
 

  
Abstract—Sequential recommendation aims to predict users' 

future behaviors by analyzing their historical activity data, with 

a focus on extracting dynamic user preferences. Current graph 

neural network methods often overlook user behavior patterns 

and fail to consider time gaps between consecutive interactions, 

leading to reduced prediction accuracy. To address these 

limitations, we propose a Time-adaptive Prediction Dynamic 

Graph Neural Network for Sequential Recommendation. Our 

approach introduces three key innovations: First, we model 

user behavior sequences as dynamic graphs and implement a 

bucket-based adaptive threshold time prediction module to 

capture high-dimensional dynamic connections, thereby 

enhancing time data utilization. Second, we develop a dynamic 

memory attention module that effectively captures both 

long-term and short-term dependencies in user behavior, 

enabling rapid adaptation to environmental changes and 

flexible memory management. Finally, we employ a 

dual-branch dynamic weighted activation strategy to enhance 

the model's expressiveness, addressing the gradient vanishing 

issue during preference extraction and enabling precise, 

adaptive updates of user preferences. Extensive experiments on 

Amazon datasets (Beauty, Games, and CDs) demonstrate the 

superiority of our model, with Hit@10 improvements of 7.25%, 

1.89%, and 3.11%, and NDCG@10 enhancements of 9.88%, 

3.35%, and 4.36% respectively. These results validate that our 

algorithm significantly improves the model's perception of 

sequential time information and achieves superior performance 

in capturing users' dynamic preferences for sequential 

recommendation tasks. 

 

Index Terms—Sequential recommendation, Graph neural 

network, Bucket-based adaptive threshold, Dynamic memory 

attention, Dual-branch dynamic weighted activation  

 

I. INTRODUCTION 

EQUENTIAL recommendation (SR) algorithms 

leverage users' historical behaviors to predict their 

future actions, playing an important part in a number of 

real-world applications, including news recommendation, ad 

delivery, click- through rate prediction, and e-commerce. 

Unlike traditional recommendation algorithms that model 

user preferences statically, sequential recommendation 

captures users' dynamic and evolving preferences. For 

instance, while a user may generally dislike sports news (a 
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long-term preference), they might show interest during the 

Olympics (a medium-term preference). Additionally, their 

preference may further vary based on their favorite team's 

performance (a short-term preference). 

Several established methods for sequential 

recommendation have been proposed. For instance, 

sequential recommendation algorithms utilizing Markov 

Chain (MC) [1] models generate suggestions by examining 

the user's most recent k interactions. Models leveraging 

Recurrent Neural Networks (RNNs) [2],[3] effectively 

capture sequence dependencies using Gated Recurrent Units 

(GRUs) [4] or Long Short-term Memory (LSTM) networks. 

Furthermore, Convolutional Neural Networks (CNNs) [5] 

and attention networks [6] have been employed to model user 

sequences, incorporate interaction sequences, and capture 

item correlations to infer user intent. Recent advances in 

Graph Neural Networks (GNNs) [7] have enabled 

researchers to develop sequence models [8]-[11] that analyze 

complex item transitions and extract behavior patterns from 

temporal sequences. These models generate spatio-temporal 

embeddings by integrating temporal and structural 

information, improving predictions of users’ next interests. 

Sequential recommendation problems have made 

considerable advancements through the application of deep 

learning; however, several limitations and challenges 

continue to persist. 

First, as illustrated in Fig. 1 (where the percentage of 

interactions represents the proportion of a user's total 

interactions occurring on a specific day), user interactions 

provide substantial information about time intervals. 

However, existing sequential recommendation methods [10], 

often disregard timestamps and focus solely on the order of 

items in the sequence. This approach implicitly assumes that 

consecutive items in a sequence occur at uniform time 

intervals. In time series modeling, most methods only rely on 

the order of user access to encode time series information 

sequentially, without considering the long and short-time 

intervals of user access to items. Notably, when the user 

sequence is sparse, encoding only the time order and ignoring 

the time interval information can lead to significant 

information loss. For example, if two users share an identical 

sequence of interactions, but one completes these interactions 

within an hour while the other takes a week, the impact of 

their interactions on the subsequent item differs, despite 

occupying the same position in the sequence. However, 

current sequential recommendation methods focus solely on 

temporal order and treat these scenarios as identical. 

Second, in e-commerce and social media systems, user 

records continuously accumulate, leading to excessively long 

behavior sequences. Although long behavior sequences 
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contain rich information, traditional recommendation 

algorithms struggle to compute optimally for these sequences. 

Standard sequence learning architectures (e.g., RNNs, CNNs, 

and attention networks) often fail to capture long-term 

dependencies effectively. Current methods classify input 

sequences into long-term and short-term categories, 

extracting both temporal and long-term user preferences [12]. 

While this approach can predict the next activity, it has high 

computational complexity and is influenced by early 

interactions, which leads to forgetting long-term knowledge. 

Thus, creating a sophisticated model that specifically takes 

into account both short-term and long-term goals is essential. 

However, capturing and maintaining long-term dependencies 

remains unstable, and processing sequence data is still 

limited. To enhance model performance, it is essential to 

update and refine memory embeddings. By leveraging 

dynamic memory, the model can selectively emphasize 

different aspects of inputs during decision-making, thereby 

enabling more precise predictions of user intent. 
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Fig. 1.  The number of interactions in a month and their percentage of total 

data. 

