
 

  

Abstract—Due to the influence of background noise, 

traditional pavement crack segmentation methods are unable 

to fully extract crack features and effectively fuse them, 

resulting in low segmentation accuracy, large segmentation 

errors, and numerous missed detections. To solve these issues, 

this paper proposes an I-U-Net (Improved U-Net) pavement 

crack segmentation algorithm based on the U-Net network. 

Firstly, the introduction of Bot-Res (Residual Module with 

Bottleneck Structure) facilitates the network in obtaining 

complete crack information, while the bottleneck structure 

reduces the high computational load of the residual module. 

Secondly, to eliminate the interference of background noise, we 

innovate the O-CBAM (Optimized Convolutional Block 

Attention Module), which enhances the shallow crack contour 

information and effectively acquires the spatial position 

information of deep crack pixels. Finally, an EDMSF 

(Encoder-Decoder Multi-Scale Fusion) module is constructed 

based on the idea of multi-scale fusion. Different convolutional 

kernels of different sizes are selected according to different 

levels to extract crack information, thereby enriching the 

extracted image feature information and improving 

segmentation performance. Additionally, to tackle the issue of 

uneven distribution between positive and negative samples, an 

enhanced cross-entropy loss function is introduced. We 

evaluate the performance of the I-U-Net network on 

CRACK500, CFD and our Self-built Dataset. Experimental 

results demonstrate that the proposed I-U-Net achieves 

superior performance across all evaluation metrics, with 

95.75% accuracy, 96.06% precision, 86.83% recall, 91.79% 

F1-score, and 92.27% mIoU. Compared to the baseline U-Net, 

the I-U-Net exhibits significant improvements in segmentation 

performance, thereby validating the effectiveness of the 

proposed methodology. 

 
Index Terms—pavement crack segmentation, I-U-Net, 

Bot-Res, O-CBAM, EDMSF, cross-entropy loss function 

I. INTRODUCTION 

AVEMENT cracks, as a manifestation of structural 

degradation during road service, exhibit distinct textural 

characteristics. However, fine cracks occupying minimal 

pixel areas demonstrate low contrast against background 

textures and high susceptibility to noise interference. These  
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inherent challenges cause conventional segmentation 

algorithms to struggle with accurate crack extraction. Recent 

breakthroughs in deep learning, particularly convolutional 

neural networks, have driven rapid advancements in 

image-based pavement crack segmentation technologies, 

offering solutions to these longstanding limitations. 

In recent years, the digital image processing methods [1], 

[2] based on machine learning [3], [4] and neural networks 

[5] have demonstrated transformative potential across 

computer vision domains, including image classification [6], 

target detection [7], and semantic segmentation [8]. These 

methods have been proven to have faster detection speeds, 

greater accuracy, and more convenience than conventional 

manual inspection techniques.  

Dang et al. [9] designed an enhanced YOLOFNC network 

based on the YOLOv7 model, which achieved better results 

by comparing the detection results with other models on four 

different datasets through the newly designed C3-faster 

module, the introduction of the CA attention mechanism, 

and the incorporation of normalized Wasserstein distances 

into GIoU (Generalized IoU). Yang et al. [10] proposed a 

new network structure called feature pyramid and 

hierarchical advance network, which combined contextual 

information with low-layer features in the form of the 

feature pyramid and nested the samples weighted 

hierarchically during training so that complete crack contour 

information were preserved in the detection results, however 

the algorithm missed detection for small cracks. Cao et al. 

[11] proposed a deeply parallel feature fusion module that 

utilized the SE-Net attention mechanism and Blur-pool 

pooling operation to remove complex backgrounds, and the 

problem of crack discontinuities in segmentation results was 

resolved. Inspired by Seg-Net, Chen et al. [12] proposed a 

segmentation model PCSN (Pavement Crack Seg-Net) for 

crack detection, which accepted images of arbitrary size as 

input data and outperformed other algorithms in crack 

detection on the same dataset.  Cao et al. [13] proposed a 

crack detection method based on deep fully convolutional 

networks and evaluated the performance of three different 

pre-trained network frameworks as the backbone of 

convolutional neural network encoders, and all three 

pre-training frameworks achieved good crack detection 

results, but the network had too many parameters and the 

network training took a long time. Wang Y et al. [14] 

proposed an encoder-decoder semantic segmentation 

network named RUC-Net (Residual U-Net based        

Convolutional Neural Network) for pixel-level pavement 

crack image segmentation, the spatial channel squeezing and 

excitation attention modules were introduced to improve 

detection effect, and the focal loss function was used to deal 
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with class imbalance in pavement crack segmentation tasks, 

finally good detection accuracy was obtained. Kang et al. 

[15] proposed a new semantic transformer representation 

network for real-time crack segmentation at the pixel level in 

complex environments. The network consisted of a 

squeezed and excitation attention-based encoder, a 

multi-headed attention-based decoder, coarse up-sampling, 

a focus-shifting loss function, and a learnable wiggle 

activation function, so the fast-processing speed of the 

network was maintained, concise network design was 

realized, and the network showed good performance in the 

evaluation. Liu et al. [16] proposed a two-step convolutional 

neural network-based pavement crack detection method. 

The modified U-Net was proposed in the second step, and a 

spatial channel squeezing and excitation module were added 

to the up-sampling section. The method of first detection and 

then segmentation was adopted, and the experiments have 

proven that this method could improve segmentation 

accuracy. Ale et al. [17] proposed a crack recognition 

method based on a deep convolutional neural network fusion 

model. Crack classification and segmentation accuracy were 

improved by improving the network feature extraction 

structure and optimizing the model parameters. Cha Y J et al. 

