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Abstract—This paper examines the sufficient conditions for
identical synchronization and generalized synchronization in
full networks of n nodes and their relationship. Each node is
linked to others through linear coupling and represented by
an ordinary differential system of the FizHugh-Nagumo type.
Additionally, this work presents numerical results to confirm
the validity of the theoretical findings in the context of this
network topology.
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I. INTRODUCTION

SYNCHRONIZATION has been extensively studied in
various fields and natural phenomena, with numerous

studies introducing the concept of synchronization [5], [18],
[11], [14], [12], [7], [13]. Mathematically, synchronization
typically refers to having the same behavior simultaneously
[5]. In recent years, research on complex dynamical net-
works has gained popularity across multiple domains due
to their practicality on a large scale, including applications
in information processing, the World Wide Web, biological
systems, and neuronal networks [19], [20], [21], [9]. Syn-
chronization is a fundamental issue in cooperative control,
requiring all network subsystems to converge to a target state
or a common value. There are different types of synchro-
nization in complex networks, including identical synchro-
nization, projective synchronization, phase synchronization,
and generalized synchronization [5]. Especially, generalized
synchronization is an extension of identical synchronization
and is more common in nature and technical applications.
However, most theoretical results on synchronization focus
on identical synchronization [5], [6], [2], [3], [16], [17].
Due to its complexity, there is a lack of theoretical results
for generalized synchronization, but it is gaining special
attention. So, research on generalized synchronization in
complex dynamic networks is of great practical significance.

In this paper, we are motivated by the discussion above
to explore the improvements we have made. We aim to
identify the sufficient conditions for the coupling strength
required to achieve identical synchronization and generalized
synchronization in full (complete) networks. Additionally,
our results illustrate the relationship between these types of
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synchronization, and we provide numerical results to validate
the effectiveness of our theoretical findings.

II. IDENTICAL SYNCHRONIZATION AND GENERALIZED
SYNCHRONIZATION IN FULL NETWORKS OF n

DYNAMICAL SYSTEMS OF THE FITZHUGH-NAGUMO TYPE

In 1952, A.L. Hodgkin and A.F. Huxley published a paper
introducing a mathematical model of four ordinary differen-
tial equations to approximate some properties of neuronal
membrane potential [6], [7], [11]. They were awarded a
Nobel prize for this remarkable work. Based on their famous
study, many scientists searched and found ways to simplify
Hodgkin-Huxley’s model while retaining the energizing and
biological significance properties of the cell. Among them,
two scientists named R. FitzHugh and J. Nagumo introduced
a new simpler system called the FitzHugh-Nagumo model
in 1962 [7], [8], [15]. It is known as a system of two
ordinary differential equations, which is simplified from
Hodgkin-Huxley’s system [6], [12], and could help describe
the neuron voltage dynamics. It consists of two equations
of two variables, u and v. The first variable, u, represents
the transmembrane voltage of the cell. The second one, v,
introduces some physical quantities, such as the electrical
conductivity of ion currents across the membrane. The sys-
tem below shows the ordinary differential equations of the
FitzHugh-Nagumo type given by [2], [3]:

ε
du

dt
= εut = f(u)− v + I,

dv

dt
= vt = au− bv + c,

(1)

where u = u(t), v = v(t); a, b, c are constants, especially a
and b are strictly positive; 0 < ε < 1; f(u) = −u3 + 3u; I
presents the external current; t presents the time.

Hereafter, system (1) is considered a model of neuron,
and based on this system, we construct a full network of n
systems (1) with linear coupling as follows:

εuit = f(ui)− vi + I −
n∑

j=1,j 6=i
gsyn(ui − uj),

vit = aui − bvi + c,
i = 1, 2, ..., n,

(2)

where (ui, vi), i = 1, 2, ..., n is defined as (1); gsyn is
positive number presenting the coupling strength [7], [6].
Note that the coupling strength could be different among the
nodes of networks. However, to make it easy in this work,
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the paper just investigates the same coupling strength for all
nodes, and names it gsyn.

Remark 1. A full network means each node connects to all
others (see [16], [17]).

A. Identical synchronization

Definition 1 (see [5], [3]). Let
n∑
i=2

|ei|+ |ei| be the identical

synchronization error, where ei = ui − u1, ei = vi − v1,
for all i = 2, ..., n. We say that the network (2) identically
synchronizes if the identical synchronization error reaches
zero as t approaches infinity.