 

Finally, traditional activation mechanisms are static, while 

user characteristics are dynamic. Static models cannot adapt 

to changes in input data, limiting their performance with 

varying inputs. Additionally, a single processing branch 

cannot fully explore complex feature relationships, thus 

reducing the model's expressive power and prediction 

accuracy. This static, single-branch approach is inadequate 

for handling high-dimensional features and large-scale data. 

To address these difficulties, the present study introduces a 

sequence recommendation optimization algorithm that 

combines a Dynamic Graph Neural Network (DGNN) with a 

Dynamic Memory Attention Module (DMAM), termed the 

Time- adaptive Prediction Dynamic Graph Neural Network 

for Sequential Recommendation (TaDGSR). Firstly, a 

bucket-based Adaptive Threshold Time Prediction Module 

(ATTP) is proposed for sequential recommendation tasks. 

This module incorporates a time-bucket strategy to 

dynamically adjust prediction thresholds. This allows the 

recommendation system to effectively track changes in user 

behavior across different time spans, addressing the issue 

where traditional time-processing methods fail to flexibly 

respond to dynamic user behavior. Secondly, in sequential 

recommendation, a dynamic memory attention module 

selectively retrieves and emphasizes relevant historical user 

interactions from a dynamic memory bank. This procedure 

improves the model's ability to adaptively focus on 

significant contextual behaviors and capture long-term 

dependencies, enabling more accurate and personalized 

predictions. Finally, a Dual-branch Dynamic Weighted 

Activation (DDA) mechanism is proposed, which captures 

the user's multidimensional preferences through a 

dual-branch structure and dynamically adjusts the weights to 

flexibly respond to the diversity of user preferences. These 

advancements aim to enhance the recommendation system's 

personalization, diversity, and accuracy. Furthermore, the 

model contributes to addressing the cold-start issue in 

recommendation systems. 

II. RELATED WORKS 

A. Sequential Recommendation 

Sequential recommendation tasks utilize users’ historical 

behavioral sequences to predict their next actions, with a 

primary focus on modeling the evolution of dynamic user 

preferences. In one of the earliest works in this field, Rendle 

et al. [1] employed Markov chains to model behavioral 

sequence transitions, assuming that the most recently clicked 

items reflect users’ dynamic preferences. Subsequent 

advancements introduced deep learning-based methods, 

including attention networks [5], [6] and recurrent neural 

networks [2], to more efficiently extract critical features from 

user behavior sequences, thereby accommodating complex 

behavioral patterns. For example, the Transformer model [13] 

efficiently processes input sequences in parallel by 

employing positional encodings and self-attention 

mechanisms, capturing relationships between elements 

regardless of their sequential distance. 

Recent studies [14] have explored graph neural networks 

for sequential recommendation due to their exceptional 

capability in processing graph-structured data. Ren et al. [15] 

learned inter-domain sequence-level item representations 

from temporal dependencies and collaborative preference 

representations from user-item bipartite graphs. In contrast, 

Ma et al. [16] proposed Memory-Augmented Graph Neural 

Networks, integrating graph-based user-item interactions 

with memory modules to enhance the representation of 

long-term preferences. However, while these models have 

achieved progress in capturing user interests within 

sequences, they often overlook inter-sequence item 

relationships. Inspired by Li et al. [17], this study 

incorporates time interval information into dynamic graph 

neural networks to complement embedding representations, 

addressing the critical issue of neglected time intervals in 

user interaction sequences. 

B. Dynamic Graph Neural Networks 

Graph neural networks provide a framework for applying 

deep learning to graph-structured data, achieving remarkable 

performance through specific edge and node processing 
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policies. GNNs have been extensively utilized in 

recommender systems, leading to significant performance 

improvements and enabling the adoption of larger-scale 

networks. Early approaches, such as Graph Convolutional 

Networks (GCNs) [7], employed spectral graph convolutions 

to propagate and aggregate node information. Ying et al. [18] 

extended this by combining random walk-based sampling 

with graph convolutional networks, marking the first 

industrial application of GCNs in recommendation systems. 

Further innovations include Huang et al. [19], who 

introduced location-augmented and time-aware graph 

convolution operations to learn dynamic user and item 

representations on bipartite graphs.  

Recent research has shifted toward addressing the 

limitations of static network embeddings. Huang et al. [14] 

introduced a dynamic network embedding model that 

leverages the evolution of high-order similarity within 

dynamic triples. Xu et al. [20] developed an inductive 

representation learning framework specifically tailored for 

temporal graphs, capturing structural and temporal dynamics 

to generalize effectively to unseen nodes and time steps. 

Sankar et al. [21] utilized multi-headed self-attention to 

model structural dynamics in dynamic graphs, studying both 

structured neighbors and temporal patterns. Recent studies, 

such as [16], have proposed memory-augmented 

temporal-adaptive graph convolution methods, which 

effectively capture long-term dependencies in sequential 

recommendation tasks. 

