique challenges. Due to the limitations of
embedded devices, models cannot be excessively large or
complex.
To tackle the challenges posed by the limitations of

embedded devices, this paper introduces a lightweight
detection framework named GSD-YOLO. This framework
integrates three key technologies: GSConv, SENetV2, and
DySample. Specifically, the GSConv + Slim-neck
architecture is employed to replace the conventional Conv
and C2f modules in the original YOLOv8, thereby
significantly reducing computational complexity and
achieving a lightweight operation. Additionally, the
lightweight SENetV2 model is incorporated into the
backbone to further minimize its computational load. Lastly,
the dynamic up-sampling module DySample is utilized to
replace the original up-sampling module, thereby enhancing
the model's up-sampling capabilities.

II. RELATED WORK
In recent years, deep learning models have come to

dominate the field of object detection, with convolutional
neural networks (CNNs) playing a particularly prominent
role and achieving numerous significant milestones [1][2].
These models can be broadly categorized into two types. The
first type is the two-stage detection algorithm based on region
proposals, with notable examples including Region-based
Convolutional Neural Network (R-CNN) [3], Fast R-CNN
[4], and Faster R-CNN [5]. While these two-stage algorithms
excel in accuracy, they face limitations in speed. Their
complex and bulky network architectures, coupled with a
large number of parameters, lead to lengthy recognition
processes. Thus, their computational latency exceeds the
permissible thresholds for time-sensitive traffic sign
identification applications.
The second classification encompasses efficient

single-shot detectors, particularly YOLO [6] and SSD [7]
frameworks. These models achieve real-time performance by
eliminating region proposal stages, instead predicting object
classes and positions directly from convolutional features.
Comparative studies, including the work by Zuo's team [8],
have evaluated these against Faster R-CNN in traffic sign
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detection scenarios. Building on the SSD algorithm, You et al.
[9] developed a network structure specifically designed to
reduce computational complexity and successfully validated
it in traffic sign detection tasks. Yang [10] and Yuan [11]
integrated attention mechanisms into convolutional neural
networks to efficiently identify regions of interest in input
images, thereby optimizing the feature extraction process for
traffic signs in complex backgrounds. Zhang [12] utilized
image enhancement techniques and incorporated the Spatial
Pyramid Pooling (SPP) module into YOLOv3 to fully
leverage fine-grained features and achieve precise target
localization. Additionally, Kai Han and Yunhe Wang from
Huawei's Noah's Ark Laboratory [13] proposed GhostNet, a
lightweight feature extraction backbone network that even
outperforms MobileNet in classification tasks [14].
In summary, deep learning methods have established the

cornerstone of object detection challenges, with traffic sign
detection being no exception. In terms of inference speed,
two-stage networks are generally inadequate for real-time
detection caused by their complex architectures.
Consequently, single-stage networks have emerged as the
primary focus for research and development. Specifically, in
the domain of traffic sign detection, the straightforward and
efficient YOLO-TINY series, as well as lightweight
enhanced networks based on YOLO, are increasingly
becoming the research focal points. However, despite
significant progress, lightweight networks remain relatively
underexplored. For instance, Chakkritt et al. [15] investigated
neural network architecture search (NAS) using
multi-objective evolutionary algorithms, emphasizing the
enhancement of processing speed, reduction of storage space,
and maintenance of high accuracy to develop efficient and
robust convolutional neural network architectures. Zhang et
al. [16] introduced the Ghost-YOLO lightweight model and
proposed the C3Ghost module to exchange feature extraction
module in YOLOv5, aiming to accelerate inference speed.
Hu et al. [17] developed the Micro-YOLO algorithm based
on YOLOv3-TINY, using compressed excitation blocks
instead of inverted residual bottleneck convolution
algorithms to significantly reduce parameters and
computational load while preserving detection performance.
Li et al. [18] proposed the edge-to-YOLO algorithm,
employing lightweight ShuffleBlock and strip depth
convolutional attention modules to replace the backbone
network of YOLOv5M, achieving faster detection while
maintaining accuracy. Ding et al. [19] engineered a
lightweight network model using depthwise separable
convolution in the head and neck sections to avoid excessive
resource consumption.
Building on these efforts, Zhang et al. [20] optimized the

