
A Block Sequence Based Garbage Collection
Scheme for NAND Flash Memory

Tuo Ding, Yuanze Liu*

Abstract—NAND flash memory is a mainstream storage
technology widely used in modern devices, including personal
computers and servers. It offers advantages such as shock
resistance and high throughput. However, due to the
limitations of erase/program cycles, NAND flash faces challenges
such as limited lifespan, block wear, and uneven wear
distribution. Additionally, garbage collection involves extensive
erase operations, significantly impacting the endurance of flash
memory. To mitigate block wear and enhance wear leveling, this
paper proposes a block sequence-based garbage collection scheme
(BS GC) for NAND flash. The proposed approach introduces
two key improvements: (1) an optimized block recycling policy
and (2) a hot-cold data identification and separation mechanism
using a block sequence table. Furthermore, the block sequence
table is utilized to track block update frequency and erase counts.
Compared to existing algorithms, BS GC offers higher efficiency
while requiring less RAM.

Index Terms—Garbage collection, NAND flash memory, NAND
flash controller

I. INTRODUCTION

NAND flash-based solid-state drives (SSDs) have become
one of the most popular storage media in laptops and personal
computers, thanks to their excellent shock resistance, high
processing throughput, and lightweight design. Furthermore,
according to the IDC forecast in Data Age 2025, the
share of flash memory in storage media is expected to
grow significantly, driven by advancements in NAND flash
technology [1].

Flash memory is a non-volatile, solid-state storage medium
that includes both NOR and NAND flash. In NAND flash, 128
or 256 memory cells are connected in series along a bit line,
with the bit and source lines multiplexed within the memory
cells. This design reduces the memory cell area by half,
lowering the cost per cell. More recently, the introduction of
3D NAND flash has significantly increased storage capacities
while rapidly reducing costs [2].

In NAND flash, the erase operation is performed by
releasing electrons through the bulk silicon electrode, erasing
the entire block simultaneously. As a result, erasure must occur
at the physical block level. However, a physical block consists
of 64, 128, or 256 individual pages, which can be written
independently. Notably, when data on a page is updated, the
page itself cannot be erased separately.

Manuscript received November 22, 2024; revised April 12, 2025.
Tuo Ding is a manager of the National Minorities Energy and Technology

Co., Ltd., Beijing 100000 China (corresponding author to provide phone:
17710780831; e-mail: tour1988@126.com).

Yuanze Liu is a PhD candidate in the College of Electronic Information
and Optical Engineering, Nankai University, Tianjin 300000 China (e-mail:
16600297947@163.com).

Fig.1. In place update and out place update

Therefore, updating data in NAND flash is inherently
inefficient. With in-place updates, the controller must erase
the entire block before writing the updated data back, leading
to frequent block erasures, accelerated wear, and a reduced
lifespan. In contrast, the out-of-place update method is more
efficient. Instead of erasing and rewriting the original block,
the controller writes updated data to new, free pages and
marks the original data as invalid. Since this approach avoids
immediate erase operations, it enhances efficiency and is
widely adopted in NAND flash memory.

However, out-of-place updates lead to the accumulation
of invalid pages, resulting in significant storage waste in
NAND flash. Therefore, efficiently reclaiming these pages is
essential. The flash controller manages this process through
a garbage collection algorithm, which addresses three key
considerations: how to recycle, which blocks to recycle, and
when to recycle.

Traditional garbage collection algorithms consider three
key factors when selecting blocks for recycling: the invalid
page rate, the block erase count, and block age information.
However, recording block age information efficiently remains
a challenge, as it often requires significant RAM, especially
given the large variability in block age.

The Cost-Benefit (CB) and Cost-Age-Times (CAT)
algorithms use additional timers to track block age, but this
information is lost in the event of a power failure [3], [4]. The
Write Order-Based Garbage Collection (WO GC) algorithm
employs a Write Sequence Number (WSN) to track block age,
but as the WSN grows over time, it demands substantial RAM
[5].

In contrast, the proposed Block Sequence-Based Garbage

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1861-1872

 
______________________________________________________________________________________ 



Fig. 2. The system architecture of NAND flash memory
storage system.

Collection (BS GC) algorithm records block age using the
physical block number in the Block Sequence Table (BST),
significantly reducing RAM usage. Additionally, BS GC
improves the block recycling policy, enhancing wear leveling
performance.