Although Dynamic Graph Neural Networks (DGNNs) 

have demonstrated considerable potential in sequential data 

processing, their practical effectiveness in sequential 

recommendation remains constrained. Existing models fail to 

fully exploit the temporal richness of data, particularly in 

modeling long-range temporal dependencies. This deficiency 

leads to significant information loss when capturing 

long-term user preferences, especially in scenarios with 

sparse interaction sequences. Furthermore, the vanishing 

gradient problem becomes increasingly pronounced as 

sequence length increases, exacerbating the difficulty of 

extracting long and short-term preferences and 

compromising training stability. To address these limitations, 

this research explores the applicability of dynamic graph 

embedding techniques within sequential recommendation 

contexts, with a focus on enhancing temporal adaptability 

and capturing dynamic user preferences through time-bucket 

mechanisms. 

III. METHODOLOGY 

A. Overall Framework 

The proposed TaDGSR model introduces a novel 

architecture for sequential recommendation that 

systematically captures temporal dynamics through three 

coordinated components. As shown in Fig. 2, the framework 

comprises: a user sequence module for temporal pattern 

extraction, a dynamic graph construction module for 

interaction modeling, and a dynamic graph recommendation 

network for preference integration. 

First, User Sequence Module captures the historical 

user-item interactions and generates time-series data [22]. It 

serves as the foundation for constructing the dynamic graph 

by providing the necessary temporal and interaction 

information. Secondly, the dynamic graph construction 

module translates temporal interaction sequences into 

evolving graph representations. This component implements 

two key strategies: subgraph sampling for computational 

efficiency and time-bucket partitioning for temporal 

resolution control. Through continuous graph updates, the 

module maintains an adaptive representation of user 

preferences that evolves with behavioral changes while 

mitigating noise from sparse interactions. Finally, Dynamic 

Graph Recommendation Network leverages long-term and 

short-term memory mechanisms to model user preferences 

across different time spans. It employs a dual-branch 

dynamic weighted activation strategy to enhance the 

accuracy of preference capture. The network integrates 

dynamic memory attention to further refine the final 

prediction results by combining both long-term and 

short-term user preferences. 

The overall system aims to overcome the shortcomings of 

current sequential recommendation techniques by integrating 

temporal dynamics and adaptive processes, improving the 

recommendations' accuracy and personalization. 

1) Dynamic Graph Construction 

A pivotal stage in the TaDGSR model is creating the 

dynamic graph, which depicts the changes in user-item 

interactions over time. Unlike traditional static graphs, the 

dynamic graph accounts for the temporal dependencies 

between interactions, enabling the model to gradually adjust 

to modifications in user behavior. The dynamic graph is 

constructed based on user interaction quintuples (u, i, t, o
i 

u, o
u 

i ), 

where: u represents the user, i represents the item, t is the 

timestamp of the interaction, o
i 

u denotes the user's interaction 

behavior embedding with item i (e.g., click, purchase, 

add-to-cart), o
u 

i  represents the item's interaction behavior 

embedding with user u (e.g., being viewed, purchased, rated). 

Each interaction quintuple is used to update the dynamic 

graph, ensuring that the graph reflects the latest user 

behaviors. The edges in the graph are not static but evolve 

over time, capturing the strength and type of interactions 

between users and items. This temporal evolution features the 

dynamic graph, which can capture user preference 

fluctuations across timescales. The dynamic graph is 

constructed incrementally by aggregating subgraphs from 

different time intervals. This approach ensures that the graph 

remains up-to-date and can adapt to changes in user behavior. 

By continuously updating the graph, the model can make 

more accurate predictions about future user interactions. 

2) Sub-Graph Sampling 

With the growth in user numbers and interactions, the size 

of the dynamic graph expands rapidly, leading to high 

computational costs and potential noise in the target sequence 

Su. A subgraph sampling technique is employed to address 

this issue, effectively reducing computational complexity 

while maintaining model accuracy. During the subgraph 

sampling process, a selection of nodes and edges from the 

entire dynamic graph is identified as part of the procedure. 

Specifically, the model samples multi-hop neighbors of the 

target user u through an iterative sampling algorithm, 

resulting in a subgraph G
m 

n (tk) of order m, where m is a 

hyperparameter controlling the size of the subgraph. 

The subgraph G
m 

n (tk) covers the sequence Su and its 

relevant nodes,  ensuring  that  the model  captures  the most  
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Fig. 2.  Model framework diagram. 

 

 

important interactions for the target user. The sampling 

strategy allows the model to focus on the most relevant parts 

of the graph, reducing noise and improving the efficiency of 

training and prediction. By using subgraph sampling, the 

model can handle large-scale datasets more effectively, 

ensuring that the dynamic graph remains manageable while 

still capturing the essential temporal and interaction patterns 

needed for accurate recommendations. 

3) Bucket-Based Adaptive Threshold Time Prediction 

In order to improve the model's capacity to represent 

temporal dynamics, a ATTP is introduced. This module 

divides user interactions into several time intervals, or 

‘buckets,’ based on the user's historical interaction patterns. 

Each bucket represents a specific time range, facilitating the 

model's ability to capture user preferences across multiple 

time intervals. The ATTP module employs an adaptive 

threshold mechanism to dynamically adjust time-bucket 

boundaries by analyzing user behavior characteristics such as 

interaction frequency and duration within specific periods. 