original convolution operation in YOLOv5 through
convolutional stacking and depthwise convolution within the
Ghost module. Wu et al. [21] presented the DET-YOLO
enhancement algorithm based on YOLOv4, leveraging the
detached-oriented adaptive pyramid architecture for
optimizing Multi-Scale feature blending. He et al. [22]
combined the Convolutional Block Attention Model into
YOLOv5, augmenting feature weights in challenging images
and improving the network's feature expression capabilities,
thereby refining detection accuracy. Chen [23] combined the
high-performance MobileNetV3-Large with CBAM and

Focal Loss, demonstrating superior overall performance
compared to other convolutional neural networks. These
advancements highlight the ongoing efforts to balance
efficiency and accuracy in lightweight network architectures
for object detection.
To deal with challenges highlighted earlier, this paper puts

forward a lightweight traffic sign detection framework
named GSD-YOLO, which integrates three key components:
the GCSconv module, the SENetV2 module, and the
DySample module. Specifically, the Slim-net network
structure, formed by combining the GCSconv and
VOVGSCP modules, is used to exchange the Conv and C2f
modules in the original YOLOv8 neck network. This
substitution reduces the number of parameters and
computational load, and it also improves detection accuracy,
thereby achieving a lightweight operation. Additionally, the
lightweight SENetV2 model is incorporated into the
backbone of the detection framework, further streamlining
the network structure and making the backbone more
efficient. In the neck network, the dynamic DySample
module exchange the original upsampling module,
improving the model's upsampling capability while
simultaneously reducing the overall number of parameters in
the detection model.
The main contributions of this paper are as follows:
1. Use the Slim-net network structure composed of

GCSconv + VOVGSCP modules to replace the Conv and C2f
modules in the original YOLOV8 neck network.
2. Using SENetV2 module, the lightweight model

SENetV2 is integrated into the detection model backbone to
simplify the network structure and make the backbone more
lightweight.
3. The dynamic module DySample is used in the neck

network to replace the original up-sampling module, which
improves the up-sampling ability of the model.

Fig. 1: GSD-YOLO Network Structure
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Fig. 2: Architecture of GSD-YOLO

III. RESEARCH METHODOLOGY
In this paper, we propose a novel detection framework

named GSD-YOLO. Particularly, the C2f_SENetV2 module
is incorporated within the backone network to boost
performance, DySample upsampling operator is incorporated
into the neck to optimize feature fusion, and an attention
mechanism is introduced into the detection head via the
Slim-neck network structure. These innovations collectively
simplify the overall network architecture, reduce
computational complexity, and minimize model size while
preserving the accuracy of the detection framework.

A. GSConv
In this thesis, the Slim-neck network structure is employed

in the neck section, significantly enhancing performance in
the realm of unmanned driving. The core concept is to
streamline the neck while maintaining a robust and reliable
backbone, thereby reducing maintaining detection accuracy
while reducing the model size. The Slim-neck network
structure is characterized by its ability to mitigate the
computational complexity of the neck and optimize its
architecture, effectively reducing model size and maintaining
detection precision. The Slim-neck architecture is composed
of GSConv and VoVGSCSP modules.
The GSConv structure, as illustrated in the figure,

integrates lightweight techniques from GhostNet and
ShuffleNetv. Specifically, the GSConv module [24]
represents a unique convolution operation designed to
approximate the output of depthwise separable convolution
to that of standard convolution. The GSConv module
combines depthwise separable convolution (DConv) [25],

standard convolution (SConv) [26], and Shuffle modules. By
integrating DConv, SConv, and Shuffle mixed convolution,
GSConv performs intensive convolution computations while
maximally preserving inter-channel connections. This
approach significantly reduces computational cost compared
to SConv while achieving the same output effect.
Incorporating the GSConv module into the model effectively
reduces computational load and cost while maintaining
model performance.
The VoVGSCSP module is a cross-stage

partial-architecture network structure on the basis of GSConv
and Conv. Its introduction aims to enhance the model's
nonlinear capabilities, improve parameter transfer efficiency,
and thereby strengthen the model's generalization ability.