NAND flash memory has a limited erase/program cycle.
The maximum erase count per block is typically 100,000 for
single-level cell (SLC) flash, 10,000 for multi-level cell (MLC)
flash, and 1,000 for triple-level cell (TLC) flash. Therefore,
ensuring even wear distribution across blocks is essential.

In garbage collection, identifying and separating cold and
hot data helps reduce block wear and improve wear leveling.
The proposed Block Sequence-Based Garbage Collection
(BS GC) algorithm leverages the Block Sequence Table (BST)
to classify cold and hot data, storing them in separate
blocks. This approach enhances wear leveling and significantly
extends the lifespan of NAND flash memory.

II. RELATED WORK

In order to solve the constraints of NAND flash, the flash
controller (flash translation layer) is necessary for the NAND
flash storage system. Fig.2 indicates the architecture of flash
storage system. The FTL is the core components in the flash
controller, including garbage collection algorithm, address
mapping algorithm and wear leveling algorithm.

A. Address mapping

In the NAND flash memory, the data can only be sequential
write. Therefore, in order to emulate the random write, the
controller develops the address-mapping algorithm in which
the physical address number is the sequential write address
and the logical write address. The address-mapping algorithm
completes the translation from the logical address number to
the physical address number and it usually uses a mapping
table to record the corresponding relation between the physical
address and the logical address.

According to the address translation granularity, there are
three major types of FTL, including page-level mapping FTL,
block-level mapping FTL and hybrid FTL. The page-level
mapping FTL scheme maps each logical page address to
a physical page address. It is flexible and simple for flash
memory to realize the random write operation. However, in the
page-level mapping FTL, the mapping table need record lots
of mapping relation that consumes a large amount of SRAM.
In order to decrease the RAM cost, Aayush et al. [6] proposes
a page-level mapping algorithm, DFTL, this algorithm caches
page-level address mappings selectively instead of saving all
mappings in the RAM. The block-level mapping FTL only
maps each logical block address to a physical block address
and it contains fewer mappings. However, the block-level
mapping FTL need extra operations to complete a page-write
operation [7]. The hybrid FTL is developed to combine the
advantages of the page-level mapping FTL and the block-level
mapping FTL. The hybrid FTL contains both page-level
mappings and block-level mappings. In the hybrid FTL, the
data block that saves the newly writing data is mapped by the
block-level mappings and the log block that saves the updated
data is mapped by the page-level mappings. When garbage
collection occurs, the controller needs merge the victim log
block and data block. Lee et al. [8] propose a novel hybrid
proposal, which is called FAST scheme. In FAST, the updated
logical pages can be placed in any log block.

Table 1. Summary of wear leveling algorithm

B. Wear leveling

In NAND flash memory, especially in the TLC NAND flash,
the erase/program cycle is limited to the small. Therefore, in

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1861-1872

 
______________________________________________________________________________________ 



order to longer the lifetime and decrease the bad block, it is
expected to wear all blocks out evenly. There are two types
of wear leveling algorithm, including static wear leveling and
dynamic wear leveling. The dynamic wear leveling scheme
considers to select the blocks with the least erase count as the
superior block for the next write operations. The static wear
leveling considers to separate the cold-hot data and move the
cold data into the block that has been erased more number of
times. Table.1 shows some related work about wear leveling
scheme. The hot-cold swapping (HC) algorithm considers
swapping the data in the oldest block and in the youngest
block if the erase count difference between the oldest block
and the youngest block is too large [9]. The dual-pool (DP)
algorithm considers using cold pool and hot pool to distinguish
the old blocks and young blocks [10]. The BET algorithm uses
a bit erase table (BET) to identify the cold-hot block [11]. The
static-dynamic (SD) algorithm includes two parts, the static
wear leveling scheme and the dynamic wear leveling scheme.
The static wear leveling scheme considers swapping the data
in the oldest block and in the youngest block and the dynamic
wear leveling scheme considers selecting the superior block
for write operation form a round-robin queue. The round-robin
based wear leveling (RRWL) algorithm uses one-to-one mode
based on round robin method to increase the accuracy of clod
block identification [12].