Specifically, it initializes with default temporal boundaries 

and progressively optimizes these thresholds through 

iterative neural network parameter updates. This learnable 

optimization process enables flexible control over time 

partitioning granularity, automatically refining temporal 

resolution in response to evolving behavioral patterns. Such 

adaptive adjustments ensure optimal alignment with dynamic 

temporal features in sequential data while enhancing 

precision in capturing time-sensitive user preferences. For 

recent interactions, the module assigns higher weights to 

capture short-term preferences, while for older interactions, 

the weights are reduced to reflect their diminished influence 

on current preferences. 

The model's ability to adapt to changes in user behavior is 

ensured by the adaptive threshold method. By segmenting 

user interactions into time-buckets, the model can more 

effectively capture temporal dynamics in user preferences, 

resulting in recommendations that are both more precise and 

timely. The ATTP module is integrated into the dynamic 

graph construction process, ensuring that the graph reflects 

the latest user behaviors and preferences. Through this 

interaction, the model is able to adapt to changing user 

behaviors, thereby enhancing the accuracy and customization 

of recommendations over time. 

B. Dynamic Graph Recommendation Networks 

The central component of the TaDGSR model is the 

dynamic graph recommendation network, which integrates 

GNNs and RNNs to effectively capture both short-term and 

long-term user preferences. To enhance the model's ability to 

learn from dynamic user-item interactions, this section 

elaborates on the messaging systems and node update 

algorithms employed. 

1) Messaging Mechanisms 

The message passing mechanism encodes both long-term 

and short-term information through distinct architectural 

components. 

Long-term information propagation: In conventional 

graph neural networks and recurrent architectures, long-term 

information propagation typically focuses on either node- 

neighbor relationships or sequential dependencies.  

The architecture integrates the GCN framework to enable 

direct aggregation of neighboring node embeddings. The 

core formula is represented as follows: 

 
( 1) ( 1)

1

1

| |
u

l lL
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u i N

h W h
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− −



=   (1) 

 
( 1) ( 1)

2
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| |
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lL l
i u

i u N

h W h
N

− −



=   (2) 

where W
(l-1) 

1 , W
(l-1) 

2  are learnable weight matrices, and Nu and 

Ni and represent the sets of neighboring nodes for user u and 

item i, respectively. 

For recurrent neural networks, GRU networks effectively  
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model sequential dependencies to compute long-term 

features of user-item nodes. The long-term feature extraction 

operates as follows: 

 
1

( ) ( 1) ( 1)
( , , ),

Nu

l l lL
u uU i i

h GRU h h i N
− −

=   (3) 

 
1

( ) ( 1) ( 1)
( , , ),

Ni

l l lL
i iI u u

h GRU h h u N
− −

=   (4) 

where h
(l-1) 

u  and h
(l-1) 

i  represent the embeddings of user u and 

item i at the previous layer, respectively. 

Graph attention networks (GATs) have been widely 

applied for node representation learning in graph-structured 

data. Building on this foundation, our study further enhances 

the processing of time-series information within dynamic 

graphs. While traditional GNNs excel at capturing 

relationships between a central node and its neighboring 

nodes, they often struggle to effectively process neighboring 

nodes that include temporal sequence information. To 

overcome this drawback, this study incorporates a graph 

attention mechanism that constructs a user behavior graph 

and dynamically aggregates information from neighboring 

nodes through attention mechanisms. By combining this 

approach with sequential encoding, our model captures both 

global relationships and high-order dependencies, enabling 

more accurate and context-aware recommendations. 

The fundamental basis for determining the relative order r
i 

u 

of item i in relation to the most recently interacted item by 

user u is organized through each interaction quintuple (u, i, t, 

o
i 

u, o
u 

i ) within the dynamic graph attention mechanism. To 

effectively encode order information, a unique embedding 

vector Q
K 

r  is allocated to each relative order r. Subsequently, 

user node u and its neighboring item nodes i are then 

compared to determine the attention coefficients via the 

attention mechanism, represented as follows:  

 
( 1) ( 1) ( 1)

1
l l l

it ih W h− − −=  (5) 

 

( 1) ( 1)( 1)
2( ) ( )i

u

l ll T K
u it r
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W h h Q
e

d

− −− +
=  (6) 

where d represents the embedding dimension. The 

denominator d  prevents the dot product from becoming 

too large and accelerates convergence, thereby stabilizing the 

attention scores. By applying the softmax function, weight 

scores aui for neighboring nodes are obtained. This enables 

the aggregation of user's long-term preferences through 

weighted combination of neighboring nodes, as represented 

as follows:  

 softmax( )ui uie =  (7) 

 ( 1)
( )i

u
u

lL V
u ui it r

i N

h h Q −



= +  (8) 

where Q
V 

r  is a relative order embedding that captures the 

order information for user nodes when aggregating neighbor 

information. Similarly, Q
V 

r  is another relative order 

embedding that captures the order information for item nodes 

when aggregating neighbor information. The long-term 

preference representation h
L 

i  of item node i is obtained by 

weighted summation of user node embeddings and is 

represented as follows:  
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= +  (12) 

Short-term Information Processing: Short-term 

information reflects the latest behaviors and interest changes 

of nodes. In recommendation systems, capturing users' 

immediate needs via short-term information is crucial. 

