

Abstract—Sequential recommendation aims to predict users'

future behaviors by analyzing their historical activity data, with

a focus on extracting dynamic user preferences. Current graph

neural network methods often overlook user behavior patterns

and fail to consider time gaps between consecutive interactions,

leading to reduced prediction accuracy. To address these

limitations, we propose a Time-adaptive Prediction Dynamic

Graph Neural Network for Sequential Recommendation. Our

approach introduces three key innovations: First, we model

user behavior sequences as dynamic graphs and implement a

bucket-based adaptive threshold time prediction module to

capture high-dimensional dynamic connections, thereby

enhancing time data utilization. Second, we develop a dynamic

memory attention module that effectively captures both

long-term and short-term dependencies in user behavior,

enabling rapid adaptation to environmental changes and

flexible memory management. Finally, we employ a

dual-branch dynamic weighted activation strategy to enhance

the model's expressiveness, addressing the gradient vanishing

issue during preference extraction and enabling precise,

adaptive updates of user preferences. Extensive experiments on

Amazon datasets (Beauty, Games, and CDs) demonstrate the

superiority of our model, with Hit@10 improvements of 7.25%,

1.89%, and 3.11%, and NDCG@10 enhancements of 9.88%,

3.35%, and 4.36% respectively. These results validate that our

algorithm significantly improves the model's perception of

sequential time information and achieves superior performance

in capturing users' dynamic preferences for sequential

recommendation tasks.

Index Terms—Sequential recommendation, Graph neural

network, Bucket-based adaptive threshold, Dynamic memory

attention, Dual-branch dynamic weighted activation

I. INTRODUCTION

EQUENTIAL recommendation (SR) algorithms

leverage users' historical behaviors to predict their

future actions, playing an important part in a number of

real-world applications, including news recommendation, ad

delivery, click- through rate prediction, and e-commerce.

Unlike traditional recommendation algorithms that model

user preferences statically, sequential recommendation

captures users' dynamic and evolving preferences. For

instance, while a user may generally dislike sports news (a

Manuscript received January 12, 2025; revised April 28, 2025.

This work was supported by the General Project of scientific research
funds of the Liaoning Provincial Department of Education (Grant

No.2021LJKZ0327); the GPU Resource Support Project of Liaoning

Technical University (2024-02).
Wanzhi Chen is an associate professor of School of Software, Liaoning

Technical University Huludao, 125105, China. (corresponding author to

provide phone: +86 135-919-96866; e-mail: chenwanzhi@lntu.edu.cn).
Zhuo Li is a postgraduate student of School of Software, Liaoning

Technical University, Huludao, 125105, China. (e-mail:

1357622766@qq.com).

long-term preference), they might show interest during the

Olympics (a medium-term preference). Additionally, their

preference may further vary based on their favorite team's

performance (a short-term preference).

Several established methods for sequential

recommendation have been proposed. For instance,

sequential recommendation algorithms utilizing Markov

Chain (MC) [1] models generate suggestions by examining

the user's most recent k interactions. Models leveraging

Recurrent Neural Networks (RNNs) [2],[3] effectively

capture sequence dependencies using Gated Recurrent Units

(GRUs) [4] or Long Short-term Memory (LSTM) networks.

Furthermore, Convolutional Neural Networks (CNNs) [5]

and attention networks [6] have been employed to model user

sequences, incorporate interaction sequences, and capture

item correlations to infer user intent. Recent advances in

Graph Neural Networks (GNNs) [7] have enabled

researchers to develop sequence models [8]-[11] that analyze

complex item transitions and extract behavior patterns from

temporal sequences. These models generate spatio-temporal

embeddings by integrating temporal and structural

information, improving predictions of users’ next interests.

Sequential recommendation problems have made

considerable advancements through the application of deep

learning; however, several limitations and challenges

continue to persist.

First, as illustrated in Fig. 1 (where the percentage of

interactions represents the proportion of a user's total

interactions occurring on a specific day), user interactions

provide substantial information about time intervals.