C. Garbage collection

In the recent years, many considerable researches have
focused on developing an efficient garbage collection scheme.
Usually, there are four steps to complete garbage collection as
following:
1. Judge whether the trigger condition has been reached.
2. Select the victim blocks to recycle.
3. Copy out the valid pages in the victim block into free pages.
4. Erase the victim block and update the free block list.

The trigger condition can be the threshold trigger or the
regular trigger. In the threshold trigger, the garbage collection
algorithm should set up a threshold value based on some
parameters, such as the free block rate, update count or erase
count. If the threshold value reaches, the garbage collection
will be triggered. In the regular trigger, the garbage collection
will be triggered regularly.

What is more, the victim block selection has been focused
on in the garbage collection. Firstly, the block that has less
valid pages should be selected as the victim block. In 1994, Wu
and Zwaenepoel propose a greedy garbage collection scheme
[13]. In the greedy garbage collection scheme, the victim block
selection is only based on the valid pages number per block
and the algorithm chooses the block that has the least valid
pages as the victim block.

Secondly, the block age should be considered into the
recycling policy because the older block contains more data
errors and it is likely to be the cold data block. In 1995,
Kawaguchi et al. [14] develop the cost benefit (CB) garbage
collection algorithm and this algorithm considers the block
age and the invalid page rate into the recycling policy.

Comparing to the greedy algorithm, the CB algorithm has
good performance in the page copied out and the block
erase count. In 2011, Kwon et al. [9] develop the fast
and efficient garbage collection algorithm (FeGC) and this
algorithm considers the sum of the invalid page age into the
recycling policy. In addition, the FeGC algorithm classifies
the hot and cold page by the latest update time and the
expected update time. The FeGC has good performance in
the wear leveling, the garbage collection time cost and the
energy consumption.

Thirdly, the block erase count is usually considered into
the recycling policy in order to improve the wear leveling.
In 1997, Chiang et al. [15] develop the cost-age-times (CAT)
garbage collection algorithm and this algorithm considers the
invalid page rate, the erase count and the block age into the
victim block selection. In addition, the CAT algorithm uses
an age transform function to calculate the block age in order
to avoid block age being too large to overemphasize block
age. In addition, the CAT algorithm identifies and separates
cold-hot data by the block age and the block erase count
to improve the wear leveling. In fact, the CAT algorithm
has good performance in the wear leveling and reducing
erase operation. In 2017, Matsui et al. [16] develop the write
order-based garbage collection (WO GC) scheme and this
algorithm considers the invalid page rate, the erase count and
the block age into the victim block selection. In addition, the
WO GC algorithm uses the write sequence number to record
the block age and it can solve the problem that the block age
will be lost if SSD shut down.

III. GARBAGE COLLECTION SCHEME BASED ON
RELATIVE WRITE ORDER

A. BS GC

In this paper, we propose a Block Sequence-Based Garbage
Collection (BS GC) scheme. The BS GC algorithm employs
a Block Sequence Table (BST) to manage garbage collection
efficiently. The BST consists of two main areas: the data block
area and the free block area. Each of these areas is composed
of multiple Block Sequence Units (BSUs), where each BSU
corresponds to a physical block. A BSU stores the physical
block address and the block’s erase count.

In the data block area, the Block Sequence Number
(BSN) represents the position of a BSU within the BST,
indicating the relative age of the corresponding physical block.
A higher BSN value means that the BSU is positioned closer
to the tail of the data block area, signifying a newer block.
When a new block is selected for the next write operation, its
corresponding BSU is placed at the tail of the data block area
in the BST.

In the free block area, the BSUs are arranged based on
their block erase count. BSUs with a lower erase count are
placed at the head of the free block area, while those with
a higher erase count are positioned toward the bottom. This
arrangement helps in distributing wear evenly across blocks.

The BS GC algorithm determines the victim block for
garbage collection by considering three key factors: invalid

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1861-1872

 
______________________________________________________________________________________ 



Table 2. Summary of garbage collection scheme

page rate, block erase count, and block sequence number. A
block with a higher invalid page rate, a lower erase count,
and a smaller BSN is more likely to be selected as the victim
block. The selection process is guided by a specific scoring
equation (Equation 2), where the block with the lowest score
is chosen as the victim block for garbage collection.