    YOLO 8 2 / 2 2V input GSConv SC C  (1)

In this article, the input feature map (denoted as "input")
denotes the data, while "(C2/2 × 2)" signifies the result after
two rounds of depthwise convolution. To achieve efficient
and intensive convolution computations, GSConv—a
specialized convolution approach—integrates standard
convolution (SC), depthwise separable convolution (DSC),
and shuffle hybrid convolution. This method maximizes the
preservation of hidden inter-channel connections,
significantly reducing computational costs while achieving
equivalent output performance to standard convolution (SC).
Additionally, a cross-stage partial-architecture network

module named VoV-GSCSP is introduced, on the basis of
GSConv. The integration of convolution techniques such as
GSConv and VoV-GSCSP enhances the model's nonlinear
capacity promotes parameter sharing, Consequently
improving the model's transferability performance. This
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algorithm efficiently diminishes computational complexity
and streamlines the network structure while maintaining
sufficient accuracy, thus minimizing the risk of model
overfitting.
In this thesis, the Slim-neck network structure is employed

in the neck section to replace the original C2f module of
YOLOv8 with GSConv and VoVGSCSP modules. This
modification allows the detection model to maintain its
accuracy while simplifying the network architecture,
reducing computational load and cost, decreasing model size,
and rendering the detection model more lightweight.

Fig. 3: VOVGSCSP module structure diagram

B. SENetV2
Traffic signs are typically small and diverse, and their

recognition becomes particularly challenging in low-light
environments, which can considerably impact the
comprehensive performance of model detection. The
introduction of a focus-enhancing module can boost the
model's feature extraction proficiency, allowing it to
concentrate on salient feature details while ignoring complex
background noise [27]. The SENetV2 network structure
integrates a squeezing-excitation module (SaE) with dense
layers, thus enhancing the model's capacity for capture
channel patterns and global context. In contrast to alternative
attention mechanisms, such as the traditional
squeezing-excitation (SaE) [28] and Efficient Channel
Attention (ECA) [29], SENetV2 demonstrates greater
efficiency and achieves superior feature representation for
traffic signs.
SENet, put forward by Jie Hu et al. [30], innovates through

the introduction of a "feature recalibration" mechanism. This
mechanism bolsters the network's ability to capture key
features by evaluating the significance of individual channels.
SaE (Squeeze and Excitation), a lightweight attention
technique, can be flexibly incorporated within any level of
convolutional neural networks to boost performance. The

fundamental concept underlying SENet is to use SaE
modules to dynamically adjust the weights of every
individual channel, thereby amplifying retain valuable traits
while curbing extraneous attributes.
The SENetV2 attention module combines concepts from

the ResNeXt network and the SaE module. ResNeXt
integrates the multi-branch design of the initial module with
subsequent modules to form a unified architecture. In the SaE
module, the feature map is first reduced in dimensionality via
global average pooling after standard convolution. It then
calculates the weight of each channel using a pair of fully
connected layers succeeded by a Sigmoid activation. These
weights acquired through learning are subsequently
multiplied element-wise with the feature map fed into
produce a weighted feature map.

Fig. 4: GSConv module structure diagram

SENetV2 refines this process by employing a more
sophisticated strategy during the squeezing phase to capture
richer global information. It then excites the global features,
analyzing the correlations between channels to derive their
respective weights. Compared to the original SENet,
SENetV2 introduces a multi-branch fully connected layer
design in the excitation phase. This enhancement strengthens
the network's capacity for expressing global features and
further improves its feature recalibration capabilities.
SENetV2 is adept at efficiently identifying and extracting

image regions that are rich in information pertinent to the
target while automatically filtering out background features.
Consequently, SENetV2 enables the model to focus on
meaningful feature information, effectively eliminating the
interference of irrelevant environmental details. This
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enhances detection precision and dependability spanning a
broad spectrum of complex scenarios.
Thus, incorporating the C2f_SENetV2 module into the

backbone, as proposed in this paper, significantly boosts the
model's capability to extract traffic sign features in complex
environments, resulting in an enhancement of the overall
detection performance of traffic signs.

