
 

  

  
Abstract—Jiao-Liao Mandarin speech recognition constitutes 

a critical domain in Chinese dialect recognition research, 
holding considerable commercial value and profound cultural 
significance for preserving and transmitting this regional 
linguistic heritage. Nevertheless, the scarcity of annotated 
textual corpora and high-quality audio materials has 
substantially impeded progress in this research domain. To 
address this issue, this paper introduces the development of 
JLMS30, a 30-hour Jiao-Liao Mandarin speech recognition 
dataset created for research purposes. Utilizing this self-built 
dataset, we propose an optimized feature extraction method and 
a novel semantic modeling training strategy for Continuous 
Integrate-and-Fire (CIF) based speech recognition, called 
CIF-FSA. Firstly, the proposed CIF-FSA integrates a 
lightweight module (FG-Conv) to enhance discriminability in 
speech signal features. Subsequently, we propose a cross-modal 
knowledge distillation mechanism termed Semantic Acoustic 
Contrastive Distillation (SACD), which effectively transfers 
linguistic knowledge from a pre-trained language model into 
the CIF framework, improving its semantic modeling 
capabilities. Our model achieves a 15.5% relative reduction in 
Character Error Rate (CER) compared to prior approaches 
and reduces model parameters by 6%, significantly enhancing 
overall speech recognition accuracy. These findings highlight 
our dataset's and model design's efficacy in advancing speech 
recognition technology for low-resource languages. 
 

Index Terms—Speech recognition，Jiao-Liao Mandarin，
CIF，Knowledge distillation 
 

 
Manuscript received November 27, 2024; revised March 31, 2025.  
This work was supported by the Key Lab of Information Network 

Security, Ministry of Public Security, and the Shenzhen Fundamental 
Research Program under Grant JCYJ20230807094104009.  

Xuchen Li is a postgraduate student at Shenzhen Research Institute of 
Shandong University, Shandong University, Shenzhen 518057 China 
(e-mail: 202237557@mail.sdu.edu.cn). 

Ming Tan is an Assistant Engineer of Office of Asset and Laboratory 
Management, Shandong University, Weihai 264209 China (e-mail: 
tom826@163.com).  

Wei Liu is a lecturer at the College of Business Administration, Shandong 
University of Finance and Economics, Jinan 250014 China (e-mail: 
vivian.liu@sdufe.edu.cn).  

Kang Xie is an engineer of Key Lab of Information Network Security, 
Ministry of Public Security, Shanghai 200031 China (e-mail: 
xiekang@stars.org.cn).  

Xuanda Chen is a postgraduate student at Shenzhen Research Institute of 
Shandong University, Shandong University, Shenzhen 518057 China 
(e-mail: 202337570@mail.sdu.edu.cn).  

Jie Liu is an engineer of Shenzhen Research Institute of Shandong 
University, Shandong University, Shenzhen 518057 China (e-mail: 
liujiesdwh@163.com).  

Meixia Qu is an associate professor at the School of Mechanical, 
Electrical Information Engineering, Shandong University, Weihai 264209 
China (Co- corresponding author e-mail: mxqu@sdu.edu.cn). 

I.   INTRODUCTION 
ND-TO-END Automatic Speech Recognition (ASR) 
technologies have demonstrated remarkable efficacy for 

widely spoken languages, such as English and Chinese, 
primarily attributable to the abundance of extensive speech 
data resources [1]. Conversely, approximately 6,000 
languages globally are categorized as low-resource, needing 
more transcribed speech data [2], [3]. Transcribing speech 
using human-annotated data is often labor-intensive and 
costly [4], presenting significant challenges in developing 
high-performance ASR systems for low-resource languages 
[5]. 

Jiao-Liao Mandarin is a significant dialect in China, 
carrying profound historical and cultural significance. 
Spoken by a substantial population across multiple provinces, 
Jiao-Liao Mandarin is shaped by the diverse cultures and 
customs of various ethnic groups, endowing it with rich local 
characteristics and social practices. These factors confer 
considerable research value within the field of dialectology. 
The application of speech recognition technology to 
transcribe Jiao-Liao Mandarin into written form facilitates 
communication among residents on social networks. It aids 
linguists in examining the dialect’s phonetic, lexical, and 
grammatical features. This initiative possesses substantial 
commercial potential and is essential for understanding the 
evolution of dialects and their interconnections with Standard 
Mandarin. 