Traditional systems often use the embedding of the most 

recent interaction as the short-term preference representation, 

yet this approach overlooks the impact of historical 

information. The propagation of short-term information is 

typically achieved through attention mechanisms, which 

model short-term preferences. Here, ˆˆ ,   are the attention 

coefficients between users and items. The calculation process 

for the short-term preferences of user node u and the 

short-term preferences of item node i is represented as 

follows:  

 
| |
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u N
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=   (16) 

The primary function of W3, W4 are to regulate the weight 

allocation of the most recent interactive item within the 

attention mechanism, ensuring that short-term preferences 

are accurately captured and integrated into the 

recommendation process. 

2) Node Update 

The node update process is crucial for maintaining the 

dynamic nature of the graph. It aims to generate new node 

embeddings by integrating long-term and short-term 

information with embeddings from the previous layer, 

accurately reflecting the evolving preferences of users and 

items over time. 

The DDA technique is employed in the user node update 

process to effectively integrate both short-term and long-term 

preferences. The DDA approach dynamically adjusts the 

weights assigned to short-term and long-term information 

based on the user's current behavior, thereby ensuring the 

model's adaptability in response to fluctuations in user 

preferences. The update rule for user nodes is represented as 

follows:  

 
( )( ) ( 1)

5( [ || || ])
ll L S l

u u u ug W h h h −=  (17) 

 

( )( ) ( )

( )( ) ( 1)

ReLU( )

(1 ) ReLU( )

ll l L
u u uL

ll S l
u u uS

h g W h

g W h h −

= +

− +
 (18) 

where h
(L) 

u  is the gating coefficient, controlling the fusion 

degree of long-term and short-term information. W
(l) 

5  is the 

weight matrix used to compress the connection vector. 

Independent parameter matrices W
(l) 

L  and W
(l) 

S  then process the 

long-term and short-term features separately. Preventing 

feature mixing while enhancing the model's capacity to pick 

up on various user preferences is the aim. The update rule for 

item nodes is represented as follows: 
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C. Adjustment and Optimization 

The adjustment and optimization process are crucial for 

ensuring that the TaDGSR model can effectively capture 

dynamic user preferences and make accurate 

recommendations. This section details the dynamic memory 

attention module and the prediction layer, which aim to 

improve the model's capacity to adjust to modifications in 

user behavior and improve recommendation accuracy. 

1) Dynamic Memory Attention Module 

To precisely capture the dynamic evolution of user 

preferences, we propose a DMAM that synergistically 

integrates differentiable memory storage with gated attention 

mechanisms. As illustrated in Fig. 3, the module operates 

through four coordinated phases of memory management. 

The dynamic memory attention module effectively stores 

and updates the evolving states of user behaviors, thereby 

enhancing the model's ability to recognize long-term 

dependencies. Its update process comprises four key steps: 

erase, write, update, and read. The structure is illustrated in 

Fig. 3.  

 

h
l
u

M

 
Fig. 3.  Dynamic Memory Attention Module. 

  

Erase Operation: This step removes information in the 

memory that is irrelevant to the current interaction by 

computing an elimination signal et. The elimination signal is 

computed as follows: 

 ( )Sigmoid( )l
t e u ee W h b= +  (21) 

where We represents the weight matrix, and be represents the 

bias term. The Sigmoid activation function restricts the 

values of et to the range [0,1], indicating the proportion of 

memory to be erased.  

Write Operation: This step integrates new interaction 

information into the memory by calculating an addition 

signal at, which adds new user node information to the 

memory module. The addition signal is computed as follows:  

 
( )Tanh( )l

t a u aa W h b= +  (22) 

where Wa represents the weight matrix, and ba represents the 

bias term. The Tanh activation function ensures the values of 

at fall within the range [-1,1], representing the content to be 

added to the memory.  

Update Operation: The dynamic memory attention 

module M updates its content using weight matrices and bias 

parameters. The update process is represented as follows:  

 1(1 )t t w t w tM M W e W a−= − +  (23) 

where Ww represents the weight matrix, indicating the impact 

of current interactions on the memory matrix. This allows the 

memory module to dynamically adjust its content to reflect 

the user's latest behavior patterns.  

Read Operation: This step retrieves the latest state of the 

user node from the module by computing weights through the 

product of module Mt and the current interaction node 

information h
(l) 

u . The weights are then compressed and 

activated via a neural network layer to produce the final 

output h
(l) 

u . The computation process is represented as 

follows:  

 
( ) ( )Sigmoid( ( ) )l l
u r t u rh W M h b= +  (24) 

where Wr is the reading weight matrix, and br is the bias term. 

The output ( )l
uh represents the user node output, providing an 

interpretable memory mechanism for the model. 

2) Prediction Layer 

The prediction layer propagates through multi-layer 

dynamic graph neural network modules to obtain multiple 

embedding vectors for user nodes at different timestamps. 