Fig. 5: Structure of the SENetV2 module

Fig. 6: Structure diagram of SaE module

C. DySample
To enhance the efficiency and quality of image processing,

especially in scenarios like high-resolution reconstruction
and traffic sign detection, conventional upsampling
techniques such as nearest-neighbor interpolation
interpolation and linear interpolation are often limited by
detail loss and blurring. In order to tackle these limitations,
this thesis presents the DySample module [31] as an
alternative. DySample is an extremely lightweight and highly
efficient dynamic upsampler that can flexibly downsample
input feature maps by dynamically generating offsets. Its
adaptive computational adjustments make it highly efficient
and versatile when handling various input feature maps.
Compared to models that use transposed convolution for

upsampling, DySample demonstrates superior performance
and resource utilization. It employs a differential sampling
strategy, which selectively samples only the most significant
changes in the data distribution. This approach significantly
reduces computational and storage demands. The key
advantage of DySample lies in its unique differential
sampling (DS) strategy. By precisely targeting the most
differentiated portions of the data, this strategy minimizes
unnecessary data processing, Consequently, it elevates both
the precision and effectiveness of upsampling.
The grid_sample function resamples the input feature map

X using the coordinates specified by the sample set δ. This
process involves employing bilinear interpolation to generate

a new feature map X′ of size C×H2​ ×W2​ .
 ' _ ,X grid sample X  (2)

Here, the feature map X has a size of C×H1​ ×W1​ ,
while the sample set δ has a size of 2×H2​ ×W2​ , where
the first two dimensions correspond to the x and y
coordinates, respectively.

Fig. 7: Sampling based dynamic upsampling

Assume that the upsampling scale factor is represented by
s, and the dimensions of the feature map X are C×H×W. An
output offset O with dimensions 2s2×H×W is generated
through a linear layer, where the input channel size is C and
the output channel size is 2s2. Afterward, the offset O is
reshaped to dimensions 2×sH×sW using a pixel
rearrangement algorithm. Ultimately, the sampling set δ is
acquired by superposing the offset O onto the original
sampling grid G. The process is defined as follows:

 O linear X (3)
Ultimately, The upsampled feature map X′ , which has

dimensions C× sH× sW, is produced by employing the
sampling setδ in conjunction with the grid_sample function.
In the YOLOv8 algorithm, the integration of DySample
effectively leverages its strengths. Traditional upsampling
operations, when applied to tasks such as traffic sign
detection, often fail to maintain the model's lightweight
nature due to significant computational demands and a
substantial number of parameters. This can negatively impact
the detection performance of traffic signs. In contrast,
DySample, as a lightweight and efficient dynamic upsampler,
not only addresses this issue but also significantly enhances
image resolution. Particularly in handling small and easily
distorted traffic sign images, DySample demonstrates a
notable improvement in recognition capability.

Fig. 8: DySample module structure diagram

IV. EXPERIMENT AND ANALYSIS

A. Experimental Settings
In this paper, the improved YOLOV8 detector serves as

the core detection network, and the input image is uniformly
adjusted to a size of 640×640. In the course of the training
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procedure, the initial learning rate is configured as 0.001, the
training momentum is assigned a value of 0.98, and the
weight decay parameter is set at 0.0001. The number of
training epochs is established at 100, and the batch size is
determined to be 8. The PyTorch framework was utilized in
the experiment. The model training and test codes were run in
a Windows environment with CUDA 11.2. The processor
was an Intel® CPU Core i7-11100, the graphics card was an
RTX 3060Ti, and the graphics memory capacity was 8 GB.