The BS GC algorithm offers two key advantages. First, it
records block age information using the physical block number
in the BST. Compared to the WO GC algorithm, the physical
block number requires fewer bits than the WSN, leading to
lower RAM consumption. Second, according to Equation (3),
the influence of the erase count in victim block selection
increases as the erase count rises. This enhances the BS GC
algorithm’s effectiveness in wear leveling.

B. Cold-hot data identification and separation

In the proposed BS GC algorithm, cold-hot data
identification and separation are essential for improving
wear leveling. This process should follow the regulations
outlined below:

(a) Data Classification: Initially written data is considered
hot data. During garbage collection, if the BSU storing the
victim block information is in the upper half of the data block
area in the BST, the collected data is classified as cold, as the
block has not been updated for a long time. Conversely, if the
BSU is in the lower half of the data block area, the collected
data is classified as hot.

(b) Data Placement: Hot data should be written into hot
blocks, and cold data into cold blocks. When selecting a hot
block for the next write operation, the algorithm chooses the
block based on the BSU at the head of the free block area. If a
cold block is selected, the algorithm picks the block according
to the BSU at the bottom of the free block area.

(c) Wear Leveling Optimization: To enhance wear
leveling, the algorithm periodically recycles cold data blocks
stored in the BSU at the head of the data block area.

By adhering to these regulations, the algorithm can
effectively separate cold and hot data during garbage
collection, thereby improving wear leveling.

C. BST updating

Fig.3. Update relative write order table after erase operation

Fig.4. Update relative write order table after getting a new
block for write operation

In the BS GC algorithm, the BST must adhere to the
following regulations:

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1861-1872

 
______________________________________________________________________________________ 



Table 3. Flash memory information

(a) Data Block Ordering: The BSU storing data block
information must be ordered by block update time. When a
block is updated, the corresponding BSU should be moved to
the tail of the data block area in the BST.

(b) Free Block Ordering: The BSU storing free block
information must be ordered by the block’s erase count. When
a block is erased, the corresponding BSU should be inserted
into the free block area based on the erase count.

To ensure that the BST remains effective for calculating the
age of each physical block, the BS GC algorithm must update
the BST after obtaining a new block for a write operation and
after erasing a physical block.

When a physical block is erased, the BST must update the
BSU that stores the block’s information. As shown in Fig. 4,
the BSU (BSU2) that holds the erased block information must
be updated. First, the erase count in BSU2 is incremented by
one and updated into BSUk. Then, BSUk is removed from
the data block area of the BST. Finally, the algorithm inserts
BSUk into the free block area according to its updated erase
count.

Furthermore, after obtaining a new block for a write
operation, the BST needs to be updated. As illustrated in
Fig. 5, if a cold block is selected, the algorithm moves the
BSU (BSUn) that holds the cold block’s information from the
bottom of the free block area to the bottom of the data block
area. If a hot block is selected, the algorithm simply shifts the
boundary between the data block area and the free block area
downward by one.

IV. EXPERIMENT

A. Simulation

In this section, we evaluate the proposed BS GC algorithm
using a flash simulator. To demonstrate its advantages,
we compare BS GC with traditional garbage collection
algorithms, including the greedy algorithm, the Cost-Benefit
(CB) algorithm, the Cost-Age-Times (CAT) algorithm, and the

Fig.5. Sum of erase operation with different algorithm

Write Order-Based Garbage Collection (WO GC) algorithm.
The flash simulator is configured based on the characteristics
of the Micron MT29F16G08ADACA chip [16], with a total
flash capacity of 16Gb. The details of the chip is shown
in Table 3. In the simulation experiment, the input is the
log-based trace including the financial1, prn 0, and systor
traces. Our evaluation focuses on key performance metrics,
including the total number of erase operations, the number of
pages copied, the average garbage collection time, the energy
consumption of garbage collection, the standard deviation
of erase count distribution, and the average erase count
distribution. Each experiment is conducted twice to illustrate
the reliability of the results.