However, existing sequential recommendation methods [10],

often disregard timestamps and focus solely on the order of

items in the sequence. This approach implicitly assumes that

consecutive items in a sequence occur at uniform time

intervals. In time series modeling, most methods only rely on

the order of user access to encode time series information

sequentially, without considering the long and short-time

intervals of user access to items. Notably, when the user

sequence is sparse, encoding only the time order and ignoring

the time interval information can lead to significant

information loss. For example, if two users share an identical

sequence of interactions, but one completes these interactions

within an hour while the other takes a week, the impact of

their interactions on the subsequent item differs, despite

occupying the same position in the sequence. However,

current sequential recommendation methods focus solely on

temporal order and treat these scenarios as identical.

Second, in e-commerce and social media systems, user

records continuously accumulate, leading to excessively long

behavior sequences. Although long behavior sequences

TaDGSR: A Time-adaptive Prediction

Dynamic Graph Neural Network for

Sequential Recommendation
Wanzhi Chen *, Zhuo Li

S

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1896-1906

__

mailto:1357622766@qq.com

contain rich information, traditional recommendation

algorithms struggle to compute optimally for these sequences.

Standard sequence learning architectures (e.g., RNNs, CNNs,

and attention networks) often fail to capture long-term

dependencies effectively. Current methods classify input

sequences into long-term and short-term categories,

extracting both temporal and long-term user preferences [12].

While this approach can predict the next activity, it has high

computational complexity and is influenced by early

interactions, which leads to forgetting long-term knowledge.

Thus, creating a sophisticated model that specifically takes

into account both short-term and long-term goals is essential.

However, capturing and maintaining long-term dependencies

remains unstable, and processing sequence data is still

limited. To enhance model performance, it is essential to

update and refine memory embeddings. By leveraging

dynamic memory, the model can selectively emphasize

different aspects of inputs during decision-making, thereby

enabling more precise predictions of user intent.

N
u

m
b

er
 o

f
in

te
ra

c
ti

o
n

s
(t

im
e
s)

Time span (month)

Interaction interval (days)

2826241816 22201412106 820 4

0

120000

100000

80000

60000

40000

20000

160000

140000

180000

P
er

ce
n

ta
g

e
o

f
in

te
ra

ct
io

n
s

Time span (month)

Interaction interval (days)

302826241816 22201412106 820 4

40.0%

70.0%

65.0%

60.0%

55.0%

50.0%

45.0%

Fig. 1. The number of interactions in a month and their percentage of total

data.

Finally, traditional activation mechanisms are static, while

user characteristics are dynamic. Static models cannot adapt

to changes in input data, limiting their performance with

varying inputs. Additionally, a single processing branch

cannot fully explore complex feature relationships, thus

reducing the model's expressive power and prediction

accuracy. This static, single-branch approach is inadequate

for handling high-dimensional features and large-scale data.

To address these difficulties, the present study introduces a

sequence recommendation optimization algorithm that

combines a Dynamic Graph Neural Network (DGNN) with a

Dynamic Memory Attention Module (DMAM), termed the

Time- adaptive Prediction Dynamic Graph Neural Network

for Sequential Recommendation (TaDGSR). Firstly, a

bucket-based Adaptive Threshold Time Prediction Module

(ATTP) is proposed for sequential recommendation tasks.

This module incorporates a time-bucket strategy to

dynamically adjust prediction thresholds. This allows the

recommendation system to effectively track changes in user

behavior across different time spans, addressing the issue

where traditional time-processing methods fail to flexibly

respond to dynamic user behavior. Secondly, in sequential

recommendation, a dynamic memory attention module

selectively retrieves and emphasizes relevant historical user

interactions from a dynamic memory bank. This procedure

improves the model's ability to adaptively focus on

significant contextual behaviors and capture long-term

dependencies, enabling more accurate and personalized

predictions. Finally, a Dual-branch Dynamic Weighted

Activation (DDA) mechanism is proposed, which captures

the user's multidimensional preferences through a

dual-branch structure and dynamically adjusts the weights to

flexibly respond to the diversity of user preferences. These

advancements aim to enhance the recommendation system's

personalization, diversity, and accuracy. Furthermore, the

model contributes to addressing the cold-start issue in

recommendation systems.