In this context, the present study establishes a novel 
Jiao-Liao speech corpus. It employs state-of-the-art deep 
learning techniques in ASR to explore end-to-end recognition 
of Jiao-Liao Mandarin. All models were trained from the 
ground up using this newly created dataset, and through 
enhancements to the base model, we achieved a significant 
improvement in recognition accuracy. This research 
addresses the challenge of dialect preservation in Jiao-Liao 
Mandarin speech recognition by developing an advanced 
deep neural network model. This study, therefore, aimed to 
achieve the following objectives:  
（ⅰ）Establish a multi-domain Jiao-Liao Mandarin speech 

dataset for dialectological research.  
（ ⅰⅰ）Design an effective Jiao-Liao Mandarin speech 

recognition system by integrating a lightweight convolution 
module that enhances the discriminability of speech signal 
features.  
（ⅰⅰⅰ）Propose a new knowledge distillation strategy that 

improves the model’s semantic modeling capabilities.  
（ⅳ）Play a crucial role in protecting and transmitting this 

dialect. 
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II.    RELATED WORKS 

A. Speech Recognition 
With the advancement of deep learning, end-to-end 

models have exhibited robust recognition performance and 
system stability, establishing them as a prominent area of 
research for scholars both domestically and internationally [6] 
[7] [8]. Gulati et al. [9] introduced the Conformer model, 
which integrates a convolution module with an attention 
mechanism to extract local and global contextual information 
from audio, achieving state-of-the-art accuracy. Dong et al. 
[10] proposed the CIF mechanism to enhance the model’s 
capability for acoustic boundary detection by integrating 
encoder outputs through cumulative weight calculations and 
weighted sums of states. Li [11] suggested employing 
Grouped Attention as a substitute for the traditional attention 
mechanism in the Conformer model, thereby reducing 
computational complexity and resource requirements while 
accelerating inference speed. Peng [12] recommended 
utilizing an attention mechanism alongside convolutional 
gating within a multi-layer perceptron module to extract and 
fuse global and local features independently. Kim [13] 
enhanced the Branchformer model by merging components 
and incorporating additional pointwise modules. Mai et al. 
[14] proposed an innovative attention mechanism termed 
HyperMixer, which extends the capabilities of the Conformer 
model while outperforming it in terms of inference speed, 
memory usage, parameter count, and available training data. 
Parcollet et al. [15] introduced a novel linear self-attention 
mechanism known as SummaryMixing to improve training 
efficiency, inference speed, and overall model performance. 
Numerous research initiatives are currently dedicated to 
developing more efficient linear attention mechanisms to 
minimize resource consumption while maximizing model 
performance. However, advancements in the convolution 
module still need to be improved. Traditional convolution 
modules rely on pointwise convolution to achieve linear 
combinations and fusion among neurons at specific channel 
positions. This methodology constrains their ability to 
effectively capture intricate feature relationships across 
spatial locations, impeding their ability to learn more 
descriptive cues. Inspired by [16], we propose a lightweight 
FG-Conv module. In this module, we employ pointwise 
group convolution to conduct independent convolution 
operations within each group, enhancing the model’s 
capability to capture feature relationships across spatial 
dimensions and improving functional expressiveness. 
Furthermore, by implementing a channel shuffle strategy, we 
systematically or randomly rearrange the neurons across 
different channels or spatial locations to evaluate their 
significance and optimize the relationship between features 
and weights. These enhancements significantly improve the 
model’s comprehension of complex speech signals and 
further elevate its performance in speech recognition tasks. 

B. Jiao-Liao Mandarin Speech Recognition 
Jiao-Liao Mandarin, a significant component of Chinese 

dialects, holds immense value for linguistic research and 
speech technology. Currently, the only available speech 
resource for scholarly investigation is the Jiao-Liao section of 

the KeSpeech dataset [17], which primarily emphasizes 
themes such as news, technology, and sports. 

In the study of Jiao-Liao Mandarin, Shao et al. [18] 
proposed the Decoupling and Interacting Multi-task Network, 
which enhances recognition performance in speech and 
accent recognition tasks through joint training. This approach 
facilitates complementary information interactions at various 
granularities, significantly improving performance for both 
functions. Mu [19] introduced a unified generative error 
correction model for speech and accent recognition, termed 
MMGER, which employs multi-modal and multi-granularity 
calibration techniques. Tang et al. [20] implemented Pinyin 
regularization for prompts to fine-tune large language models, 
enhancing the error correction capabilities of automatic 
speech recognition systems. Chen et al. [21] developed the 
Layer-adapted Module model that extracts fine-grained 
prosodic information from different layers of the acoustic 
encoder and promotes frame-by-frame correction of ASR 
results via a cross-attention module. Gu et al. [22] proposed a 
personality-aware training framework to adapt pre-trained 
ASR models to target speakers, addressing mismatches 
between training and testing conditions in end-to-end 
automatic speech recognition. 