B. Result analysis

Figure 5 shows the simulation results for the total number
of erase operations, which serve as an indicator of flash wear.
As shown in Figure 5, compared to traditional algorithms,
the proposed BS GC algorithm reduces the number of erase
operations by 2% in the Financial1 workload and by 7.3% in
the Systor workload. For this evaluation, the two sets of data
in the experimental figure show a high degree of consistency.
Both graphs depict the sum of erase operations for three
datasets under different algorithms. The numerical values in
the tables below the graphs remain largely the same across

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1861-1872

 
______________________________________________________________________________________ 



Fig.6. Number of pages copied out with different algorithms

both figures for the respective algorithms. In Financial1, the
erase operation counts remain similar across both graphs for
each algorithm. In prn 0, the values in the second data are
almost identical to those in the first, with only minor variations
for some algorithms. For Systor, the erase operation counts are
nearly identical, except for slight changes in the RWO GC and
BS GC algorithms. The primary difference between the two
graphs is the replacement of BS GC in the first graph with
RWO GC in the second graph. The numerical values for other
algorithms remain unchanged, confirming that the overall trend
and data consistency between the two graphs remain strong.

Figure 6 presents the results for the number of pages copied.
As shown, the BS GC algorithm outperforms traditional
algorithms in both the Financial1 and Systor traces. Compared
to traditional approaches, the number of pages copied using
the BS GC algorithm is reduced by 19% in Financial1 and
14.7% in Systor. Additionally, the results from Figures 5 and 6
confirm that the proposed BS GC algorithm is highly efficient.

In Figure 6, the two groups of data illustrate the number
of pages copied out for different algorithms across three
datasets (Financial1, Prn 0, and Systor). Upon comparison,
the numerical values in both graphs remain largely consistent,
demonstrating the reliability of the data. In Financial1, the
values for all algorithms remain unchanged between the two
graphs, indicating consistency in results. In prn 0, most values

Fig.7. Latency of garbage collection with different algorithms

are the same, except for a minor variation in the RWO GC
algorithm in the second graph, which replaces BS GC from
the first graph. Systor Dataset: The overall trends remain
unchanged, with RWO GC showing a slightly different result
compared to BS GC while other algorithms maintain their
original values. Overall, the two graphs depict a high degree
of similarity, with the primary difference being the substitution
of the BS GC algorithm in the first graph with RWO GC in
the second. This suggests an alternative algorithm evaluation
while keeping the other data points consistent.

Figure 7 illustrates the average garbage collection time
across different algorithms, which represents the average time
required to recycle a block during garbage collection. As
shown in Figure 7, compared to traditional algorithms, the
BS GC algorithm reduces the average garbage collection time
by 7.5% in Financial1 and 6.2% in Systor, demonstrating
its efficiency in time cost. This improvement is attributed
to the BS GC algorithm’s strong performance in reducing
both the total number of erase operations and the number
of pages copied. According to the above figures, less pages
are copied out in the prn 0 trace than the financial1 trace
and systor trace. It means that the data in prn 0 trace update
more frequently than the data in financial1 or systor. In
the RWO GC algorithm, because the effect of erase count

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1861-1872

 
______________________________________________________________________________________ 



Fig.8. Energy consumption of garbage collection with different
algorithm

in the victim selection increase, it is easier for controller
to recycle the block that contains data that is updated less
frequently, which is good for the storage system to release
space. However, all of the data in the prn 0 trace is updated
frequently. It results in that the RWO GC algorithm has more
pages copied out in the prn 0 trace but less page copied out
in the financial1 trace and the systor trace.

The data in both evaluations remain largely consistent,
showing only slight variations in some values. For Financial1
dataset, the values for all algorithms remain identical in both
graphs, ensuring consistency in results. For prn 0 dataset, most
values are unchanged, with a slight difference in the RWO GC
algorithm in the second graph, which replaces BS GC from
the first graph. For Systor dataset, the trends remain the
same, with minor differences in the RWO GC algorithm’s
values compared to BS GC, while other algorithms retain their
original values. Overall, the two graphs are highly similar,
with the primary distinction being the substitution of BS GC
in the first graph with RWO GC in the second. This suggests
a comparison between different algorithms while keeping the
majority of the data unchanged.

Figure 8 presents the simulation results for energy
consumption across different algorithms, with a particular

focus on energy usage during garbage collection. Usually,
energy consumption is an important parameter in storage
system. As shown in Figure 8, the BS GC algorithm
demonstrates lower energy consumption compared to
traditional algorithms, primarily due to its efficient
performance in reducing the total number of erase operations
and the number of pages copied. In the prn 0 trace, the
RWO GC algorithm has the highest consumption because of
the most pages copied out. However, in the financial1 trace,
the RWO GC algorithm has good performance due to its
few erase operations and pages copied out. In addition, the
energy consumption of RWO GC algorithm is low in the
systor trace.