[18] proposed an improved convolutional neural network. 

The model consisted of a standard convolution, a separable 

convolution module, a modified Atlas spatial pyramidal 

ensemble module, and a decoder module. The results 

showed that the network could detect the crack well unless 

the crack features were too ambiguous. The proposed model 

was compared with the latest models, and the results showed 

that the network had the advantages of fewer network 

parameters and faster computational speed. Zhang et al. [19] 

proposed a multi-size feature fusion network with an 

attention mechanism. In order to solve the problem of tiny 

crack loss during segmentation, a double attention module 

was added to the network structure to better separate the tiny 

crack from the background, and the edge details of tiny 

crack were preserved by multi-size fusion. For complex 

scenes in practical applications, Kang et al. [20] proposed a 

new STRNet (Semantic Transformer Representation 

Network) for pixel-level real-time crack segmentation in 

complex scenes. The network contained a new encoder STR 

module, decoder with attention module, and coarse 

up-sampling. The new loss function was trained in the 

designed network in order to improve crack segmentation 

performance, the lightweight and the good segmentation 

effect of the network were obtained. Cha et al. [21] proposed 

a concrete crack damage detection method based on CNNs 

(convolutional neural networks), aiming at the crack 

structure health monitoring research. By utilizing the deep 

structure of CNNs based on visual method, concrete cracks 

detection could be achieved without calculating the defect 

features. Crack images were tested under various shooting 

conditions in the experiment, and sound detection results 

were obtained.  

The above crack segmentation methods have achieved 

certain results, but the processing of crack background noise 

is still insufficient. Due to the influence of image 

background noise,  the crack contour information cannot be 

completely retained, resulting in false detection and missed 

detection in the segmentation of fine cracks. To solve the 

above problems, this paper proposes an improved pavement 

crack segmentation algorithm based on U-Net network. The 

main contributions of this paper are as follows. 

Firstly, the Bot-Res module is introduced into the U-Net 

network to obtain complete crack information and reduce 

the number of parameters and calculation of the model. 

Secondly, the dimensionality reduction convolution layer 

is added in the O-CBAM module to reduce the network 

parameters, and the dilated convolution layer is introduced 

to enhance the spatial position information of deep pixels of 

cracks, especially the long-distance information. 

Thirdly, the EDMSF module is constructed to fuse the 

crack comprehensive features of different layers in the 

network. The module can generate the corresponding feature 

map using convolution kernels of different sizes according 

to different layers, and finally realize the multi-scale fusion 

of crack features. 

Finally, an improved cross-entropy loss function is 

proposed to solve the problem of unbalanced pixel samples 

in the training process of crack segmentation network, so 

that the network can obtain more refined segmentation 

results. 

The rest of this paper is organized as follows. In Part II, 

the I-U-Net network model is proposed. In Sections 2.1, 2.2, 

and 2.3, the Bot-Res, O-CBAM, and EDMSF modules are 

described, respectively, and the role of each module is 

discussed in the network. In Part III, the relevant 

experiments are given, including the establishment of 

datasets, evaluation indicators, comparative experiments of 

each module and related networks, and the experimental 

results, which verify the advantage of the I-U-Net network. 

In Part IV, the conclusion is drawn. 

II. THE I-U-NET NETWORK MODEL 

The presence of fine cracks is particularly susceptible to 

background noise interference, leading to the loss of critical 

edge feature information during feature transmission. This 

phenomenon results in inadequate utilization of 

discriminative crack features within the U-Net [22] 

encoder-decoder architecture, consequently compromising 

segmentation accuracy and failing to meet practical 

engineering requirements. To address these limitations, this 

study proposes an I-U-Net network model specifically 

designed to enhance performance in pavement crack 

segmentation tasks. The I-U-Net network structure is shown 

in Fig. 1. 

To address the issue of crack feature information loss 

during transmission, we introduce a Bot-Res module to 

replace conventional convolutional layers in the 

encoder-decoder architecture. Secondly, to mitigate 

interference from crack background noise, an O-CBAM 

module is incorporated into skip connections, enhancing the 

fusion of shallow crack contour information and deep 

pixel-level spatial location features. Finally, an EDMSF 

module is constructed to comprehensively utilize multi-level 

bridge crack features across the network, thereby addressing 

missed detection of crack contours and fine cracks. The 

following sections elaborate on the I-U-Net network by 

introducing the Bot-Res module, O-CBAM module, and 

EDMSF module. 
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Fig. 1.  The I-U-Net network 

 

A. The Bot-Res Module 

In this paper, we introduce the residual module to replace 

the traditional convolutional layer. This is done to minimize 

the loss of crack features during image transmission and to 

extract more semantic information from them. The residual 

module [23] employs a bottleneck structure to optimize the 

network. Its advantage lies in the use of multiple small-sized 

convolutional kernels instead of a single large-sized one. 

This approach reduces the number of module parameters 

and enhances the network's computational efficiency. 