Before going to the main results, we need to see a
following remark that help to prove our desired results.

Remark 2. The function f satisfies the following condition:

|f(ui)− f(uj)| ≤ α |ui − uj | , i, j = 1, 2, ..., n, (3)

where ui, uj present the transmembrane voltages, and α is a
positive number.

Proof: For all ui, uj , i, j = 1, 2, ..., n, we have:

f(ui)− f(uj) = −u3
i + 3ui + u3

j − 3uj

= (ui − uj)
[
3− (ui − uj)2 − uiuj

]
.

Since ui, uj , i, j = 1, 2, ..., n are bounded in [4], then we
can find a positive constant α such that:

|f(ui)− f(uj)| ≤ α |ui − uj | , i, j = 1, 2, ..., n.

Next, we investigate the identical synchronization problem
of network (2). The main result is given by the following
theorem.

Theorem 1. Suppose that gsyn >
α

n
, where α is defined as

in Theorem 2. Then the network (2) identically synchronizes
in the sense of Definition 1.

Proof: To prove this theorem, we construct a Lyapunov
function as follows:

V (t) =
1

2

[
n∑
i=2

(
aεei

2 + ei
2
)]
.

By calculating the derivative of the function V (t) with
respect to the time t, there is the following:

dV (t)

dt
=

n∑
i=2

[aεeieit + eieit]

=
n∑
i=2

aei
f(ui)− vi − gsyn n∑

k=1,k 6=i

(ui − uk)

−f(u1) + v1 + gsyn
n∑
l=2

(u1 − ul)
)

+ei (aei − bei)]

≤
n∑
i=2

[aei (f(ui)− f(u1)− ngsynei) −bei2
]
.

(4)
By using Remark 2, (4) becomes:

dV (t)

dt
≤

n∑
i=2

[
a (α− ngsyn) e2

i −bei2
]
. (5)

Since gsyn >
α

n
, then (5) can be estimated as:

dV (t)

dt
≤ −γV (t)⇒ V (t) ≤ V (0)e−γt,

where γ = min

(
2
ngsyn − α

ε
, 2b

)
. Let the time t approach

infinity, the function V (t) approaches zero. Thus, the iden-
tical synchronization occurs if the coupling strength satisfies
the following condition: gsyn >

α

n
.

B. Generalized synchronization

Definition 2 (see [5]). Let
n∑
i=2

|ei|+ |ei| be the generalized

synchronization error, where ei = ui − φi(u1), ei = vi −
ϕi(v1), φi, ϕi are differentially continuous functions, for
all i = 2, ..., n. We say that the network (2) generally
synchronizes if the generalized synchronization error reaches
zero as t approaches infinity.

To have the generalized synchronization, we need to
define the controllers for the network (2). Specifically, to
synchronize the first neuron and neuron ith of network (2),
we need to construct and add the controllers into neuron ith
as follows:



εu1t = f(u1)− v1 + I − gsyn
n∑
l=2

(u1 − ul),

v1t = au1 − bv1 + c,

εuit = f(ui)− vi + I − gsyn
n∑

h=1,h6=i

(ui − uh) + wi,

vit = aui − bvi + c+ wi,
i = 2, ..., n,

(6)
where the controllers wi = wi(t) are wi = wi(t) are
designed as follows:

wi = ε
∂φi(u1)

∂u1
u1t − f(φi(u1)) + ϕi(v1)− I

+gsyn

n∑
m=1,m6=i

(φi(u1)− um)− kiei,

wi =
∂ϕi(v1)

∂v1
v1t − aφi(u1)− bϕi(v1)− c,

(7)
with the updated rules defined as follows:

kit = rie
2
i , (8)

where ki = ki(t), ri is a arbitrary positive constant, for
i = 2, ..., n.

Under the action of the controllers designed as above, the
error dynamic equations of the system (6) are described as:
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εeit = ε

(
uit −

∂φi(u1)

∂u1
u1t

)
= f(ui)− vi + I − gsyn

n∑
h=1,h6=i

(ui − uh)− f(φi(u1))

+ϕi(v1)− I + gsyn

n∑
m=1,m6=i

(φi(u1)− um)− kiei

= f(ui)− f(φi(u1))− (vi − ϕi(v1))
−ngsyn(ui − φi(u1))− kiei

= f(ui)− f(φi(u1))− ei − ngsynei − kiei,
(9)

and

eit = vit −
∂ϕi(v1)

∂v1
v1t

= aui − bvi + c− aφi(u1)− bϕi(v1)− c
= aei − bei,

(10)

for i = 2, ..., n.