B. Introduce datasets
In this study, the CCTSDB 2021 dataset is utilized to

thoroughly assess the improved YOLOV8 detection network.
This dataset gathers over 1,000 car dashcam videos, yielding
17,856 frames in total. It enriches the dataset by extracting
and storing key frames featuring traffic signs. Building upon
CCTSDB 2017, CCTSDB 2021 adds 5,268 new traffic scene
images, including 3,268 training images and 2,000 test
images. Additionally, it contains 5,000 low-light traffic sign
images of various types and shapes.
The dataset is further categorized based on three

dimensions: category meaning (three types), sign size (five
types), and weather conditions (six types). Per common road
traffic sign definitions, signs are grouped into prohibited,
mandatory, and warning signs. By size, they are classified as
XS, S, M, L, and XL. Weather-wise, images are categorized
as foggy, snowy, rainy, night-time, sunny, or cloudy.

C. Evaluation index
In order to validate the superiority of the proposed method

in traffic sign detection, the CCTSDB 2021 dataset was
contrasted with other models such as the original YOLOX,
YOLOV7-tiny, YOLOV8, and PVF–YOLO. The
comprehensive performance of the proposed method was
appraised by means of indicators like model size, detection
accuracy (P), recall rate (R), mean average precision (mAP),
number of parameters, and FLOPS.

Re TPcall
TP FN




(4)

Pr TPecision
TP FP




(5)

 
1

1 Pr
k

mAP ecision
K

  (6)

 2FLOPs=2 H 1i oW C K C     (7)
Model capacity is gauged by parameter count and FLOPs,

reflecting computational demand and complexity. Model size,
related to parameters, denotes learnable component
magnitude. Evaluation metrics include TP (correct positive
identification), FN (incorrect negative classification), and FP
(wrong positive categorization). Precision, recall, and mAP
are calculated from these, with mAP derived from average
precision across classes. Notations like Ci, Co, H, W, and K
are also key.

D. Evaluation index
Four methods, namely YOLOV3, YOLOV5s, YOLOX,

YOLOV7-tiny, YOLOV8, and PVF - YOLO, were selected
to be compared with the method proposed in this paper. The
CCTSDB dataset was utilized to conduct comparative
experiments under the same training strategy and
hyperparameters. As presented in the following table, the
model size, number of parameters, FLOPs, accuracy rate,
recall rate, and mAP0.5 of the proposed method all exhibit
optimal values.

As a result, the detection capability of the model achieved
by the proposed approach outperforms that of the alternative
comparison methods. Despite preserving the detection
accuracy, the proposed method achieves a reduction in model
size, parameter count, and overall complexity, thereby
rendering the model more streamlined and lightweight.

TABLE I
COMPARING WITH OTHER METHODS ON CCTSDB

Approaches Size Parameter GFlOPs P R mAP

YOLOV3 120 112M 150 0.896 0.771 0.812

YOLOV5s 14.3 13.2M 14.2 0.883 0.752 0.801

YOLOX 69 8.96M 26.6 0.813 0.795 0.802
YOLOV7-tiny 74.5 6.2M 13.3 0.965 0.939 0.928
YOLOV8 6.2 3.0M 8.1 0.945 0.899 0.933
PVF-YOLO 80 10.36M 32.1 0.852 0.848 0.848

Ours 4.2 1.9M 6.3 0.959 0.913 0.955

TABLE Ⅱ
ABLATION EXPERIMENTS ON CCTSDB

Approaches GSConv SENetV2 DySample Size Parameter GFLOPs mAP

YOLOV8 6.2 3006233 8.1 0.933

A √ 5.9 2802025 7.4 0.949

B √ √ 4.2 1950841 6.3 0.95

Ours √ √ √ 4.2 1816479 6.0 0.955
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Fig. 10: Comparison of prediction effect between YOLOv8 and GSD-YOLO

E. Ablation experiment
To assess the efficacy of the enhanced method presented in

this paper, comparative experiments are carried out using an
identical training strategy and hyperparameters. The
effectiveness and practicality of the improved method are
confirmed through a comparison of the experimental
outcomes.