The two sets of data presented in the image both depict
the energy consumption of garbage collection (GC) across
different systems or methods: Financial1, Prn 0, and Systor.
The energy consumption values are measured for various GC
strategies, including Greedy, CB, CAT, WO GC, and BS GC.

In both datasets, the energy consumption values for each
GC strategy across the systems are consistent. For example,
the Greedy strategy shows energy consumption values of
53.93989838 for Financial1, 44.85306169 for Prn 0, and
131.1169695 for Systor in both sets. Similarly, the CB strategy
shows values of 47.32 for Financial1, 47.53 for Prn 0, and
72.91 for Systor in both datasets. The consistency extends
to the other strategies as well, with minor variations in the
second dataset introducing an additional strategy, RWO GC,
which shows values of 47.01365419 for Financial1, 50.30 for
Prn 0, and 73.93 for Systor. This addition does not affect
the consistency of the existing data points. Overall, the two
datasets are highly consistent in their representation of energy
consumption for the various garbage collection strategies
across the different systems.

Figure 9 illustrates the average erase count distribution for
different algorithms, which reflects block wear performance.
The difference of average of erase count distribution
between the algorithms is small in both of prn 0 trace
and financial1 trace. According to Figure 9, compared to
traditional algorithms, the BS GC algorithm reduces the
average erase count distribution by 2% in Financial1 and 6%
in Systor. This improvement is attributed to the algorithm’s
effectiveness in minimizing erase operations. Additionally, the
simulation results confirm that the proposed BS GC algorithm
significantly reduces block wear, enhancing the lifespan of
NAND flash memory.

Both datasets display consistent values for the average
erase counts across the systems. For instance, the Greedy
strategy consistently reports averages of 42.03144281 for
Financial1, 64.08486429 for prn 0, and 47.93066256 for
Systor in both sets. Similarly, the CB strategy maintains
values of 41.45123398 for Financial1, 64.31942634 for prn 0,
and 42.89451227 for Systor across both datasets. The other
strategies also show consistent results, with the second dataset
adding the RWO GC strategy, which records averages of
41.23374466 for Financial1, 65.65556477 for prn 0, and
34.85480621 for Systor. This addition does not disrupt the

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1861-1872

 
______________________________________________________________________________________ 



Fig.9. Average of erase count distribution

consistency of the existing data. In summary, the datasets
are consistent in their representation of the average erase
counts for the evaluated GC strategies across the systems.
The inclusion of the RWO GC strategy in the second dataset
provides further insights while maintaining the integrity of the
original data.

Figure 10 presents the standard deviation of the erase count
distribution across different algorithms. The standard deviation
is strongly correlated with wear leveling performance, as a
lower value indicates more uniform wear distribution across
blocks.

According to Figure 10, the proposed BS GC algorithm
outperforms all other algorithms in minimizing the standard
deviation of erase count distribution across all traces. In
the Financial1 trace, the BS GC algorithm reduces the
standard deviation by 28%. In the Systor trace, the reduction
is even more significant, reaching 85%. In the financial1
trace, the proposed RWO GC algorithm has the smallest
standard deviation between these algorithms. It indicates that
the RWO GC algorithm has good performance in the wear
leveling and the results is agreeable with the expected results.
In the prn 0 and systor trace, the results are also agreeable
with the expectation. In addition, comparing to the WO GC

Fig.10. Standard deviation of erase count distribution

algorithm, the standard deviation of erase count is 20% smaller
in the prn 0 trace, 16% smaller in the systor trace and 33%
smaller in the financial1 trace significantly. It indicates the
improvement of the RWO GC algorithm is meaningful in the
wear leveling. These results align well with expectations and
demonstrate that the BS GC algorithm effectively improves
wear leveling in NAND flash memory.

By analyzing the standard deviation, one can assess the
reliability and stability of each GC strategy. A lower standard
deviation suggests more consistent performance, while a
higher value indicates greater variability. This information is
essential for evaluating the effectiveness and predictability of
different garbage collection methods in managing memory and
storage resources.

The inclusion of this figure in the dataset underscores
the importance of not only average performance metrics
but also the consistency of those metrics, offering a more
comprehensive view of the GC strategies’ behavior across
various systems.