Remark 3. The function f satisfies the following condition:

|f(ui)− f(φi(uj))| ≤ β |ui − φi(uj)| , (11)

where ui, uj present the transmembrane voltages, φi is
defined as in Definition 2, i, j = 1, 2, ..., n and β is a positive
number.

Proof: For all ui, uj , i, j = 1, 2, ..., n, we have:

f(ui)− f(φi(uj)) = −u3
i + 3ui + φi(uj)

3 − 3φi(uj)

= (ui − φi(uj))
[
3− (ui − φi(uj))2

−uiφi(uj)] .

Since ui, i = 1, 2, ..., n is bounded and belongs to a compact
set that is a global attractor (see [4]), then φi(ui) is also
bounded since φi is continuous. Therefore, we can find a
positive constant β such that:

|f(ui)− f(φi(ui))| ≤ β |ui − φi(uj)| , i, j = 1, 2, ..., n.

Next, we investigate the generalized synchronization prob-
lem of network (2). The main result is given by the following
theorem.

Theorem 2. Suppose that gsyn >
β

n
, then we can achieve

generalized synchronization for network (2) under the adap-
tive controllers (7) and updated rules (8).

Proof: To prove this theorem , we construct the Lya-
punov function as follows:

V (t) =
1

2

n∑
i=2

(
aεei

2 + e2
i +

a

ri
ki

2

)
. (12)

By calculating the time derivative of V (t) along the error

systems (9) and (10), we get:

dV (t)

dt
=

n∑
i=2

[
aεeieit + eieit +

a

ri
kikit

]
=

n∑
i=2

[aei (f(ui)− f(φi(u1))− ei − ngsynei − kiei)

+ei(aei − bei) + akie
2
i

]
=

n∑
i=2

[aei (f(ui)− f(φi(u1)))− aei ei − nagsyne2
i

−akie2
i + eiaei − be2

i + akie
2
i

]
=

n∑
i=2

[
aei (f(ui)− f(φi(u1)))− nagsyne2

i − be2
i

]
.

(13)
By using Remark 3, it is easy to obtain:

dV (t)

dt
≤

n∑
i=2

[
aβe2

i − nagsyne2
i − be2

i

]
≤

n∑
i=2

[
a(β − ngsyn)e2

i − be2
i

]
.

(14)

Since gsyn >
β

n
, then (14) can be estimated as:

dV (t)

dt
≤ −γ

n∑
i=1

∫
Ω

[
1

2
(aεe2

i + e2
i )

]
dx, (15)

where
γ = min

{
2(ngsyn − β)

ε
; 2b

}
.

From (15), It can be seen that 0 ≤ V (t) ≤ V (0), this
together with (12) implies that V (t) is bounded. It is based on
Lyapunov stability theory and LaSalle’s invariance principle
[1], we have:

lim
t→+∞

n∑
i=2

|ei|+ |ei| = 0.

Therefore, it implies that the network (2) achieves gener-
alized synchronization in the sense of Definition 2. The
theorem is proved.

Remark 4. If φi(uj) = uj and ϕi(vj) = vj , i, j =
1, 2, ..., n, then generalized synchronization becomes iden-
tical synchronization. Moreover, the positive number β in
Remark 3 becomes α in Remark 2, and Theorem 2 becomes
Theorem 1.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we concretely shows some examples to
check if the proposed method in the theoretical section is ef-
fective. The integration is realized by using the programming
R. The simulation results are obtained with the following
parameter values:

a = 1, b = 0.001, c = 0, I = 0, ε = 0.1.
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A. Example 1.

In this example, we take a full network of 2 nodes and
search for a necessary value of coupling strength to get the
identical synchronization.

Specifically, a full network of two neurons with linear
coupling is given by the following system:

εu1t = f(u1)− v1 + I − gsyn(u1 − u2),
v1t = au1 − bv1 + c,
εu2t = f(u2)− v2 + I − gsyn(u2 − u1),
v2t = au2 − bv2 + c.