II. RELATED WORKS

A. Sequential Recommendation

Sequential recommendation tasks utilize users’ historical

behavioral sequences to predict their next actions, with a

primary focus on modeling the evolution of dynamic user

preferences. In one of the earliest works in this field, Rendle

et al. [1] employed Markov chains to model behavioral

sequence transitions, assuming that the most recently clicked

items reflect users’ dynamic preferences. Subsequent

advancements introduced deep learning-based methods,

including attention networks [5], [6] and recurrent neural

networks [2], to more efficiently extract critical features from

user behavior sequences, thereby accommodating complex

behavioral patterns. For example, the Transformer model [13]

efficiently processes input sequences in parallel by

employing positional encodings and self-attention

mechanisms, capturing relationships between elements

regardless of their sequential distance.

Recent studies [14] have explored graph neural networks

for sequential recommendation due to their exceptional

capability in processing graph-structured data. Ren et al. [15]

learned inter-domain sequence-level item representations

from temporal dependencies and collaborative preference

representations from user-item bipartite graphs. In contrast,

Ma et al. [16] proposed Memory-Augmented Graph Neural

Networks, integrating graph-based user-item interactions

with memory modules to enhance the representation of

long-term preferences. However, while these models have

achieved progress in capturing user interests within

sequences, they often overlook inter-sequence item

relationships. Inspired by Li et al. [17], this study

incorporates time interval information into dynamic graph

neural networks to complement embedding representations,

addressing the critical issue of neglected time intervals in

user interaction sequences.

B. Dynamic Graph Neural Networks

Graph neural networks provide a framework for applying

deep learning to graph-structured data, achieving remarkable

performance through specific edge and node processing

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1896-1906

__

policies. GNNs have been extensively utilized in

recommender systems, leading to significant performance

improvements and enabling the adoption of larger-scale

networks. Early approaches, such as Graph Convolutional

Networks (GCNs) [7], employed spectral graph convolutions

to propagate and aggregate node information. Ying et al. [18]

extended this by combining random walk-based sampling

with graph convolutional networks, marking the first

industrial application of GCNs in recommendation systems.

Further innovations include Huang et al. [19], who

introduced location-augmented and time-aware graph

convolution operations to learn dynamic user and item

representations on bipartite graphs.

Recent research has shifted toward addressing the

limitations of static network embeddings. Huang et al. [14]

introduced a dynamic network embedding model that

leverages the evolution of high-order similarity within

dynamic triples. Xu et al. [20] developed an inductive

representation learning framework specifically tailored for

temporal graphs, capturing structural and temporal dynamics

to generalize effectively to unseen nodes and time steps.

Sankar et al. [21] utilized multi-headed self-attention to

model structural dynamics in dynamic graphs, studying both

structured neighbors and temporal patterns. Recent studies,

such as [16], have proposed memory-augmented

temporal-adaptive graph convolution methods, which

effectively capture long-term dependencies in sequential

recommendation tasks.

Although Dynamic Graph Neural Networks (DGNNs)

have demonstrated considerable potential in sequential data

processing, their practical effectiveness in sequential

recommendation remains constrained. Existing models fail to

fully exploit the temporal richness of data, particularly in

modeling long-range temporal dependencies. This deficiency

leads to significant information loss when capturing

long-term user preferences, especially in scenarios with

sparse interaction sequences. Furthermore, the vanishing

gradient problem becomes increasingly pronounced as

sequence length increases, exacerbating the difficulty of

extracting long and short-term preferences and

compromising training stability. To address these limitations,

this research explores the applicability of dynamic graph

embedding techniques within sequential recommendation

contexts, with a focus on enhancing temporal adaptability

and capturing dynamic user preferences through time-bucket

mechanisms.