In terms of parameters, taking the third layer of the 

encoder as an example, the original residual module 

comprises two convolution layers with a convolution kernel 

size of 3×3. During the convolution process, each 

convolution layer has a parameter quantity of 3×3×128×128, 

resulting in a total parameter quantity of 294912 for the two 

layers. The improved residual module features three stages 

in the convolution process, as illustrated in Fig. 2 Input x 

passes through the first 1×1 convolution layer, with a 

parameter quantity of 1×1×128×64, then proceeds to the 3×3 

convolution layer, where the parameter quantity is 

3×3×64×64. Finally, it passes through the last convolution 

layer, where the parameter quantity in the 1×1 convolution 

process is 1×1×64×128. After undergoing these three 

convolution layers, the total parameter quantity in the 

process reaches 53248, 81.9% reduction. By comparing the 

internal parameters of the module before and after the 

improvement, it becomes evident that the calculation 

number of the improved residual module has significantly 

decreased. Additionally, the BN [24] (Batch Normalization) 

layer is inserted before each convolution layer, simplifying 

the network parameter adjustment process. Furthermore, the 

activation function ReLU is incorporated, reducing the 

model's sensitivity to network parameters and enhancing 

network learning stability.  
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Fig. 2.  The Bot-Res module 

B. The O-CBAM Module 

The CBAM (Convolutional Block Attention Module) 

[25], [26] is positioned at the skip connection of the network, 

aiming to enhance the extraction of target features while 

mitigating the impact of background noise. The CBAM 

comprises two distinct sub-modules: channel attention [27] 

and spatial attention [28], [29]. The channel attention 

module serves to bolster the acquisition of shallow crack 

contour information, whereas the spatial attention module 

focuses on amplifying the spatial position details of deep 

crack pixels. The integration of CBAM elevates the count of 

network parameters, thereby augmenting computational 

demands. Simultaneously, the amalgamation of crack 

weight information remains inadequate. The O-CBAM 

introduced in this paper not only diminishes the quantity of 

network parameters but also guarantees comprehensive 

integration of crack weight information. Based on the 
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significance of feature information, corresponding weights 

are formulated to weight the shallow contour details and 

spatial position information of deep crack pixels, thereby 

eliminating background noise and elevating the model's 

segmentation precision. The O-CBAM structure is shown in 

Fig. 3. 

 

Input Feature

Channel 

Attention 

Module

×

Spatial 

Attention 

Module
×

Refined Feature
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Fig. 3.  The O-CBAM module 

 

Our method reduces the number of network parameters 

through the channel attention module. First, the feature map 

x enters the channel attention module. It is then passed 

through a 1×1 convolutional layer to reduce the number of 

channels by half [30]. Next, both global average pooling and 

global max pooling are applied to extract shallow contour 

information of cracks in the lower-dimensional space, 

generating corresponding channel weights. Then, after a 1×1 

convolutional layer to increase dimensionality, the feature 

map is restored to the original channel dimension while 

preserving spatial information of pixels. Then, the weights 

are allocated to each stage of the shrinkage path, and A 

shared MLP (Multi-layer Perceptron) [31], [32] is utilized to 

learn task-specific weights, filtering irrelevant features. 

Finally, the corresponding weight feature map is generated 

through the activation function. This process only deals with 

the channel dimension of the feature map, and preserves the 

spatial information of the feature map. The optimized 

channel attention module is shown in Fig. 4. 
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Fig. 4.  The optimized channel attention module 

 

The expression of channel attention module is as follows. 

 c ( ) ( ( ( )) ( ( )))M x MLP AvgPool x MLP MaxPool x  (1) 

 c
c 1 0 1 0( ) ( ( ( )) ( ( )))c

avg maxM x W W x W W x  (2) 

σ Represents the sigmoid activation function. 0W  and 1W  

are the weights of the shared full connection layer, satisfying 

0

c

r cW x  and 1

c c

rW x , where c  denotes the number of 

feature channels, r is the reduction rate, x  represents the 

input feature map, ∫ expresses the sigmoid activation 

function. AvgPool and MaxPool indicate average pooling 

and max pooling, respectively, and MLP signifies the full 

connection layer. 

The enhancement of shallow crack contour information is 

completed in the channel attention module. To effectively 

capture spatial information – particularly long-range 

contextual dependencies in deep crack regions – our spatial 

attention module replaces standard convolution with dilated 

convolution. This operation aggregates multi-scale 

contextual features from different receptive fields, thereby 

improving crack segmentation accuracy. 

In the dilated convolution layer, the dilated convolution 

kernel with a dilation rate of 2 is used, and the convolution 

process is shown in Fig. 5. 

 

 
Fig. 5.  The dilated convolution is 5 × 5 and the dilation rate is 2 

 

In terms of computational complexity, the size of the 

convolution kernel in the feature extraction process is n×n, 

and the convolution operation is mathematically defined as: 

 
,

0, 0
( ) ( , ) * ( , )

i n j n

i j
Q x f i j g i j  (3) 

( )Q x represents the feature value produced after 

convolution, ( , )f i j  denotes the value of the pixel of the 

input image, and ( , )g i j  means the corresponding weight in 

the convolution kernel. That is, when the convolution kernel 

size is 5×5, and 25 points multiplication operations are 

required. However, for the dilated convolution, the 

convolution kernel size is n×n during feature extraction, and 

its expression is as follows. 

 
,

0, 0
( ) ( 1, 1) ( 1, 1)

j n j n

i j
W x f ri rj g ri rj  (4) 

( )W x  represents the feature value produced after dilated 

convolution, ( 1, 1)f ri rj  expresses the value of the 

pixel of the input image, ( 1, 1)g ri rj  signifies the 

corresponding weight in the convolution kernel, and r  

indicate the dilation rate of the dilated convolution. In this 

paper, the dilated convolution with convolution kernel size 

of 5×5 and dilation rate of 2 is used. It can be found that 

Despite maintaining equivalent computational complexity to 

standard convolution, dilated convolution achieves a larger 

receptive field without increasing parameters. Generally, 

The dilated convolution kernel with size is n×n, which 

requires n×n point multiplication. However, due to the 

existence of dilution ratio, a larger receptive field can be 

obtained by n×n point multiplication. In this paper, For a 

dilated convolution kernel of size n×n with dilation rate r, 

the effective receptive field is [(n−1)×r+1]×[(n−1)×r+1]. 