Despite the technological advancements achieved through 
these methods, research explicitly focused on Jiao-Liao 
Mandarin remains relatively limited. Furthermore, existing 
datasets exhibit significant deficiencies in representing the 
unique vocabulary and regional idioms of Jiao-Liao 
Mandarin, which constrains the comprehensive development 
of speech recognition technology for this dialect. This paper 
establishes a Jiao-Liao Mandarin speech recognition dataset 
named JLMS30, encompassing common themes from daily 
life along with a rich array of unique vocabulary and regional 
idioms, thereby providing essential data support for 
advancing speech recognition technology in Jiao-Liao 
Mandarin. 

C. Pre-trained Language Models for Automatic Speech 
Recognition 

The emergence of pre-trained language models has created 
new opportunities for advancing speech recognition 
technology. Analyses of enhancing speech recognition using 
these models can be categorized into three distinct types:  
restorer-based, model-based, and knowledge distillation [23]. 

In contrast to the first two methods, knowledge 
distillation-based approaches focus on optimizing the speech 
recognition model. Lu et al. [24] proposed a cross-modal 
knowledge transfer learning framework that aligns 
hierarchical acoustic features with linguistic features, 
enabling the acoustic encoder to acquire rich linguistic 
knowledge. Futami et al. [25] aligned a Connectionist 
Temporal Classification model’s frame-level predictions 
with BERT’s word-level predictions and performed 
knowledge distillation. Kubo [24] investigated knowledge 
distillation methods involving attention-based decoders and 
Transducer-based decoders in conjunction with pre-trained 
language models. Han [26] introduced a hierarchical 
knowledge distillation (HKD) method for the CIF model, 
applying cross-modal distillation using contrastive loss at the 
acoustic level and regression loss at the linguistic level to  
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Fig. 1. Flowchart of the Dataset Construction Process. 

extract knowledge from pre-trained language models into the 
ASR model. 

While current knowledge distillation methods have made 
notable advancements in speech recognition, these studies 
focus excessively on transferring local textual information to 
acoustic representations, thereby overlooking the importance 
of overall semantic context. This paper introduces a 
sentence-level semantic contrast distillation strategy aimed at 
enhancing the learning of sentence coherence and improving 
the model’s ability to manage long sentences and complex 
syntactic structures. 

III. JLMS30 DATASETS 
This paper presents JLMS30, a Jiao-Liao Mandarin speech 

recognition dataset of 27,222 samples lasting 30 hours. This 
dataset is an extension and optimization of JLMS25 [27], 
further enhancing its scale and quality. As illustrated in Fig. 1, 
the process of constructing the dataset is outlined below: 
（1）Textual Corpus Collection: To enrich the dataset with 

diverse and comprehensive textual content, three methods 
were utilized for its collection: 

•Text from various online platforms, including social 
media, forums, and blogs, was gathered to ensure a rich and 
diverse dataset. Texts were carefully reviewed during the 
data cleaning process to remove any inappropriate content, 
such as politically sensitive issues, privacy violations, 
pornography, or violence. Additionally, overly long texts 
were shortened, unique tags, punctuation marks, and emojis 
were eliminated, and Arabic numerals were converted into 
their corresponding Chinese character forms. 

•A portion of text from the Mandarin speech recognition 
dataset Aishell-1 [28] was incorporated, covering various 
domains such as finance, science and technology, and sports. 

•Everyday expressions and folk proverbs collected from 
the Jiao-Liao Mandarin region were included. These texts 
highlight the area’s unique linguistic characteristics. 
（ 2） Recruitment of Speakers: To ensure both the 

linguistic authenticity and regional representativeness of the 
speaker samples, we meticulously selected speakers based on 
the following criteria: 

•Speakers have resided in the Jiao-Liao 
Mandarin-speaking region for an extended period without 
any long-term (over one year) residence outside the area. 