III. METHODOLOGY

A. Overall Framework

The proposed TaDGSR model introduces a novel

architecture for sequential recommendation that

systematically captures temporal dynamics through three

coordinated components. As shown in Fig. 2, the framework

comprises: a user sequence module for temporal pattern

extraction, a dynamic graph construction module for

interaction modeling, and a dynamic graph recommendation

network for preference integration.

First, User Sequence Module captures the historical

user-item interactions and generates time-series data [22]. It

serves as the foundation for constructing the dynamic graph

by providing the necessary temporal and interaction

information. Secondly, the dynamic graph construction

module translates temporal interaction sequences into

evolving graph representations. This component implements

two key strategies: subgraph sampling for computational

efficiency and time-bucket partitioning for temporal

resolution control. Through continuous graph updates, the

module maintains an adaptive representation of user

preferences that evolves with behavioral changes while

mitigating noise from sparse interactions. Finally, Dynamic

Graph Recommendation Network leverages long-term and

short-term memory mechanisms to model user preferences

across different time spans. It employs a dual-branch

dynamic weighted activation strategy to enhance the

accuracy of preference capture. The network integrates

dynamic memory attention to further refine the final

prediction results by combining both long-term and

short-term user preferences.

The overall system aims to overcome the shortcomings of

current sequential recommendation techniques by integrating

temporal dynamics and adaptive processes, improving the

recommendations' accuracy and personalization.

1) Dynamic Graph Construction

A pivotal stage in the TaDGSR model is creating the

dynamic graph, which depicts the changes in user-item

interactions over time. Unlike traditional static graphs, the

dynamic graph accounts for the temporal dependencies

between interactions, enabling the model to gradually adjust

to modifications in user behavior. The dynamic graph is

constructed based on user interaction quintuples (u, i, t, o
i

u, o
u

i),

where: u represents the user, i represents the item, t is the

timestamp of the interaction, o
i

u denotes the user's interaction

behavior embedding with item i (e.g., click, purchase,

add-to-cart), o
u

i represents the item's interaction behavior

embedding with user u (e.g., being viewed, purchased, rated).

Each interaction quintuple is used to update the dynamic

graph, ensuring that the graph reflects the latest user

behaviors. The edges in the graph are not static but evolve

over time, capturing the strength and type of interactions

between users and items. This temporal evolution features the

dynamic graph, which can capture user preference

fluctuations across timescales. The dynamic graph is

constructed incrementally by aggregating subgraphs from

different time intervals. This approach ensures that the graph

remains up-to-date and can adapt to changes in user behavior.

By continuously updating the graph, the model can make

more accurate predictions about future user interactions.

2) Sub-Graph Sampling

With the growth in user numbers and interactions, the size

of the dynamic graph expands rapidly, leading to high

computational costs and potential noise in the target sequence

Su. A subgraph sampling technique is employed to address

this issue, effectively reducing computational complexity

while maintaining model accuracy. During the subgraph

sampling process, a selection of nodes and edges from the

entire dynamic graph is identified as part of the procedure.

Specifically, the model samples multi-hop neighbors of the

target user u through an iterative sampling algorithm,

resulting in a subgraph G
m

n (tk) of order m, where m is a

hyperparameter controlling the size of the subgraph.

The subgraph G
m

n (tk) covers the sequence Su and its

relevant nodes, ensuring that the model captures the most

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1896-1906

__

L
o

n
g

-term

Item User

Concatenate

ItemUser

()L
uh

ŷ

1

()ˆ l

uh
1

()l

uh

3

(1)l

ih −

(2)
uh

(1)
uh

(0)
uh

1

()l

ih -1

2

(1)l

ih −

1

(1)l

uh −

2

(1)l

uh −

3

(1)l

uh −

2

()ˆ l

ih
2

()l

ih

Fig. 2. Model framework diagram.

important interactions for the target user. The sampling

strategy allows the model to focus on the most relevant parts

of the graph, reducing noise and improving the efficiency of

training and prediction. By using subgraph sampling, the

model can handle large-scale datasets more effectively,

ensuring that the dynamic graph remains manageable while

still capturing the essential temporal and interaction patterns

needed for accurate recommendations.