These vectors reflect user preference features at various time 

points. The model concatenates these multi-layer embedding 

vectors to derive the final embedding vector for user nodes, 

which is represented as follows: 

 
(0) (1) ( )|| || || L

u u u uh h h h=  (25) 

The model employs a link prediction function to assess the 

probability of user-item interactions for a specified candidate 

item, which is represented as follows: 

 
T

ui u Q iS h W e=  (26) 

where WQ represents the trainable transformation matrix that 

aligns user and item embeddings within a shared space. Sui 

denotes the score assigned by user u to candidate item i, while 

ei refers to the feature vector associated with item i. 

The model organizes the Sui scores of all candidate items 

into a vector, thereby generating a score vector for the user 

corresponding to each item. Subsequently, the model 

normalizes the score vector Su through the softmax function 

to derive the normalized probability distribution of user node 

u over the candidate items, which is represented as follows:  

 ˆ softmax( )u uy S=  (27) 

To optimize the model parameters, we employ the 

cross-entropy loss function as our objective function. The 

One-Hot encoding vector representing the next item that user 

u interacts with is denoted by the symbol yui. The formulation 

of the objective function is presented as follows: 

 
| |

2
1

ˆ ˆln( ) (1 ) ln(1 )
I

ui ui ui ui

S i

loss y y y y 
=

= − + − − +  (28) 

where Θ denotes all trainable parameters within the model, 

||.||2 signifies the L2 norm used for parameter regularization, 

and λ represents a hyperparameter governing regularization 

intensity, which modulates the impact of the regularization 

term. 

IV. EXPERIMENT 

A. Experimental Environment and Experimental Dataset 

Experiments were conducted on three benchmark datasets 

from the Amazon platform [23]: Beauty, Games, and CDs. 

These datasets vary in category diversity, sequence length, 

and sparsity, as summarized in Table I. 
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TABLE II 
PERFORMANCE COMPARISON OF THE MODELS ON THREE DATASETS 

Method 
Beauty Games CDs 

NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 

FPMC 0.2891 0.4310 0.4680 0.6802 0.3355 0.5122 

GRU4Rec+ 0.2642 0.4398 0.4564 0.6715 0.4452 0.6784 
Caser 0.2547 0.4264 0.4593 0.6883 0.4585 0.6865 

SASRec 0.3219 0.4854 0.5360 0.7398 0.4923 0.7132 

SR-GNN 0.3233 0.4862 0.5325 0.7349 0.4895 0.6963 
TiSASRec 0.3045 0.4687 0.5019 0.7185 0.4897 0.7100 

HGN 0.3247 0.4863 0.4934 0.7142 0.4934 0.7142 

HyperRec 0.2326 0.3471 0.4896 0.7124 0.4716 0.7102 
DGSR 0.3290 0.4871 0.5618 0.7618 0.5118 0.7213 

TaDGSR 0.3615 0.5224 0.5806 0.7762 0.5341 0.7437 

 

 

An Intel Xeon Platinum 8352V CPU facilitated 

computational support for the PyTorch implementation of the 

model, which was executed on an NVIDIA GeForce RTX 

4090 GPU. All experiments were conducted five times using 

different random seeds to ensure reproducibility, and the 

average metrics are reported. An embedding size of 50, a 

batch size of 50, and a learning rate of 0.01 tuned using the 

Adam algorithm were important hyperparameters [24]. To 

mitigate overfitting, L2 regularization with a coefficient of 

1×10−4 was employed. The network architecture consistently 

comprises two layers, and the time-buckets are divided into 4. 

The maximum sequence length was fixed at 50 to balance 

computational efficiency and information retention. 

 
TABLE I 

STATISTICS OF THE EXPERIMENTAL DATASET 

Dataset Beauty Games CDs 

Number of Users 52204 31013 17052 

Number of Items 57289 23715 35118 

Interactions 394908 287107 472265 

Average sequence length 7.59 9.26 27.70 

Density 0.01% 0.04% 0.08% 

 

B. Evaluation Metrics 

For the evaluation of top-K recommendations, we utilize 

two widely recognized metrics [25]: 

Hit@K: This metric indicates whether the target item 

appears among the top-K suggestions. 

 
1

1
Hit @ K ( K)

| |
snr

i

f Rank
+



=   (29) 

where  is the test set, and f (.) is an indicator function. 

NDCG@K: By assigning greater weights to higher 

positions, this metric assesses the quality of the rankings. 

 
1

1

( K)

2

1 2 1

| | log ( 1)

rsn

sn

f Rank

i rRank

+

+





−
=

+
NDCG@K  (30) 

C. Performance Comparison 

We conduct a comprehensive evaluation of the proposed 

TaDGSR model by comparing it with the following 

state-of-the-art techniques: 

FPMC [1]. A hybrid model for sequential recommendation 

that integrates Markov chains and matrix factorization. 

GRU4Rec+ [3]. An enhanced GRU-based model designed 

for session-based recommendations, optimized using ranking 

loss. 

Caser [5]. CNN-based sequential model capturing 

high-order item transition patterns. 

SASRec [6]. Self-attention sequential recommender with 

positional encoding. 

SR-GNN [8]. This model employs graph neural networks 

for session recommendation, effectively capturing item 

transition dynamics. 

DGSR [10]. The essence of this approach is to employ 

dynamic graph neural networks to effectively capture the 

evolving interactions within the user-item graph. 