•Speakers demonstrate strong proficiency in the dialect 
and use Jiao-Liao Mandarin as their primary mode of 
communication in daily life. 
（3）Speech Data Collection: We adopt a standardized 

process for speech data collection, which consists of the 
following steps: First, the researchers provide speakers with 
pre-prepared text materials in advance, ensuring they are 
well-acquainted with the content and can read it fluently. All 
recordings are conducted in a quiet environment to guarantee 
the quality of the speech samples. To enhance the diversity 

and representativeness of the speech data and ensure 
high-quality speech samples from a professional recording 
environment while also capturing more representative, 
everyday speech data, a hybrid collection approach 
combining both offline and online methods is employed: 

•Offline Collection: In a quiet environment, speakers read 
the provided text aloud, sentence by sentence, using a 
high-fidelity AT2020 microphone. Afterward, the audio is 
edited using Adobe Audition software. 

•Online Collection: Speakers use Android or iOS mobile 
devices to record their speech using the system’s built-in 
recording applications. Before recording, all speakers receive 
standardized pronunciation guidance to ensure pronunciation 
and speech rate consistency. 

 

 
Fig. 2. The distribution text length and audio duration. 

 
（4）Data Quality Assessment: We implement a rigorous 

quality control process to ensure the reliability of our speech 
data: 
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•Utilize professional audio analysis software to evaluate 
the SNR of the collected speech data, eliminating low-quality 
samples with excessive environmental noise. 

•Assess the alignment between the spoken content and the 
provided text, removing samples with inconsistencies such as 
pronunciation errors, omissions, or additions. 
（5）Standardization of Audio Data Format: All audio files 

were converted to mono WAV format, with a sampling rate 
of 16 kHz and a bit depth of 16. 
（6）Detailed Statistics of the Dataset: We have conducted 

a detailed analysis of the distribution of text length and audio 
duration, the distribution of text domains, and the age and 
gender information of the speakers. 

•The distribution of text length and audio duration is 
illustrated in Fig. 2. The text lengths range from 1 to over 50 
characters, with the majority falling between 1 and 30 
characters. As the number of characters increases, the 
frequency of texts decreases sharply. The audio samples 
range in duration from 1 to 12 seconds, with a significant 
proportion lasting between 2 and 6 seconds. This reflects the 
typical characteristics of everyday spoken communication. 

 
Fig. 3. The distribution of text domains. 

 
•The distribution of text domains within the dataset is 

shown in Fig. 3. The corpus covers several common domains, 
with news-related texts accounting for the largest proportion 
at 34.45%. Texts related to daily expressions and folk 
proverbs make up 18.36%, ranking second and highlighting 
the richness of everyday spoken communication. Other 
domains, such as entertainment (16.95%), technology 
(12.71%), sports (10.26%), and finance (7.27%), also 
contribute significant proportions, together forming a diverse 
and representative distribution of text domains. This 
balanced distribution supports the development of a speech 
recognition model with broad adaptability, improving its 
generalization across various application scenarios. 

• Regarding the age and gender information of the speakers, 
we recruited 57 local speakers from the Jiao-Liao Mandarin 
region, all of whom had no history of long-term residence 
outside the area, for audio collection. Fig. 4 provides a 
detailed overview of the gender and age distribution of the 
speakers. Overall, the proportion of female speakers is 
slightly higher than that of male speakers, with the largest age 
group comprising speakers aged 21 to 30. 

 

 
Fig. 4. Speaker age and gender information. 
 

IV. METHODS 
This section delineates the selected baseline model for 

speech recognition, along with the newly proposed module 
and knowledge distillation strategy. 

 

 
Fig. 5. The CIF-based ASR model. 
 

A. CIF 
The CIF [29], [30] functions as middleware that connects 

the acoustic encoder and decoder based on the principle of 
integrated distribution and has been extensively studied and 
applied. Due to the significantly higher sampling rate of 
acoustic features than textual features [6], directly 
transferring semantic knowledge to an end-to-end model 
presents challenges. Unlike other end-to-end speech 
recognition architectures, the CIF model can convert 
frame-level acoustic features into character-level features 
aligned with text. This capability markedly enhances the 
cross-modal learning process. Consequently, this paper 
focuses on CIF as the primary research object, with its model 
and module structure illustrated in Fig. 5. 