(16)

Let |e2| + |e2| = |u2 − u1| + |v2 − v1| be the identical
synchronization error of the network (16). We say that this
network identically synchronizes if the identical synchroniza-
tion error reaches zero as t approaches infinity.

Fig. 1(a), 1(b) represent the identical synchronization
errors of the network (16) with respect to different values
of coupling strength, t ∈ [0; 4000] and the initial conditions
as follows:

(u1(0), v1(0), u2(0), v2(0)) = (−0.1, 0, 0, 0.1).

In Fig. 1(a) with gsyn = 0.0001, the simulation shows
that the identical synchronization error does not reach zero,
which means the identical synchronization phenomenon does
not occur.

In Fig. 1(b) with gsyn = 0.1, the simulation shows that the
identical synchronization error reaches zero, which means:

u1(t) ≈ u2(t), v1(t) ≈ v2(t).

In other words, the identical synchronization phenomenon
occurs when the coupling stength is more than its threshold
value. It actually meets with the result in Theorem 1.

B. Example 2.

In this example, we take a full network of 3 nodes and
search for a necessary value of coupling strength to get the
identical synchronization.

Specifically, a full network of three neurons with linear
coupling is given by the following system:

εu1t = f(u1)− v1 + I − gsyn(u1 − u2)− gsyn(u1 − u3),
v1t = au1 − bv1 + c,
εu2t = f(u2)− v2 + I − gsyn(u2 − u1)− gsyn(u2 − u3),
v2t = au2 − bv2 + c,
εu3t = f(u3)− v3 + I − gsyn(u3 − u1)− gsyn(u3 − u2),
v3t = au3 − bv3 + c.

(17)
Let |e2| + |e2| + |e3| + |e3| = |u2 − u1| + |v2 − v1| +

|u3 − u1| + |v3 − v1| be the identical synchronization error
of the network (17). We say that this network identically
synchronizes if the identical synchronization error reaches
zero as t approaches infinity.

Fig. 2(a), 2(b) represent the identical synchronization
errors of the network (17) with respect to different values
of coupling strength, t ∈ [0; 10000] and the initial conditions
as follows:

(u1(0), v1(0), u2(0), v2(0), u3(0), v3(0)) =

(−0.1, 0, 0, 0.1, 0,−0.1).

In Fig. 2(a) with gsyn = 0.001, the simulation shows that
the identical synchronization error does not reach zero, which

means the identical synchronization phenomenon does not
occur.

In Fig. 2(b) with gsyn = 0.05, the simulation shows
that the identical synchronization error reaches zero, which
means:

u1(t) ≈ u2(t), v1(t) ≈ v2(t),

u1(t) ≈ u3(t), v1(t) ≈ v3(t).

In other words, the identical synchronization phenomenon
occurs when the coupling stength is large enough. It actually
meets with the result in Theorem 1.

C. Example 3.

In this example, we take a full network of 2 nodes and
search for a necessary value of coupling strength to get the
generalized synchronization. Moreover, it needs to construct
some controllers for this network as the theoretical results
above (7)-(8). Hence, we have to investigate if those con-
trollers numerically work. Specifically, a full network of two
nodes with controllers to get the generalized synchronization
is given by the following system:

εu1t = f (u1)− v1 + I − gsyn (u1 − u2) ,
v1t = au1 − bv1 + c,
εu2t = f (u2)− v2 + I − gsyn (u2 − u1) + w2,
v2t = au2 − bv2 + c+ w2,

(18)

where
w2 = ε

∂φ2(u1)

∂u1
u1t − f (φ2(u1)) + ϕ2(v1)− I

+gsyn(φ2(u1)− u1)− k2e2,

w2 =
∂ϕ2(v1)

∂v1
v1t − aφ2(u1) + bϕ2(v1)− c,

(19)

with the updated rule k2t = r2e
2
2, and e2 = u2−φ2(u1), e2 =

v2 − ϕ2(v1), where φ2, ϕ2 are the continuously differential
functions. Let |e2| + |e2| = |u2 − φ2(u1)| + |v2 − ϕ2(v1)|
be the generalized synchronization error. We say that the
network (18) generally synchronizes if the generalized syn-
chronization error reaches zero as t approaches infinity.