For example, a 5×5 kernel with r=2 expands the receptive 

field to 9×9. The receptive field is wider, which can more 

effectively fuse the weight information of long-distance 

cracks. 

The optimized spatial attention module is shown in Fig. 6. 
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Fig. 6.  The optimized spatial attention module 
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The expression of spatial attention module is as follows. 

 5 5( ) ( ([ ( ); ( )]))sM x f AvgPool x MaxPool x  (5) 

 5 5 c( ) ([ ; ])s
s avg maxM x f x x  (6) 

 represents the Sigmoid activation function, x  

expresses the input feature map, ∫ denotes the activation 

function, and 5 5f  represents the dilated convolution with 

the convolution kernel size of 5×5, Maxpool and Avgpool 

indicate average pooling and max pooling, respectively. 

C. The EDMSF Module 

To address the misalignment between encoder-derived 

high-resolution shallow features and decoder-generated 

low-resolution deep features, we propose the EDMSF 

module. This module hierarchically fuses features through 

parallel convolution branches, where all branches maintain 

identical output dimensions via unit stride and symmetric 

padding. The fused features thereby retain crack topology 

integrity across scales, effectively connecting localized 

texture details with global structural context.  

Combined with Fig. 7, the principle of EDMSF is 

described as follows. 
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Fig. 7.  The EDMSF module 

 

The specific operational process of the EDMSF module 

involves fusing the feature maps of corresponding layers in 

the encoder and decoder through convolutional operations. 

Different layers employ convolutional kernels of varying 

sizes, and the fused results are mapped into two-dimensional 

feature maps. For instance, in the first layer, the 1×1 

convolutional kernel is employed to extract features from 

the feature maps output by the encoder and decoder. 

followed by 3×3, 5×5, and 7×7 kernels in subsequent layers 

respectively. The advantage of this approach is that, 

compared to a single-sized convolutional kernel, it can 

capture multi-scale features, thereby enhancing crack 

segmentation performance. Due to the varying sizes of the 

generated two-dimensional feature maps, the feature maps 

of each layer must undergo up-sampling through a 

deconvolution layer. The resized feature maps of different 

sizes are standardized to identical dimensions through a 

resizing layer, and then concatenated. Finally, a 

convolutional layer generates the final prediction map and 

calculates the prediction loss. 

III. EXPERIMENTS 

To demonstrate the effectiveness of the proposed I-U-Net 

network in this paper, we conducted experiments on the 

Bot-Res module, O-CBAM module, and EDMSF module, 

followed by an overall ablation study. The superior 

performance of the proposed method is further validated 

through comparison with other advanced models. 

A. Experimental Environment 

The hardware and software environment of the 

experiment are shown in Table I. 

 
TABLE I  

EXPERIMENTAL ENVIRONMENT 

Configuration Configuration parameter 

Operating system Windows 10 

CPU 14th Gen Intel(R) Core (TM) i9‐14900KF 

GPU NVIDIA GeForce RTX 4080 Super 

RAM 16G 

Deep learning framework Pytorch 2.2.0 

CUDA version 11.6 

Python version 3.8 

 

B. Datasets 

To validate the proposed algorithm, we evaluate it on 

three crack datasets: the public benchmarks CRACK500 [35] 

and CFD [36], along with a Self-built Dataset. 

 CRACK500: Contains 500 crack images with a size of 

2000×1500. We rotate the image at 9 different angles (from 

0 degrees to 90 degrees, spaced 10 degrees apart) and flip the 

image vertically and horizontally at each angle. In the end, 

we obtain 15200 images. 

CFD: Contains 118 images marked with cracks, with a 

resolution of 480 × 320. On the basis of the original crack 

images, 3776 crack images and their corresponding 

annotated images are generated through methods such as 

blurring, brightness enhancement, brightness reduction, 

rotation, and horizontal mirroring. 

Self-built Dataset: Contains 236 images of road cracks 

captured by a camera under visible light. Each image is 

rotated in 9 different angles (from 0 degrees to 90 degrees, 

spaced 10 degrees apart). Gaussian noise added to the image. 

Adjust the brightness, contrast, saturation, and hue of the 

image to obtain an enhanced dataset. The final dataset after 

expansion consists of 4720 samples.  

As shown in Fig. 8, the above three datasets contain 

complex scenarios.  

 

    

    

Fig. 8.  The examples of various complex scenes 
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Due to the different image sizes of the above datasets, we 

screened 11298 images for our experiments, where the ratio 

of training, validation set and test sets is 8:1:1. Since the 

network model trained on small-sized images can scan any 

image larger than the cropped size, we chose a cropped size 

of 384×544 for our experiments. 

The detailed information of the training set, validation set, 

and testing set are presented in Table II. 