TiSASRec [17]. Time interval-aware self-attention model 

for temporal interaction modeling.  

HGN [26]. Hierarchical gating network for multi-scale 

user interest extraction. 

HyperRec [27]. Hypergraph-based sequential 

recommendation model capturing high-order item 

relationships. 

D. Analysis of Experimental Results 

1) Evaluation Index Analysis 

The performance comparison among the models is 

presented in Table II. After analysis, it is evident that all 

baseline models are surpassed by the proposed approach. 

Notably, this approach improves performance by 7.25%, 

1.89%, and 3.11% in Hit@10, and 9.88%, 3.35%, and 4.36% 

in NDCG@10 across three datasets in comparison to the 

highest-performing baseline model, DGSR. There are two 

primary causes for this dominance. First, the introduction of 

the time-bucket mechanism allows for better utilization of 

user interaction time information in dynamic graph neural 

networks. Second, the adoption of the dynamic memory 

attention network effectively addresses the limitations of 

early interactions in traditional graph neural networks, 

thereby significantly enhancing prediction accuracy. 

The experimental results of the proposed algorithm, in 

comparison to alternative methods, are presented in Fig. 4 

and Fig. 5 for the Beauty, Games, and CDs datasets. The 

proposed methodology consistently outperforms competing 

strategies across all three datasets under various evaluation 

metrics, as illustrated by the figures. Notably, it demonstrates 

exceptional performance on both the Beauty and CDs 

datasets. This can be attributed to the fact that the Beauty 

dataset contains a limited number of interactions, with many 

users and items engaging infrequently. In this scenario, the 

proposed method’s use of time-bucket embedding effectively 

mitigates the data sparsity problem. The preliminary analysis 

of the CDs dataset indicates that users have relatively long 

average sequence lengths. The dynamic memory attention 

network demonstrates its ability to capture temporal 

dynamics,   successfully   addressing   limitations   caused   by  
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TABLE III 
ABLATION EXPERIMENTS 

# DGNN ATTP DMAM DDA Hit@5 Hit@10 Hit@20 NDCG@5 NDCG@10 NDCG@20 

1 √ × × √ 0.5721 0.6907 0.7969 0.4376 0.4761 0.5031 

2 √ √ × × 0.6042 0.7113 0.8067 0.4853 0.5129 0.5463 

3 √ × √ × 0.6387 0.7516 0.8257 0.5110 0.5518 0.5641 

4 √ × √ √ 0.6722 0.7688 0.8500 0.5424 0.5737 0.5944 

5 √ √ × √ 0.6759 0.7711 0.8516 0.5484 0.5793 0.5996 

6 √ √ √ × 0.6771 0.7754 0.8519 0.5482 0.5798 0.6001 

7 √ √ √ √ 0.6794 0.7762 0.8561 0.5498 0.5806 0.6010 
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Fig. 4.  The NDCG@10 of the methods being compared on different dataset. 
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Fig. 5.  The Hit@10 of the methods being compared on different datasets. 

 

 

sequence length and computational complexity in the model. 

2) Ablation and Effectiveness Analyses 

To validate the effectiveness of the proposed modules in 

sequential recommendation tasks, ablation experiments were 

performed on the Games dataset. As shown in Table III, ‘√’ 

indicates that the specified algorithm policy is adopted. 

Ablation experiments 1, 2, and 3 represent the use of 

individual methods. 
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TABLE IV 
THE EFFECT OF EACH ALGORITHM ON THE COLD-START DATA SET 

Algorithm 
Beauty Games 

Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@10 NDCG@10 Recall@20 NDCG@20 

SASRec 0.1623 0.0912 0.2035 0.1093 0.1912 0.1105 0.2116 0.1029 

SR-GNN 0.1867 0.0987 0.2293 0.1288 0.2156 0.1231 0.2437 0.1195 
DGSR 0.1988 0.1092 0.2416 0.1376 0.2301 0.1328 0.2609 0.1253 

TaDGSR 0.2431 0.1365 0.2975 0.1723 0.2789 0.1589 0.3212 0.1645 
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Fig. 6.  Performance metrics on the Beauty cold-start dataset                              Fig. 7.  Performance metrics on the Games cold-start dataset 

 

 

Experiment 1 integrates DDA into a dynamic graph neural 

network, mainly to enhance the flexibility of the model in 

handling complex user and item interactions. 

Experiment 2 employs ATTP, optimizing performance by 

leveraging sequential data and user behavior changes, 

demonstrating strong capabilities in handling temporal 

dependencies. 

Experiment 3 incorporates DMAM, thereby augmenting 

the model's capacity to effectively capture long-term 

dependencies and intricate interactions within dynamic 

graphs. 

Experiments 4, 5, and 6, which use two modules, show 

significant performance improvements. Experiment 7 shows 

marked enhancements over Experiment 4 in both Hit@10 

and NDCG@10, demonstrating that the absence of ATTP 

significantly reduces the accuracy of sequential 

recommendations. Experiment 5, which excludes DMAM, 

underperforms Experiment 7, primarily because DMAM 

captures richer temporal dynamics and is particularly 

effective in complex time-series tasks. In Experiment 6, the 

absence of DDA results in inferior performance compared to 

Experiment 7. This indicates that DDA, by providing 

independent dynamic adjustment paths, alleviates gradient 

vanishing, thereby improving learning stability and 

generalization. In Experiment 7, the combined use of ATTP, 

DMAM, and DDA further elevates performance, 

highlighting the interdependence and necessity of these 

modules in sequential recommendation tasks. 