Figure 11 illustrates the erase count distribution across
different algorithms. In each diagram of Figure 12, the
horizontal axis represents the erase count per block, while the

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1861-1872

 
______________________________________________________________________________________ 



IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1861-1872

 
______________________________________________________________________________________ 



IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1861-1872

 
______________________________________________________________________________________ 



Fig.13. Relative change rate of pages copied out

vertical axis indicates the number of blocks corresponding to
each erase count.

In Figure 11, the concentration of the erase count
distribution reflects the effectiveness of wear leveling. The
results show that, across all three traces, the erase count
distribution in the BS GC algorithm is more concentrated
compared to other algorithms. This indicates that the BS GC
algorithm achieves better wear leveling performance, ensuring
a more uniform distribution of erase operations across NAND
flash blocks.

To determine the optimal balance between performance and
overhead, we calculate the relative change rate of the number
of pages copied out. This metric represents the sensitivity
of the number of copied pages (y) to variations in a given
parameter (x).

In Figure 13, the x-axis represents the X value, which is
a critical parameter in the context of the experiment, while
the y-axis represents the relative change rate of the number
of pages copied out. This metric is essential for understanding
how efficiently pages are being managed and copied within the
storage system under different conditions. The graph compares
the relative change rate across three different traces: financial1,
prn 0, and systor, each representing distinct workload patterns.

For the financial and prn 0 traces, the relative change rate
exhibits a clear downward trend as the X value increases. This
indicates that as X grows, the system becomes more efficient
in managing page copies, resulting in a reduced rate of change.
This behavior suggests that higher X values lead to more stable
and predictable performance in these traces, which is beneficial
for applications requiring consistent storage performance.

However, the systor trace presents a more complex pattern.
Initially, when the X value is below 10, the relative change
rate is unstable, showing fluctuations. At X is 10, there is a
noticeable increase in the relative change rate before it starts to
follow a downward trend similar to the financial1 and prn 0
traces. This initial instability suggests that the systor trace,
which likely represents a different type of workload, reacts
differently to lower X values. The increase at X is 10 might
indicate a threshold where the system’s management strategy
shifts, leading to a temporary spike in the change rate before

stabilizing.
The optimal balance point for wear-leveling performance

is observed at X is 10. This value represents a critical
juncture where the system achieves a balance between efficient
page management and wear-leveling effectiveness. Beyond
this point, while the relative change rate continues to decrease,
the wear-leveling performance generally declines, which could
lead to uneven wear on memory cells over time.

It is important to note that X is 10 is a relatively small
value when compared to the program/erase (P/E) cycle limits
of NAND flash memory. Specifically, it represents only 0.4%
of the total lifespan of short-lived TLC NAND. This highlights
the efficiency of the BS GC algorithm in ensuring that most
memory cells wear out evenly, which is crucial for maintaining
the long-term stability and reliability of NAND flash-based
storage systems. By achieving even wear distribution, the
algorithm helps to prevent premature failure of memory cells,
thereby extending the overall lifespan of the storage device.

In summary, Figure 13 provides valuable insights into
the dynamics of page management and wear-leveling under
different workload conditions. The financial1 and prn 0 traces
show a consistent improvement in efficiency with increasing
X values, while the systor trace reveals a more nuanced
behavior with an initial instability and a critical threshold at
X is 10. The BS GC algorithm’s ability to maintain even
wear distribution at such a low X value underscores its
effectiveness in enhancing the durability and performance of
NAND flash storage systems. This analysis not only highlights
the importance of optimizing the X value but also emphasizes
the need for tailored management strategies to handle diverse
workload patterns effectively.

V. CONCLUSION

In NAND flash memory, garbage collection algorithm
plays an important role in FTL. Garbage collection contains
many erase operation and influences the performance of flash
strongly. This work proposes a block sequence based garbage
collection algorithm. The proposed BS GC algorithm aims
at improving the garbage collection efficiency and the wear
leveling.