B. FG-Conv module 
Traditional convolution modules rely on pointwise 

convolutions to perform linear combinations and fusions 
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exclusively among neurons at channel positions. This 
approach limits their capacity to effectively capture complex 
feature relationships across spatial locations and constrains 
their ability to learn more descriptive cues. Inspired by the 
successful research [16], we propose a novel lightweight 
module termed FG-Conv, as illustrated in Fig. 6. In this 
module, we employ pointwise group convolution to execute 
independent convolution operations within each group, 
thereby enhancing the ability to capture feature relationships 
across spatial locations and improving the expressive power 
of the features. Furthermore, by implementing a channel 
shuffle strategy, we can systematically or randomly rearrange 
neurons at various channel or spatial positions to assess their 
importance and optimize features with complete weights. 
 

 
Fig. 6. The structure of FG-Conv module. 
 

In speech recognition, input spectral features are often 
treated as images, making the task of speech signal 
recognition analogous to image classification. Building on 
this concept, we replaced the convolution module in the 
encoder with the FG-Conv module to enhance the 
distinguishability of speech signal features. This 
enhancement improves the representation of speech signals 
and ultimately increases the accuracy of predicted text. 
 

 
Fig. 7. Semantic acoustic knowledge distillation. P denotes projection, and N 
denotes L2 normalization. 

C. Semantic acoustic contrastive distillation 
Pre-trained language models demonstrate robust 

generalization capabilities, producing outputs rich in 
semantic knowledge and achieving impressive results across 
various natural language processing tasks. Han et al. [23] 
implemented a knowledge distillation strategy during 
training, leveraging pre-trained language models to extract 
semantic features for each character within the text data. The 

model effectively learns the relationship between acoustics 
and text by aligning character-level acoustic features with 
their corresponding semantic features, enhancing its 
understanding of speech transcription tasks. However, an 
excessive emphasis on fine-grained features during the 
semantic alignment from acoustics to text may compromise 
overall coherence, potentially resulting in the loss of critical 
semantic information. To bridge the semantic gap more 
effectively between acoustics and text, this paper introduces 
semantic acoustic contrastive distillation, which aims to 
leverage comprehensive semantic features of text to assist the 
model in learning acoustic features from a sentence-level 
perspective. The semantic acoustic knowledge distillation 
process is illustrated in Fig. 7. 

During the training phase, character-level acoustic features 

 are first processed  to 

obtain a representation , which is then projected to match 
the dimensionality of the sentence-level semantic features E 
= [CLS]. These features are subsequently normalized to yield 

. The loss function for semantic acoustic contrastive 
distillation is calculated using the following formulas: 

  (1) 

where  is defined as . Here, 

denotes the inner product of vectors x and y. N 
indicates the batch size for the n-th audio sample.  and K 
denote the temperature parameter and the number of negative 
samples for contrastive loss, respectively.  represents 
the k-th negative teacher token representation sampled from 
all teacher token representations in the current batch 
(excluding positive samples). 

In addition to examining the contrastive distillation 
strategy, this paper also explores the application of a mean 
squared error loss function for sentence-level semantic 
knowledge distillation for comparative analysis. The loss 
function is computed using the following formulas: 

  (2) 

where  represents the dimensionality of the semantic 
features, and the coefficient represents the scaling 
weight associated with the loss function. 

V.    EXPERIMENTS AND RESULTS 
We developed a series of end-to-end Jiao-Liao Mandarin 

speech recognition models and performed a comparative 
performance analysis. Initially, we presented the results 
obtained from the baseline Jiao-Liao Mandarin speech 
recognition model. Subsequently, we introduced an enhanced 
model based on CIF-FSA and detailed its findings. The 
experimental results indicate that our proposed approach 
significantly enhances model performance and improves 
speech recognition accuracy. 
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A. Experimental Setup 
The experiments utilized the JLMS30 dataset developed in 

this study. The dataset was partitioned into training, dev, and 
test sets according to a time ratio of 8:1:1. Table I provides 
detailed information regarding the division of the dataset. 

 
TABLE I 

INFORMATION OF JLMS30 DATASET. 
Dataset Speakers Male Female #Sentences Duration(h) 

Train 47 30 17 21,364 23.7 
Dev 5 2 3 3,200 3.4 
Test 5 1 4 2,658 2.9 

 
In Jiao-Liao Mandarin speech recognition, we use CER to 

evaluate model accuracy, with a lower CER indicating better 
performance. The CER is computed using the following 
formulas: 

  (3) 

where  represents the length of the original string, S 
represents the number of substituted characters, D represents 
the number of deleted characters, and I represents the number 
of inserted characters.  