3) Performance in Cold-start Scenario 

The cold-start problem holds a significant position in 

recommendation system experiments. In practical 

applications, recommendation systems often encounter new 

users or items that lack sufficient historical interaction data. 

This makes it difficult for traditional recommendation 

algorithms, which rely on historical behavior, to accurately 

predict preferences or features, thereby affecting 

recommendation effectiveness. Thus, the ability to provide 

accurate recommendations for new users or items quickly in 

cold-start scenarios has become a key challenge in evaluating 

recommendation system performance. 

In order to confirm that the TaDGSR algorithm effectively 

reduces cold-start problems for users and items, experiments 

were conducted on the Beauty and CDs datasets. In 

performance evaluation, standard ranking evaluation metrics 

for top-K recommendations were adopted, including 

Recall@K and NDCG@K. A few items and corresponding 

users were selected for interaction in cold-start experiments. 

Cold-start users are defined as individuals who have engaged 

in fewer than 20 interactions within the test set, and a 

dedicated cold-start test set was constructed. The results are 

shown in Table IV and visualized in Fig. 6 and Fig. 7 for easy 

comparison. The TaDGSR model outperformed other models 

in all metrics across the two datasets, indicating its significant 

role in addressing cold-start problem in recommendation 

systems. 

4) Parameter Sensitivity Analysis 

We conducted experiments focusing on several key 

hyperparameters in the proposed method, specifically the 

number of layers in the dynamic graph network, the number 

of time-buckets, the maximum sequence length, and the 

embedding size. These parameters were examined to assess 

their impact on model performance. Fig. 8 to Fig. 11 present 

the results of our model's evaluation using the Games dataset. 

Impact of TaDGSR Network Layers: To evaluate the effect 

of different network layers, we experimented with varying 

numbers of layers in the TaDGSR network, ranging from 0 to 

4. As shown in Fig. 8, increasing the number of layers 

significantly improves performance, demonstrating that 

leveraging higher-order user sequence information 

effectively enhances recommendation quality. The optimal 

performance was achieved with 2 layers. Further increasing 

the number of layers led to performance degradation, most 

likely as a result of the over-smoothing problem in graph 

neural networks that arises from having too many 

propagation layers. 

Impact of Time-Bucket Count: To evaluate the influence of  
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Fig. 8.  Impact of the number of network layers.                                                           Fig. 9.  Impact of the number of time-buckets. 
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Fig. 10.  Impact of the maximum sequence length.                                                         Fig. 11.  Impact of the embedding size. 

 

 

time-bucket count, we tested values from 2 to 6. As shown in 

Fig. 9, when the number of time-bucket was increased from 2 

to 4, there was a significant improvement in the model's 

performance, reaching its peak at 4. Fewer time-buckets 

failed to capture fine-grained temporal dynamics, while 

excessive buckets disrupted behavioral patterns and 

introduced noise. 

Impact of Maximum Sequence Length: To evaluate the 

effect of sequence length, we tested values from 10 to 60. As 

shown in Fig. 10, the model showed better recommendation 

performance across all tested lengths, with performance 

steadily increasing as the sequence length grew. Performance 

plateaued at a sequence length of 50, beyond which 

computational costs rose sharply. Therefore, we selected a 

sequence length of 50 as the optimal value. 

Impact of Embedding Size: To evaluate the effect of 

embedding size, we conducted experiments with dimensions 

ranging from 25 to 125. As shown in Fig. 11, model 

performance improved with increasing embedding size. 

However, excessively large dimensions risked overfitting, as 

the model might focus too much on minor variations in 

training data. Choosing an appropriate embedding size is 

critical for balancing expressiveness and generalization. We 

ultimately selected an embedding size of 50, which 

maintained sufficient expressiveness while minimizing 

overfitting risks. 

V. CONCLUSIONS 

This paper primarily investigates the impact of the time 

interval of user behavior and early interactions on prediction 

effectiveness within the realm of sequence recommendation. 

Traditional sequence recommendation methods often neglect 

to adequately consider the temporal aspects of user behavior, 

leading to limited predictive accuracy. To address this issue, 

this study introduces a time-adaptive prediction dynamic 

graph neural network for sequential recommendation By 

innovatively incorporating time-bucket, a dynamic memory 

attention network, and a dual-branch dynamic weighted 

activation strategy, the model's capacity to capture relevant 

outcomes is significantly enhanced. The experimental results 

indicate that this model exhibits substantial performance 

enhancements when compared to the benchmark model index 

values across multiple datasets, thereby fully demonstrating 

its superiority in addressing sequence recommendation tasks. 

Further research will focus on real-time deployment and 

online learning to facilitate continuous model updates in 

dynamic environments. Extending the framework to 

cross-domain recommendations and incorporating causal 

inference for interpretable predictions are promising 

directions. 
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