In addition, the BS GC is compared with other garbage
collection algorithm by the simulation experiment. According
to the simulation results, the BS GC algorithm has good
performance in wear leveling, time cost, energy consumption,
pages copied out and endurance. The sun of erase operations
with BSGC algorithm decreases by 2% in the Financial1 and
7.3% in the Systor. The number of page copied out with BSGC
algorithm decreases by 19% in the Financial1 and 14.7% in
the Systor. The average of erase count distribution with BSGC
algorithm decreases by 2% in the Financial1 and 6% in the
Systor. The standard deviation of erase count distribution with
BSGC algorithm decreases by 66% in the Financial1, 28%
in the Prn 0 and 85% in the Systor. The average time cost
decreases by 7.5% in the Financial1 trace and 6.2% in the
Systor trace. The energy consumption of garbage collection
decreases by 9.3% in the Financial1 and 13% in the Systor.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1861-1872

 
______________________________________________________________________________________ 



REFERENCES

[1] M. Kim, M. Liu, L. R. Everson, and C. H. Kim, “An embedded nand
flash-based compute-in-memory array demonstrated in a standard logic
process,” IEEE Journal of Solid-State Circuits, vol. 57, no. 2, pp.
625–638, 2021.

[2] W. Liu, F. Wu, X. Chen, M. Zhang, Y. Wang, X. Lu, and C. Xie,
“Characterization summary of performance, reliability, and threshold
voltage distribution of 3d charge-trap nand flash memory,” ACM
Transactions on Storage (TOS), vol. 18, no. 2, pp. 1–25, 2022.

[3] S. M. Rumble, A. Kejriwal, and J. Ousterhout, “Log-structured memory
for {DRAM-based} storage,” in 12th USENIX Conference on File and
Storage Technologies (FAST 14), 2014, pp. 1–16.

[4] M.-L. Chiang and R.-C. Chang, “Cleaning policies in mobile computers
using flash memory,” Journal of Systems and Software, vol. 48, no. 3,
pp. 213–231, 1999.

[5] P. Desnoyers, “Analytic models of ssd write performance,” ACM
Transactions on Storage (TOS), vol. 10, no. 2, pp. 1–25, 2014.

[6] A. Gupta, Y. Kim, and B. Urgaonkar, “Dftl: a flash translation
layer employing demand-based selective caching of page-level address
mappings,” Acm Sigplan Notices, vol. 44, no. 3, pp. 229–240, 2009.

[7] Z. Xu, R. Li, and C.-Z. Xu, “Cast: A page-level ftl with compact address
mapping and parallel data blocks,” in 2012 IEEE 31st International
Performance Computing and Communications Conference (IPCCC).
IEEE, 2012, pp. 142–151.

[8] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J.
Song, “A log buffer-based flash translation layer using fully-associative
sector translation,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 6, no. 3, pp. 18–es, 2007.

[9] O. Kwon, K. Koh, J. Lee, and H. Bahn, “Fegc: An efficient garbage
collection scheme for flash memory based storage systems,” Journal of
Systems and Software, vol. 84, no. 9, pp. 1507–1523, 2011.

[10] L.-P. Chang, “On efficient wear leveling for large-scale flash-memory
storage systems,” in Proceedings of the 2007 ACM symposium on
Applied computing, 2007, pp. 1126–1130.

[11] Y.-H. Chang, J.-W. Hsieh, and T.-W. Kuo, “Improving flash
wear-leveling by proactively moving static data,” IEEE Transactions on
Computers, vol. 59, no. 1, pp. 53–65, 2009.

[12] S. H. Kim, J. H. Choi, and J. W. Kwak, “Rrwl: Round robin-based
wear leveling using block erase table for flash memory,” IEICE
TRANSACTIONS on Information and Systems, vol. 100, no. 5, pp.
1124–1127, 2017.

[13] M. Wu and W. Zwaenepoel, “envy: a non-volatile, main memory storage
system,” ACM SIGOPS Operating Systems Review, vol. 28, no. 5, pp.
86–97, 1994.

[14] A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory based file
system.” in USENIX, 1995, pp. 155–164.

[15] M.-L. Chiang, P. C. Lee, and R.-C. Chang, “Managing flash memory
in personal communication devices,” in ISCE’97. Proceedings of 1997
IEEE International Symposium on Consumer Electronics (Cat. No.
97TH8348). IEEE, 1997, pp. 177–182.

[16] C. Matsui, C. Sun, and K. Takeuchi, “Design of hybrid ssds with storage
class memory and nand flash memory,” Proceedings of the IEEE, vol.
105, no. 9, pp. 1812–1821, 2017.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1861-1872

 
______________________________________________________________________________________ 