We employ 80-dimensional log Mel-filter bank features 
(Fbank) as input, utilizing a window size of 25 ms and a shift 
of 10 ms. Before training, two data augmentation techniques, 
speed perturbation [31] and SpecAugment [32], are applied 
to enhance the dataset. Global CMVN [33] is subsequently 
employed to normalize the features. The dataset yields a 
vocabulary comprising 3,380 characters along with four 
unique tokens: <PAD>, <EOS>, <BOS>, and <UNK>, 
which collectively form the unit set. Bert-base-Chinese 2 is 
the pre-trained model for the experiments, and the 
Transformer LM is used for re-scoring. All experiments are 
conducted on an NVIDIA Tesla 4080 (16GB) GPU. The 
hyperparameters of the CIF model are detailed in Table II. 

 
TABLE II 

THE CIF-BASED ASR MODEL SETTINGS. 
Hyperparameter Value 
Encoder Layers 15 
Decoder Layers 2 

Encoder Embed Dim 256 
Decoder Embed Dim 256 

Heads 4 
FFN Dim 2048 
Dropout 0.1 

Max Token 1500 
Train Shuffle False 

B. Results 
We first compare the CIF-based ASR model with previous 

studies. As shown in Table III, all models demonstrate robust 
performance, confirming the dataset's reliability and validity. 
Our proposed CIF-FSA model achieves optimal performance 
with and without the LM. U2++ [34], with its bidirectional 
attention decoder, improves the Branchformer model by 
leveraging context from both directions. The Sum. Mix. [15] 
approach enhances the Branchformer model by replacing the 
original attention mechanism with a linear one. The 
CIF+HKD model, which integrates hierarchical knowledge 
distillation, ranks just below CIF-FSA, significantly 
improving recognition. On the Aishell-1 dataset, CIF+HKD 
achieves optimal performance without additional data. 

However, on the JLMS30 dataset, our CIF-FSA model 
outperforms CIF+HKD by 2.2% in CER on the test set, 
highlighting the superiority of our approach. We experiment 
with three settings: SACD, FG, and FSA which combine 
SACD and FG, with results showing performance 
improvements. Substituting the convolution module with the 
FG-Conv module reduces model parameters by 6% while 
improving performance. On the JLMS30 dataset, the CER 
decreases by 5.4%, indicating enhanced feature 
representation. The semantic acoustic contrastive distillation 
strategy transfers semantic knowledge from sentence-level 
features of the pre-trained LM to the CIF-based ASR model, 
reducing the CER by 9.6% compared to the baseline. Our 
method achieves a 15.5% reduction in CER, demonstrating 
its effectiveness and superiority. 

 
TABLE III 

MAIN RESULTS ON JLMS30 (CER %). 

Model #Params w/o LM w/ LM 
dev/test dev/test 

Non-autoregressive    
Transformer 30M 26.6/26.5 26.3/26.2 
Conformer 46M 23.2/24.4 23.0/24.2 

Eff Conformer 46M 23.5/24.1 23.3/23.9 
Branchformer 41M 26.8/25.3 26.6/25.1 

U2++ Branchformer 48M 25.4/24.2 25.2/24.0 
Branchformer+Sum. Mix.  48M 25.7/25.9 25.5/25.7 

E-Branchformer 46M 23.2/24.0 23.0/23.8 
Autoregressive    

CIF 47M 25.8/25.8 25.6/25.6 
CIF+HKD 47M 22.7/22.3 22.5/22.1 

Autoregressive (Proposed)    
CIF-SACD 47M 23.5/23.3 23.3/23.1 

CIF-FG 44M 25.3/24.4 25.1/24.2 
CIF-FSA 44M 22.6/21.8 22.4/21.6 

 
We compare loss functions by exploring methods for 

transferring semantic knowledge from pre-trained language 
models to speech recognition systems through character-level 
and sentence-level knowledge distillation strategies. In this 
context, AD and SD denote character-level and 
sentence-level knowledge distillation, respectively, with KD 
Loss encompassing mean squared error (MSE), cosine (COS), 
and contrastive distillation (CONT) losses.  

 
TABLE IV 

COMPARISON BETWEEN CONTRASTIVE LOSS AND OTHER 
DISTILLATION LOSSES (CER %). AD REPRESENTS 

CHARACTER-LEVEL KNOWLEDGE DISTILLATION, AND SD 
REPRESENTS SENTENCE-LEVEL KNOWLEDGE DISTILLATION. 