 
TABLE II 

THE SETS FOR TRAINING, VALIDATION, AND TESTING EXPERIMENTAL 

ENVIRONMENT 

 Training Validation Testing Total 

Size 384×544 384×544 384×544 384×544 

Numbers 9038 1130 1130 11298 

 

C. Experimental Parameter Design of The Model 

Since the main task of the proposed I-U-Net network is 

segmentation, and there are two categories in the 

segmentation task, background, and crack, the cross-entropy 

function of the binary classification is selected as the loss 

function. During training, the epoch is set to 100, the batch 

size is set to 8, and the shuffle is set to True. When the 

learning rate is set too high, the parameter update step of the 

model increases, which may cause the model to oscillate 

back and forth near the optimal solution and unable to stably 

converge to the optimal solution, preventing the model from 

achieving optimal performance, the initial global learning 

rate is set to 1e-3, to achieve an accelerated model 

convergence process, and to regulate the effect of model 

complexity on the loss function, the momentum and weight 

decay are set to 0.9 and 0.0005, respectively. The stochastic 

gradient descent method (Adam) is used to update the 

network parameters. The training set is used to train the 

network model parameters, the validation set is used to 

evaluate the performance of the trained model, and the 

testing set is used to evaluate the generalization ability of the 

model and output the final segmentation results. 

D. Evaluation Metrics 

In this experiment, the pavement crack segmentation 

results are quantitatively analysed using Precision, Recall, 

F1-Score, and mIoU. The expressions are as follows. 

 
＋

＋ ＋ ＋

TP TN
Accuracy

TP FP TN FN
 (7) 

 
＋

TP
Precision

TP FP
 (8) 

 
＋

TP
Recall

TP FN
 (9) 

 
2 Precision Recall

F1 Score =
Precision Recall

 (10) 

 
1

1

＋ ＋

k

i

TP
mIoU

k FP TP FN
 (11) 

Where, TP represents that the samples are divided into 

positive samples and allocated correctly, FP expresses that 

the samples are divided into positive samples but 

misallocated, TN denotes that the samples are divided into 

negative samples and allocated correctly, FN represents that 

the samples are divided into negative samples but 

misallocated. K signifies the total number of categories. 

Precision quantifies the percentage of correct predictions. 

Recall measures the proportion of positive samples captured 

by the model to actual positive samples. F1-Score is an 

important indicator that reflects Precision and Recall. mIoU 

indicates the mean Intersection over Union.  

E. Loss 

The semantic segmentation of pavement crack images is a 

binary classification problem, and the cross-entropy of the 

binary classification can be used as the loss function. Its 

expression is: 

i=1

1
log 1 log 1

N

C i i i iL y yp y p
N

 (12) 

Where N is the number of image pixels, iy  represents the 

label value of the ith pixel, and ip  expresses the prediction 

probability of the ith pixel. However, in the practical 

situation, the area of the cracks tends to be small, which 

leads to uneven distribution of positive and negative samples 

when segmenting the background and cracks, resulting in 

imbalanced segmentation. To better reflect the practical 

situation of the segmentation results, the cross-entropy loss 

function is improved in this paper, and the uneven situation 

of the samples is balanced by the formula (12). The 

expression is as follows. 

1 1

1 1

1 1
1

2

N N

i i i ii i

N N

i i i ii i

p y y p
L

p y p y
 (13) 

Where N is the number of image pixels, iy  denotes the 

label value of the ith pixel, ip  represents the predicted 

probability of the ith pixel, and ε is the regulatory factor, and 

its affection is to speed up convergence and prevent 

overfitting. The expression is as follows.  

 1CLoss L L  (14) 

Loss denotes total loss, L signifies binary cross-entropy 

loss, and CL  expresses improved loss function,  is the 

balance coefficient.  

To determine the value of α, the experiments were carried 

out separately, and the experimental results obtained with all 

other conditions being equal are as follows Fig. 9:  

 

 
Fig. 9.  The impact of different α values on model accuracy 
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According to the analysis of experimental results, 

different α has different degrees of impact on the results. 

Combined equation (14), the α value is 0.7. 

F. The Training Process of the I-U-Net Model 

Validation-Accuracy

Train-Accuracy

 
Fig. 10.  Iterative Precision process of the I-U-Net model 

 

Validation-Loss

Train-Loss

 
Fig. 11.  Iterative Loss process of the I-U-Net model 

 

Fig. 10 and Fig. 11 illustrates the training process of the 

I-U-Net model. Evidently, the accuracy of the training set 

ultimately converges to 95.75%, while that of the validation 

set converges to 95.16%. The high and closely matching 

final convergence values for both indicate that the model 

exhibits neither overfitting nor underfitting, confirming its 

accurate and reliable target prediction outcomes. 

Additionally, the loss of the training set converges more 

rapidly, reaching 0.13 beforehand, whereas the loss of the 

validation set converges to approximately 0.14. The 

substantial consistency in their final convergence values 

further underscores the advanced nature of the model 

presented in this paper. 

G. The Bot-Res Module Experiment 

Under the same experimental conditions, we compare the 

pavement crack segmentation performance between the 

original U-Net network and a U-Net network that replaces 

the convolution layers with Bot-Res modules. 

Considering the numerous parameters of the U-Net 

network, the channel numbers for the encoder and decoder 

sections are 64, 128, 256, 512, and 1024, respectively. 

Therefore, in our experiments, we limit the channel count in 

each layer's feature map and employed fewer channels per 

layer for feature extraction. Specifically, we set the channel 

numbers for the encoder and decoder sections of the U-Net 

network to 64, 64, 128, 128, and 512 in the experiments, 

aiming to reduce the network's parameter count and achieve 

faster processing speeds. The experimental results are 

presented in Table III.  

As evident from Table III, when compared to U-Net, 

U-Net + Bot-Res has shown improvements in Accuracy, 

Precision, Recall, F1-score, and mIoU by 0.42%, 2.25%, 

0.6%, 1.31%, and 3.22%, respectively. 