Fig. 3 represents the generalized synchronization error
between nodes of network (18), where we take the initial
conditions as follows:

(u1(0), v1(0), u2(0), v2(0)) = (−0.1, 0, 0, 0.1);

φ2(x) = − cosx− 1;ϕ2(x) = x2 + 1;

and
r2 = 0.1; t ∈ [0; 10000].

Fig. 3(a) presents the generalized synchronization error
with respect to t of the network (18) without controller (19).
We can see that it does not reach zero, which means the
generalized synchronization does not occur. However, Fig.
3(b) presents the generalized synchronization error of the
network (18) with controller (19), and it actually reaches
zero. In other words, the network (18) achieves generalized
synchronization. It means the controller added in such a
network effectively works.

Specifically, we first simulate the system (18) without
controller (19). In Fig. 3(a), we take gsyn = 0.01, the
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Fig. 1. Identical synchronization errors of the network (16) with respect to different values of coupling strength: (a) gsyn = 0.0001; (b) gsyn = 0.1.

generalized synchronization error does not reach zero. Even
if we take a very large value of gsyn = 5.5, see Fig. 3(b), the
generalized synchronization error also does not reach zero
which means the generalized synchronization does not occur
without controller. Clearly, Fig. 4 represents the time series
of all variables of the system (18) without controller (19). In
Fig. 4(a), the variable φ2(u1) is presented by the solid line,
and the dotted line for u2 (respectively, ϕ2(v1) and v2 in
Fig. 4(b)). We can see that the solid line does not copy the
behaviour of the dotted one. In other words, the generalized
synchronization phenomenon does not occur in this case.

Next, we simulate the system (18) with controller (19).
In Fig. 3(c), we take gsyn = 0.01, the generalized syn-
chronization error reaches zero which means the generalized
synchronization occurs with controller. In other words, the
controller is effective. Clearly, Fig. 5 represents the time
series of all variables of the system (18) with controller (19).
In Fig. 5(a), the variable φ2(u1) is presented by the solid
line, and the dotted line for u2 (respectively, ϕ2(v1) and
v2 in Fig. 5(b)). We can see that the solid line copies the
behaviour of the dotted one. In other words, the generalized
synchronization phenomenon occurs in this case.

D. Example 4.

Similarly, we take a full network of 3 nodes and search for
a necessary value of coupling strength to get the generalized
synchronization and investigate if the controllers (7) and
(8) constructed as the theoretical part numerically work.
Specifically, a full network of three nodes with controllers to

get the generalized synchronization is given by the following
system:



εu1t = f (u1)− v1 + I
−gsyn (u1 − u2)− gsyn (u1 − u3) ,

u1t = au1 − bv1 + c,
εu2t = f (u2)− v2 + I

−gsyn (u2 − u1)− gsyn (u2 − u3) + w2,
v2t = au2 − bv2 + c+ w2,
εu3t = f (u3)− v3 + I

−gsyn (u3 − u1)− gsyn (u3 − u2) + w3,
v3t = au3 − bv3 + c+ w3,

(20)

where

w2 = ε
∂φ2(u1)

∂u1
u1t − f (φ2(u1)) + ϕ2(v1)− I

+gsyn(φ2(u1)− u1) + gsyn(φ2(u1)− u3)− k2e2,

w2 =
∂ϕ2(v1)

∂v1
v1t − aφ2(u1) + bϕ2(v1)− c,

w3 = ε
∂φ3(u1)

∂u1
u1t − f (φ3(u1)) + ϕ3(v1)− I

+gsyn(φ3(u1)− u1) + gsyn(φ3(u1)− u2)− k3e3,

w3 =
∂ϕ3(v1)

∂v1
v1t − aφ3(u1) + bϕ3(v1)− c,

(21)
with the updated rule kit = rie

2
i , i = 2, 3, and ei =

ui − φi(u1), ei = vi − ϕi(v1), where φi, ϕi, i = 2, 3 are

the continuously differential functions. Let
3∑
i=2

|ei|+ |ei| =
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Fig. 2. Identical synchronization errors of the network (17) with respect to different values of coupling strength: (a) gsyn = 0.001; (b) gsyn = 0.05.

3∑
i=2

|ui − φi(u1)|+ |vi − ϕi(v1)| be generalized the syn-

chronization error. We say that the network (20) generally
synchronizes if the generalized synchronization error reaches
zero as t approaches infinity.