MSE, COS, AND CONT REPRESENT MEAN SQUARE ERROR LOSS, 
COSINE EMBEDDING LOSS, AND CONTRASTIVE LOSS, 

RESPECTIVELY. 

Model AD SD KD Loss w/o LM w/ LM 
dev/test dev/test 

CIF 

× × × 25.8/25.8 25.6/25.6 
√ × MSE 23.9/23.4 23.7/23.2 
√ × COS 23.7/23.5 23.5/23.3 
√ × CONT 23.6/23.4 23.4/23.2 
× √ MSE 24.7/25.3 24.5/25.1 
× √ CONT 23.5/23.3 23.3/23.1 

CIF-FG 

× × × 25.3/24.4 25.1/24.2 
√ × MSE 23.4/22.2 23.2/22.0 
√ × COS 23.0/22.9 22.8/22.7 
√ × CONT 23.3/23.0 23.1/22.8 
× √ MSE 23.0/22.2 22.8/22.0 
× √ CONT 22.6/21.8 22.4/21.6 

( )CER S D I
N

+ +
=

N
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TABLE V 

The Comparison of Some Cases on JLSD30. 

Ground Truth Transcription Baseline Predicted Transcription CIF-SACD Predicted Transcription 
考 虑 到 目 前 的 实 际 情 况 考 虑 到 目 前 的 事 迹 情 况 考 虑 到 目 前 的 实 际 情 况 
传 闻 铁 路 部 融 资 两 千 亿 传 闻 铁 路 部 融 资 两 千 一 传 闻 铁 路 部 融 资 两 千 亿 
是 名 副 其 实 的 骑 游 天 下 是 名 符 其 实 的 肌 肉 天 下 是 名 副 其 实 的 骑 游 天 下 
提 高 全 社 会 福 利 水 平 提 高 全 社 会 富 力水 平 提 高 全 社 会 福 利 水 平 

 
Table IV shows that character-level and sentence-level 

knowledge distillation strategies effectively enhance the 
model's language modeling capabilities and improve 
performance. Notably, the contrastive loss function 
outperforms the others, likely due to its fundamental 
principle of minimizing the distance between similar samples 
while maximizing the distance between dissimilar ones; this 
encourages the model to learn latent semantic information 
more comprehensively rather than focusing solely on 
individual sample features. Furthermore, the sentence-level 
knowledge distillation strategy performs better than its 
character-level counterpart, particularly when utilizing the 
FG-Conv module. This suggests that the sentence-level 
knowledge distillation strategy captures more crucial 
semantic information, enhancing the model's more profound 
understanding of overall sentence semantics. 

To further explore how the semantic acoustic contrastive 
distillation strategy improves model performance, this 
chapter presents a case analysis using representative samples 
from the JLSD30 test set. As shown in Table V, the 
experimental comparison includes three sets of data: the first 
column displays the accurate speech transcription, the second 
column presents the baseline model’s predictions, and the 
third column shows the predictions obtained using the 
CIF-SACD method. In the visual presentation, 
misrecognized words from the baseline model are 
highlighted in red, while the corrected predictions from the 
CIF-SACD method are highlighted in blue. A comparative 
analysis reveals that the SACD strategy significantly 
enhances the semantic representation capability of the 
baseline model, especially in disambiguating homophones. 
This finding confirms the critical role of SACD strategy in 
improving the model’s semantic understanding. 

We explore the performance of the FG-Conv module 
under varying the number of groups within the channel 
shuffle strategy through hyperparameter experiments. In the 
experiment, a group number of 1 signifies the absence of 
channel shuffle strategy.  

 
TABLE VI 

EFFECTS OF THE NUMBER OF GROUPS (CER %). 
Model G=1 G=2 G=4 G=8 G=16 
CIF-FG 25.3 26.1 25.1 24.4 25.4 

CIF-FSA 21.9 23.1 22.0 21.8 21.8 
 
As illustrated in Table VI, when the channel shuffle 

strategy is not employed, localized processing facilitates the 
recognition of subtle differences between spatial locations, 
enhancing feature expressiveness. However, each group 
performs convolution operations exclusively on its 
corresponding input group, resulting in relatively 
independent extracted features; consequently, the model’s 
performance on the test set is only 1.9% lower than that of the 

baseline. When the channel shuffle strategy is implemented, 
particularly with the group number set to 8, the model 
demonstrates optimal performance on the test set, achieving a 
relative reduction of 3.5% in CER compared to the model 
without channel shuffle. This enhancement arises from the 
exchange of intergroup information following the grouped 
convolution layers, which mitigates high correlation among 
neighboring channel features and produces richer output 
features that more effectively represent acoustic 
characteristics. However, as the number of groups increases, 
model performance deteriorates, likely due to excessive 
grouping, which introduces disorder among acoustic features 
and hampers the model’s ability to capture valuable 
information. 