Despite being constrained by the number of channels in 

the feature maps, the U-Net network still boasts 7.86 M 

parameters. By substituting the original convolutional 

structure of U-Net with Bot-Res, the network parameters 

reduced by 1.44 M, reaching 6.42 M. 

It is evident that incorporating the Bot-Res module into 

the U-Net network enhances the extraction of useful 

semantic information, elevates the network's ultimate 

segmentation performance, diminishes the parameter count. 

H. The O-CBAM Module Experiment 

To address noise interference in complex backgrounds, 

this paper introduces the attention mechanism to mitigate the 

interference. Under identical experimental conditions, we 

compare the network performance enhancements achieved 

by the CBAM and O-CBAM modules. The experimental 

results are presented in Table IV. 

TABLE III 

COMPARISON RESULTS OF ATTENTION MECHANISMS  

Methods Accuracy(%) Precision(%) Recall(%) F1-Score(%) mIoU(%) Params(M) 

U-Net 72.64 76.10 66.20 70.80 63.87 7.86 

U-Net + Bot-Res 73.06 78.35 66.80 72.11 67.09 6.42 

U-Net + Bot-Res: Use Bot-Res to replace convolutional layers in U-Net 

 
TABLE IV 

COMPARISON RESULTS OF ATTENTION MECHANISMS 

Network structure Accuracy(%) Precision(%) Recall(%) F1-Score(%) mIoU(%) 

U-Net + Bot-Res + CBAM 77.83 81.26 78.94 80.08 77.28 

U-Net + Bot-Res + O-CBAM 82.16 85.94 79.96 81.82 81.66 
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Data from Table IV reveals that the O-CBAM module 

outperforms CBAM. Specifically, O-CBAM achieves 

higher Accuracy, Precision, Recall, F1-Score, and mIoU by 

4.33%, 4.68%, 1.02%, 1.74%, and 4.38% respectively, 

compared to CBAM.  

When the O-CBAM module integrates the weights 

derived from shallow crack contour information and deep 

pixel spatial position information, it utilizes the dilated 

convolution layer to enhance the receptive field 

characteristics, ensuring thorough fusion of weights. This 

aids the network in acquiring additional crack details while 

suppressing background noise. 

I. The EDMSF Module Experiment 

To verify whether the EDMSF module can acquire more 

location and detail information, thereby enabling more 

precise pavement crack segmentation, comparative 

experiments will be conducted under identical experimental 

conditions. We compare the results obtained using a 

single-size convolution kernel with those obtained using the 

multi-size convolution kernel proposed in this paper. The 

experimental results are presented in Table V. The 

single-size convolution kernels used are 1×1, 3×3, 5×5, and 

7×7 in succession. I-U-Net (U-Net + Bot-Res + O-CBAM + 

EDMSF) is the model proposed in this paper, where EDMSF 

represents convolution kernels of varying sizes, specifically 

1×1, 3×3, 5×5, and 7×7, depending on the layer. 

By comparing the aforementioned data, it is the use of the 

EDMSF module results in a maximum improvement of 

13.00% in Accuracy compared to the use of a single-size 

convolution kernel. Similarly, Precision is enhanced by up 

to 12.7%, Recall rate by up to 13.55%, F1-Score by up to 

8.4%, and mIoU by up to 11.43%. It is observable that the 

single-size convolution kernel, due to its identical receptive 

field for the weights of crack feature information and 

shallow crack features across in the encoder, as well as the 

spatial position decoder, fails to fully integrate information, 

leading to the loss of semantic information and subsequently 

impacting target segmentation to some degree. In contrast, 

multi-scale fusion leverages convolution kernels of varying 

sizes with multiple receptive fields to enrich the extracted 

crack feature information, thereby enhancing the network's 

segmentation performance and yielding superior 

segmentation results. Additionally, it is noteworthy that the 

size of the convolution kernel is not necessarily better when 

larger during the information fusion process, as excessively 

large convolution kernels can also result in the loss of 

feature information. 

J. Ablation Experiments 

In order to validate the impact of various modules on 

enhancing network performance, this paper conducted 

ablation experiments, primarily focusing on assessing the 

effectiveness of Bot-Res, O-CBAM, and EDMSF in 

improving network segmentation performance. The 

experimental results are presented in Table VI.  

Comparing the experimental results, adding different 

modules to the U-Net network model can bring different 

degrees of improvement to the network's performance. 

Comparing experiments #3 and #4, it can be found that 

O-CBAM improves 1.18% and 1.70% in Precision and 

mIoU, respectively, compared to EDMSF with the same 

conditions. Comparing experiments #5 and #6, EDMSF 

improves 4.57%, 1.24%, 5.67%, and 4.81% in Accuracy, 

Precision, Recall, and F1-Score, respectively, compared 

with O-CBAM based on adding Bot-Res module. 