Fig. 6 represents the generalized synchronization error
between nodes of network (20), where we take the initial
conditions as follows:

(u1(0), v1(0), u2(0), v2(0), u3(0), v3(0)) =

(−0.1, 0, 0, 0.1, 0,−0.1);

φ2(x) = − cos2 x+ x;ϕ2(x) = x2 + 1;

φ3(x) = sinx+ x;ϕ3(x) = 10x2 + 1;

and
r2 = 0.1, r3 = 0.2, t ∈ [0; 50000].

Fig. 6(a) presents the generalized synchronization error
with respect to t of the network (20) without controller (21).
We can see that it does not reach zero, which means the
generalized synchronization does not occur. However, Fig.
6(b) presents the generalized synchronization error of the
network (20) with controller (21), and it actually reaches
zero. In other words, the network (20) achieves generalized
synchronization. It means the controller added in such a
network effectively works.

Specifically, we first simulate the system (20) without
controller (21). In Fig. 6(a), we take gsyn = 0.001, the
generalized synchronization error does not reach zero. Even
if we take a very large value of gsyn = 9.5, see Fig. 6(b),
the generalized synchronization error also does not reach
zero which means the generalized synchronization does not
occur without controller. Clearly, Fig. 7 and Fig. 8 represent
the time series of all variables of the system (20) without
controller (21). In Fig. 7(a), the variable φ2(u1) is presented
by the solid line, and the dotted line for u2 (respectively,
ϕ2(v1) and v2 in Fig. 7(b)). In Fig. 8(a), the variable φ3(u1)
is presented by the solid line, and the dotted line for u3

(respectively, ϕ3(v1) and v3 in Fig. 8(b)). We can see that
the solid lines do not copy the behaviour of the dotted ones.
In other words, the generalized synchronization phenomenon
does not occur in this case.

Next, we simulate the system (20) with controller (21).
In Fig. 6(c), we take gsyn = 0.001, the generalized syn-
chronization error reaches zero which means the generalized
synchronization occurs with controller. In other words, the
controller is effective. Clearly, Fig. 9 and Fig. 10 represent
the time series of all variables of the system (20) without
controller (21). In Fig. 9(a), the variable φ2(u1) is presented
by the solid line, and the dotted line for u2 (respectively,
ϕ2(v1) and v2 in Fig. 9(b)). In Fig. 10(a), the variable φ3(u1)
is presented by the solid line, and the dotted line for u3

(respectively, ϕ3(v1) and v3 in Fig. 10(b)). We can see that
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Fig. 3. Generalized synchronization errors between nodes of the network (18).

the solid lines copies the behaviour of the dotted ones. In
other words, the generalized synchronization phenomenon
occurs in this case.

IV. CONCLUSION

This paper presents sufficient conditions on the coupling
strength required to achieve identical synchronization and
generalized synchronization in full networks of n linearly
coupled dynamical systems of the FitzHugh-Nagumo type.
The study also explores the relationship between these types
of synchronization. The results indicate that both types of
synchronization occur when the coupling strength exceeds

certain threshold values. Additionally, identical synchroniza-
tion is found to be a specific case of generalized synchro-
nization. To achieve generalized synchronization, controllers
were designed for the network, and numerical results demon-
strate their effective implementation. Moreover, further re-
search is needed to investigate different synchronization
regimes for various network topologies.
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Fig. 5. Time series of all variables of the system (18) with controller (19) accroding to the coupling strength gsyn = 0.01, and t ∈ [0; 10000].
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Fig. 6. Generalized synchronization errors between nodes of the network (20).
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Fig. 7. Time series of all variables of the system (20) without controller (21) accroding to the coupling strength gsyn = 0.001, and t ∈ [0; 50000].
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Fig. 8. Time series of all variables of the system (20) without controller (21) accroding to the coupling strength gsyn = 0.001, and t ∈ [0; 50000].
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Fig. 9. Time series of all variables of the system (20) with controller (21) accroding to the coupling strength gsyn = 0.001, and t ∈ [0; 50000].
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Fig. 10. Time series of all variables of the system (20) with controller (21) accroding to the coupling strength gsyn = 0.001, and t ∈ [0; 50000].
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