3) Bucket-Based Adaptive Threshold Time Prediction

In order to improve the model's capacity to represent

temporal dynamics, a ATTP is introduced. This module

divides user interactions into several time intervals, or

‘buckets,’ based on the user's historical interaction patterns.

Each bucket represents a specific time range, facilitating the

model's ability to capture user preferences across multiple

time intervals. The ATTP module employs an adaptive

threshold mechanism to dynamically adjust time-bucket

boundaries by analyzing user behavior characteristics such as

interaction frequency and duration within specific periods.

Specifically, it initializes with default temporal boundaries

and progressively optimizes these thresholds through

iterative neural network parameter updates. This learnable

optimization process enables flexible control over time

partitioning granularity, automatically refining temporal

resolution in response to evolving behavioral patterns. Such

adaptive adjustments ensure optimal alignment with dynamic

temporal features in sequential data while enhancing

precision in capturing time-sensitive user preferences. For

recent interactions, the module assigns higher weights to

capture short-term preferences, while for older interactions,

the weights are reduced to reflect their diminished influence

on current preferences.

The model's ability to adapt to changes in user behavior is

ensured by the adaptive threshold method. By segmenting

user interactions into time-buckets, the model can more

effectively capture temporal dynamics in user preferences,

resulting in recommendations that are both more precise and

timely. The ATTP module is integrated into the dynamic

graph construction process, ensuring that the graph reflects

the latest user behaviors and preferences. Through this

interaction, the model is able to adapt to changing user

behaviors, thereby enhancing the accuracy and customization

of recommendations over time.

B. Dynamic Graph Recommendation Networks

The central component of the TaDGSR model is the

dynamic graph recommendation network, which integrates

GNNs and RNNs to effectively capture both short-term and

long-term user preferences. To enhance the model's ability to

learn from dynamic user-item interactions, this section

elaborates on the messaging systems and node update

algorithms employed.

1) Messaging Mechanisms

The message passing mechanism encodes both long-term

and short-term information through distinct architectural

components.

Long-term information propagation: In conventional

graph neural networks and recurrent architectures, long-term

information propagation typically focuses on either node-

neighbor relationships or sequential dependencies.

The architecture integrates the GCN framework to enable

direct aggregation of neighboring node embeddings. The

core formula is represented as follows:

(1) (1)

1

1

| |
u

l lL
u i

u i N

h W h
N

− −



=  (1)

(1) (1)

2

1

| |
i

lL l
i u

i u N

h W h
N

− −



=  (2)

where W
(l-1)

1 , W
(l-1)

2 are learnable weight matrices, and Nu and

Ni and represent the sets of neighboring nodes for user u and

item i, respectively.

For recurrent neural networks, GRU networks effectively

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1896-1906

__

model sequential dependencies to compute long-term

features of user-item nodes. The long-term feature extraction

operates as follows:

1

() (1) (1)
(, ,),

Nu

l l lL
u uU i i

h GRU h h i N
− −

=  (3)

1

() (1) (1)
(, ,),

Ni

l l lL
i iI u u

h GRU h h u N
− −

=  (4)

where h
(l-1)

u and h
(l-1)

i represent the embeddings of user u and

item i at the previous layer, respectively.

Graph attention networks (GATs) have been widely

applied for node representation learning in graph-structured

data. Building on this foundation, our study further enhances

the processing of time-series information within dynamic

graphs. While traditional GNNs excel at capturing

relationships between a central node and its neighboring

nodes, they often struggle to effectively process neighboring

nodes that include temporal sequence information. To

overcome this drawback, this study incorporates a graph

attention mechanism that constructs a user behavior graph

and dynamically aggregates information from neighboring

nodes through attention mechanisms. By combining this

approach with sequential encoding, our model captures both

global relationships and high-order dependencies, enabling

more accurate and context-aware recommendations.