The I-U-Net achieved 95.75%, 96.06%, 86.83%, 91.79%, 

and 92.27% in Accuracy, Precision, Recall, F1-scoer, and 

TABLE V 

COMPARISON RESULTS OF CONVOLUTION KERNELS WITH DIFFERENT SIZES 

Network structure Accuracy(%) Precision(%) Recall(%) F1-Score(%) mIoU(%) 

U-Net + Bot-Res + O-CBAM + 1×1 82.75 84.46 79.52 81.92 81.66 

U-Net + Bot-Res + O-CBAM + 3×3 84.34 89.35 79.86 84.34 83.45 

U-Net + Res-Bot + O-CBAM + 5×5 86.45 88.37 80.45 84.22 84.63 

U-Net + Res-Bot + O-CBAM + 7×7 81.03 82.36 75.28 78.66 80.84 

I-U-Net 95.75 96.06 86.83 91.79 92.27 

 

TABLE VI 
ABLATION EXPERIMENTAL RESULTS 

No. Module Accuracy(%) Precision(%) Recall(%) F1-Score(%) mIoU(%) 

#1 U-Net 72.64 76.10 66.20 65.74 63.87 

#2 U-Net + Bot-Res 73.06 78.35 66.80 67.23 67.09 

#3 U-Net + O-CBAM 80.27 84.78 78.94 81.76 80.56 

#4 U-Net + EDMSF 81.75 83.60 81.26 82.41 78.86 

#5 U-Net + Res-Bot + O-CBAM 82.16 85.94 79.96 81.59 81.66 

#6 U-Net + Res-Bot + EDMSF 86.73 87.18 85.63 86.40 80.75 

#7 U-Net + O-CBAM + EDMSF 92.54 93.45 87.35 90.30 89.46 

#8 I-U-Net 95.75 96.06 86.83 91.79 92.27 
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mIoU, respectively. This is an improvement of 31.81%, 

26.23%, 31.16%, 39.63%, and 44.47% over U-Net, 

respectively. 

To assess whether the model exhibits overfitting or under 

we perform K-fold random verification on the trained 

network model. In each validation experiment, we randomly 

select 10% (1100) datasets from the training, test and total 

sets. Experiment with the trained network model and 

calculate mIoU. In Table VII, use "Train", "Test" and 

"Total" respectively to represent all mIoU obtained from a 

total of 30 validation sets in the training, test and total sets. 

The average mIoU of these three sets are 93.3%, 92.25% and 

92.80%, respectively, which are close to our experimental 

results of 92.26%. Therefore, the verification results 

obtained are very close to the final performance. Through 

the 30-fold verification process, a total of 33000 image were 

processed, which proved that the I-U-Net we trained had no 

under fitting and over fitting. This means that the results are 

not from a specific training set and test set, and the 

experimental results are valid. 

In order to verify the real-time performance of the 

I-U-Net model, we test three different sizes of images 

(1400×1080, 980×720, and 384× 544), under the same other 

conditions, the experimental results are shown in Table VIII. 

 
TABLE VIII 

PROCESSING TIME OF I-U-NET 

Image size Milliseconds/image (FPS) 

1400×1080 112.40/9 

980×720 47.10/21 

384×544 16.40/61 

 

In video verification, the I-U-Net model is capable of 

processing 9 crack images of 1400×1080 resolution, 21 

crack images of 980×720 resolution, and 61 crack images of 

384×544 resolution per second, respectively. The image size 

(384×544) used by I-U-Net model in this paper can fully 

meet the real-time requirements. The network model trained 

with small-size images can scan any image larger than the 

training size, that is, the input image with large enough size 

is used to monitor the wide enough pavement area, which 

can meet the requirements of practical engineering. 

K. Comparison Experiments 

To validate the advancements of the proposed model, 

comparative experiments are conducted against 

representative networks including DeepCrack [37], SDDNet, 

CF,  TCN [38], and I-U-Net. The iterative training process 

of the network is visualized in Fig. 12 and Fig. 13, 

illustrating convergence behavior and performance trends. 

 

SDDNet
DeepCrack

I-U-Net

TCN

CF

 
Fig. 12.  Iterative Precision processes of different network models 

 

SDDNet

I-U-Net

CFDeepCrack

TCN

I-U-Net

TCN

DeepCrack

SDDNet

CF

 
Fig. 13.  Iterative mIoU processes of different network models 

TABLE VII 

COMPARISON RESULTS OF ATTENTION MECHANISMS 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 average mIoU(%) 

Train 92.85 93.22 93.17 93.20 94.12 93.04 92.84 93.31 93.11 94.17 93.30 

Test 92.43 92.26 92.27 92.24 92.31 92.29 92.10 92.17 92.40 92.33 92.25 

Total 92.64 92.82 93.05 92.83 93.30 92.66 92.52 93.06 92.69 92.43 92.80 
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Experimental results demonstrate that the I-U-Net 

outperforms these comparative networks in both Precision 

and mIoU metrics. 

The results indicate that SDDNet outperforms DeepCrack 

in terms of Precision, Recall, F1-score, and mIoU. This 

superiority stems from the fact that DeepCrack employs a 

single-sized convolution kernel for information fusion, 

leading to the loss of feature information. In contrast, 

SDDNet utilizes high-density connected separable 

convolution modules and an enhanced spatial pyramid 

pooling module, enabling it to capture crack feature 

information more comprehensively. Consequently, SDDNet 

surpasses DeepCrack in performance. 