 

 

 
Fig. 8. Effects of the temperature and the number of negative samples. 

 
We conduct extensive comparative experiments to assess 

the effect of temperature and the number of negative samples
（K）on the semantic acoustic contrastive distillation strategy. 
The examined temperature values range from {0.01, 0.02, 
0.05, 0.1, 0.2, 0.5, 1}, while K varies from {100, 200, 300, 
400, 500, 600, 700, 800}. 

The experimental results in Fig. 8 indicate that combining 
the CIF model with the semantic acoustic contrastive 
distillation strategy achieves optimal performance at a 
moderate temperature. Specifically, as the temperature 
increases, the CER shows a trend of first decreasing and then 
increasing. The CER exhibits minimal fluctuations with 
changes in K, indicating that K has a relatively limited impact 
on the model performance for this low-resource dataset. 
Furthermore, the incorporation of the FG-Conv module 
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generally leads to a reduction in CER, thereby confirming its 
effectiveness. 

We explore the generality of the proposed method when 
using different pre-trained language models for semantic 
acoustic knowledge distillation. This set of experiments 
continues to use semantic acoustic knowledge distillation 
hyperparameters from the previous best results.  

 
TABLE VII 

EFFECTS OF DIFFERENT PLMS ON THE ASR PERFORMANCE. 

Model w/o LM w/ LM 
dev/test dev/test 

CIF 25.8/25.8 25.6/25.6 
+ bert-base-chinese 23.5/23.3 23.3/23.1 
+ chinese-bert-wwm [35] 22.6/22.2 22.4/22.1 
+ chinese-bert-wwm-ext [35] 22.8/22.5 22.6/22.3 
+ chinese-roberta-wwm-ext [35] 23.3/23.2 23.1/23.0 
+ chinese-lert-base [36] 22.8/22.3 22.6/22.1 
+ albert-base-chinese 22.9/22.7 22.6/22.5 
+ distilbert-base-zh-cased [37] 23.2/23.0 23.0/22.8 
+ t5-base-chinese-cluecorpussmall [38] 23.1/22.7 22.9/22.6 
+ chinese-macbert-base [35] 23.4/22.9 23.3/22.7 

 
As shown in Table VII, our proposed semantic acoustic 

knowledge distillation method consistently achieves 
improvements when utilizing different pre-trained language 
models as the knowledge source for cross-modal distillation, 
demonstrating the approach's effectiveness and 
generalizability. 

VI. CONCLUSION 
We have developed the JLMS30 dataset, which comprises 

30 hours of diverse Jiao-Liao Mandarin speech recognition 
data. This dataset encompasses a variety of general themes, 
including finance, science and technology, sports, 
entertainment, news, rich local characteristics, and folk 
proverbs. We designed a lightweight FG-Conv module to 
enhance feature expressiveness by capturing relationships 
across channels and spatial locations. Additionally, the 
channel shuffle strategy can systematically or randomly 
rearrange neurons across various channels or spatial positions 
to assess their importance and optimize features and their 
corresponding weights. Furthermore, we propose a semantic 
acoustic contrastive distillation strategy that aligns 
sentence-level semantic information from a pre-trained 
language model with high-level acoustic features. This 
approach narrows the semantic gap between acoustic and 
textual representations, thereby enhancing the model’s 
language modeling capability and aiding in alleviating issues 
related to homophony. 

In future work, we will continue to expand the data 
resources for Jiao-Liao Mandarin and explore additional 
speech processing tasks, including but not limited to speech 
recognition, speaker recognition, voice conversion, and 
speech synthesis. Simultaneously, we will investigate novel 
approaches to integrate the semantic knowledge of 
pre-trained language models into speech recognition systems 
using cross-modal knowledge distillation methods, thereby 
further enhancing the overall performance of these models. 
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