As depicted in the figure below, when solely employing
GSConv, there is a notable decrease in model size, parameter
count, and FLOPs, albeit with a slight reduction in model
detection performance. When both GSConv and SENetV2
are employed, there is a significant reduction in model size,
parameter count, and FLOPs, resulting in a more streamlined
model. When the three modules—GSConv, SENetV2, and
Dysample—are implemented, in comparison to the original
YOLOV8, there is a 32.2% reduction in model size, a 40%
decrease in the number of parameters, a 35% drop in
GFLOPs, and a 2.3% increase in average accuracy.

F. .Heat map results
In this paper, the Grad-CAM [32] heat map method is

employed to represent the weight of traffic sign area
detection classification via the color depth of the region
generated by the heat map. In the original YOLOV8 model,
the regions produced by the heat map are not concentrated on
traffic signs, and the weight of detection classification is
relatively low. In contrast to the original YOLOV8, the
method proposed in this paper is more beneficial for model
detection, as the color of the heat map generated area is
darker and the weight of detection classification is greater in
the traffic sign area.

G. Experimental results
As illustrated in the figure, the detection outcomes are

visually represented on the CCTSDB dataset and contrasted

with YOLOV8 to showcase the impact of the method
introduced in this paper. According to the results shown in
the picture below, The proposed method demonstrates
superior detection accuracy compared to the original
YOLOV8 model.

Fig. 9: Comparison results of heat map

H. P-R result
As depicted in the figure, based on the results of the

training conducted on the CCTSDB dataset, the accuracy rate
(P) and the recall rate (R) are plotted within the plane
coordinate system, with the vertical axis representing the
accuracy rate and the horizontal axis representing the recall
rate.
As observed from the figure, when compared to the

original YOLOV8 model, the Precision-Recall (PR) curve of
the proposed approach is situated nearer to the upper right
quadrant of the coordinate plane.This indicates that the model
demonstrates better performance and higher accuracy when it
comes to identifying positive sample.
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YOLOV8 Ours
Fig. 11: PR curve

V. CONCLUSION
Addressing the challenges of detection difficulty, low

accuracy in identifying small traffic signs, and the
complexity of detection network models with excessive
parameters, this study introduces a lightweight traffic sign
detection framework known as GSD-YOLO. This
framework integrates the GCSconv module, SENetV2
module, and Dysample module to achieve a balance between
network lightweighting and detection efficacy.To achieve a
more streamlined network while maintaining detection
performance, the Slim-net architecture, comprising
GCSconv + VOVGSCP modules, is employed to replace the
Conv and C2f modules in the original YOLOV8 neck
network. This substitution not only reduces the parameter
count and computational overhead during training but also
enhances detection accuracy, facilitating lightweight
operation. As a result, the model size and computational
complexity are significantly reduced.The lightweight
SENetV2 module is incorporated into the backbone of the
detection model to simplify the network architecture and
promote a more lightweight backbone. This allows the
model to adaptively modulate the significance of feature
channels, thereby improving sensitivity and accuracy for
small targets and minimizing detection errors and omissions.

Furthermore, the dynamic module DySample is
implemented in the neck network to replace the original
up-sampling module, enhancing the model's up-sampling
capabilities and reducing the parameter count in the
detection model.
In contrast to the original YOLOV8 detection network,

the proposed framework in this study visualizes gradient
information in the Grad-CAM method through a heat map.
The traffic signs within the detected region appear darker
and more concentrated, with a more focused distribution of
gradient information in the image, which is advantageous for
target detection.
When evaluated on the CCTSDB dataset, the proposed

framework achieves an mAP@0.5 value of 95.5% (93.3),
surpassing the original YOLOV8 model by 2.3%. The
precision (P) is 0.945, and the recall (R) is 0.953, both of
which outperform the original YOLOV8's 0.94 and 0.95,
respectively. The model size is reduced to 4.2MB,

representing a 32.2% decrease compared to the original
YOLOV8. The number of parameters is 1,816,479, a 40%
reduction from the original YOLOV8, and the GFLOPs are
6.0, a 35% decrease compared to the original YOLOV8. The
lightweight detection framework presented in this study
effectively reduces model size, simplifies model complexity,
decreases parameter count, and enhances detection accuracy,
yielding promising results in the realm of traffic sign
detection.
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