The primary distinction between CF and SDDNet lies in 

the latter's incorporation of an attention mechanism, which 

bolsters the network's capacity to extract contour features of 

pavement cracks, thereby enhancing the efficacy of 

pavement crack segmentation. In contrast to CF, the key 

difference of TCN is the integration of a dual attention 

mechanism, empowering the network to more effectively 

isolate micro-cracks from the background.Compared to 

DeepCrack, SDDNet, CF, and TCN, the I-U-Net proposed 

in this paper demonstrates notable enhancements in of 

evaluation metrics. Specifically, the Accuracy increased by 

12.72%, 8.23%, 9.02%, and 2.91%, respectively; the 

Precision improved by 9.61%, 4.22%, 3.81%, and 1.51%, 

respectively; and the Recall rate risen by 7.73%, 2.41%, 

1.22%, and 0.19%, respectively. Additionally, the F1-score 

TABLE IX 

COMPARISON RESULTS OF DIFFERENT NETWORK MODELS 

Network Accuracy(%) Precision(%) Recall(%) F1-Score(%) mIoU(%) Params(M) 

DeepCrack 83.03 86.45 79.10 77.33 87.13 10.8 

SDDNet 87.52 91.84 84.42 78.13 88.65 12.4 

CF 86.73 92.25 85.61 82.01 86.27 11.7 

TCN 92.84 94.55 86.64 85.04 91.44 16.9 

I-U-Net 95.75 96.06 86.83 87.79 92.27 11.4 
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Fig. 14.  Comparison of crack detection results of different networks 
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increased by 10.46%, 9.66%, 5.78%, and 2.75%, 

respectively, while the mIoU improved by 5.14%, 3.62%, 

4.00%, and 0.77%, respectively. 

It can be seen from Table IX, the I-U-Net proposed in this 

paper has more parameters than the DeepCrack network. 

This is attributed to the incorporation of the Bot-Res module 

and O-CBAM module in the I-U-Net, resulting in an 

increase in parameters compared to DeepCrack. In the 

Bot-Res module, we utilize multiple small-sized 

convolution kernels instead of a single large-sized one, 

aiming to minimize the parameter count while capturing 

more semantic information. Additionally, the use of 

dimensionality reduction convolution layers and dilated 

convolutions in O-CBAM helps reduce the network's 

parameter count, ensuring thorough integration of crack 

weight information. 

As illustrated in Fig. 14, a comparison is made between 

the detection results of the I-U-Net crack segmentation 

model proposed in this paper and those of models such as 

DeepCrack, SDDNet, CF, TCN. It is evident that: 

The DeepCrack network experiences missed and false 

detections when detecting pavement cracks, resulting in 

significant discrepancies between the final segmentation 

results and the actual cracks, as illustrated in (a) and (d). 

In the detection results of the SDDNet network, pavement 

cracks exhibit fragmentation and missed detections, which 

are susceptible to background noise. Specifically, fine 

cracks are prone to being missed, as illustrated in (b), (d), 

and (e).  

The segmentation results of the CF network exhibit 

significant deviations from the actual cracks, as illustrated in 

(b), (d), and (e).  

The segmentation results produced by the TCN network 

exhibit significant deviations from the actual cracks, as 

illustrated in (c), (d), and (e).  

The segmentation performance of the CF network 

surpasses that of the SDDNet network, yet it still 

experiences missed detections of fine cracks and is 

susceptible to background noise, leading to false detections 

as illustrated in (a), (c), and (e).  

TCN incorporates a dual attention mechanism to bolster 

the extraction of features such as crack edges and shapes, 

resulting in segmentation outcomes that are more akin to the 

original image. However, there remains the issue of missing 

fine cracks, as illustrated in (a), (b), and (e).This paper 

introduces the I-U-Net model for pavement crack 

segmentation, which significantly mitigates the interference 

from background noise, enabling more precise segmentation 

of fine cracks and effectively enhancing the accuracy of 

pavement crack segmentation. 

IV. CONCLUSION 

To solve issues such as false positives, missed detections, 

and low segmentation accuracy in pavement crack 

segmentation processes due to background noise, this paper 

introduces a pavement crack segmentation model based on 

the I-U-Net network. Firstly, the Bot-Res module is 

incorporated into both the encoder and decoder of the 

original U-Net network. This enhancement not only reduces 

the computational complexity of network parameters but 

also ensures the extraction of crack features, thereby 

obtaining richer semantic information. Secondly, O-CBAM 

is introduced into skip connections. By utilizing 

dimensionality-reducing convolutional layers and dilated 

convolutional layers, the number of network parameters is 

decreased, the extraction capability for both shallow and 

deep crack features is enhanced, and the interference from 

background noise is eliminated. Lastly, within the EDMSF 

module, to better integrate crack features, convolution 

kernels of varying sizes are employed to generate feature 

maps of different receptive fields according to different 

layers. These feature maps from various layers concatenated 

to produce the final prediction map. Additionally, to address 

the class imbalance issue caused by uneven distribution of 

positive and negative samples, the cross-entropy loss 

function is modified to better reflect the actual segmentation 

results.  

In this paper, we conduct extensive experiments on three 

pavement crack datasets (CRACK500, CFD, and Self-built 

Datasets) demonstrate that the proposed I-U-Net achieves 

superior segmentation, and compared the I-U-Net model 

with DeepCrack, SDDNet, CF, and TCN models. The 

experimental results demonstrate that the proposed I-U-Net 

exhibits superior performance, validating the correctness 

and effectiveness of the improvements made. In the ablation 

experiments, the improved I-U-Net achieved an Accuracy of 

95.75%, Precision of 96.06%, Recall of 86.83%, F1-score of 

91.79%, and mIoU of 92.27%, marking a significant 

improvement compared to the U-Net network. In the 

comparative experiments, the I-U-Net obtained the best 

experimental data among all compared models. Furthermore, 

in the experimental result figures, compared with other crack 

segmentation models, the proposed I-U-Net significantly 

suppresses background noise interference, while achieving 

superior crack contour accuracy. In future work, we will 

focus on architectural refinements of I-U-Net, particularly 

exploring lightweight designs and computation-efficient 

modules to enhance its practicality in processing 

high-resolution pavement crack images while maintaining 

real-time inference speeds. 
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