The fundamental basis for determining the relative order r
i

u

of item i in relation to the most recently interacted item by

user u is organized through each interaction quintuple (u, i, t,

o
i

u, o
u

i) within the dynamic graph attention mechanism. To

effectively encode order information, a unique embedding

vector Q
K

r is allocated to each relative order r. Subsequently,

user node u and its neighboring item nodes i are then

compared to determine the attention coefficients via the

attention mechanism, represented as follows:

(1) (1) (1)

1
l l l

it ih W h− − −= (5)

(1) (1)(1)
2() ()i

u

l ll T K
u it r

ui

W h h Q
e

d

− −− +
= (6)

where d represents the embedding dimension. The

denominator d prevents the dot product from becoming

too large and accelerates convergence, thereby stabilizing the

attention scores. By applying the softmax function, weight

scores aui for neighboring nodes are obtained. This enables

the aggregation of user's long-term preferences through

weighted combination of neighboring nodes, as represented

as follows:

 softmax()ui uie = (7)

 (1)
()i

u
u

lL V
u ui it r

i N

h h Q −



= + (8)

where Q
V

r is a relative order embedding that captures the

order information for user nodes when aggregating neighbor

information. Similarly, Q
V

r is another relative order

embedding that captures the order information for item nodes

when aggregating neighbor information. The long-term

preference representation h
L

i of item node i is obtained by

weighted summation of user node embeddings and is

represented as follows:

(1) (1) (1)

2
l l l

u uh W h− − −= (9)

(1) (1) (1)
1() ()u

i

l l T l K
ui r

iu

W h h Q
e

d

− − − +
= (10)

 softmax()iu iue = (11)

 (1)()u
i

i

L l V
i iu u

r
u N

h h Q −



= + (12)

Short-term Information Processing: Short-term

information reflects the latest behaviors and interest changes

of nodes. In recommendation systems, capturing users'

immediate needs via short-term information is crucial.

Traditional systems often use the embedding of the most

recent interaction as the short-term preference representation,

yet this approach overlooks the impact of historical

information. The propagation of short-term information is

typically achieved through attention mechanisms, which

model short-term preferences. Here, ˆˆ ,  are the attention

coefficients between users and items. The calculation process

for the short-term preferences of user node u and the

short-term preferences of item node i is represented as

follows:

| |

(-1) (-1) (-1) (-1)
3 2() ()

ˆ softmax()
Nu

l l l lT
ii

ui

W h W h

d
 = (13)

| |

(-1) (-1) (-1) (-1)
4 1() ()

ˆ softmax()
Ni

l l lT l
uu

iu

W h W h

d
 = (14)

 (1)ˆ

u

lS
u ui i

i N

h h −



=  (15)

 (1)ˆ

i

S l
i iu u

u N

h h −



=  (16)

The primary function of W3, W4 are to regulate the weight

allocation of the most recent interactive item within the

attention mechanism, ensuring that short-term preferences

are accurately captured and integrated into the

recommendation process.

2) Node Update

The node update process is crucial for maintaining the

dynamic nature of the graph. It aims to generate new node

embeddings by integrating long-term and short-term

information with embeddings from the previous layer,

accurately reflecting the evolving preferences of users and

items over time.

The DDA technique is employed in the user node update

process to effectively integrate both short-term and long-term

preferences. The DDA approach dynamically adjusts the

weights assigned to short-term and long-term information

based on the user's current behavior, thereby ensuring the

model's adaptability in response to fluctuations in user

preferences. The update rule for user nodes is represented as

follows:

()() (1)

5([|| ||])
ll L S l

u u u ug W h h h −= (17)

()() ()

()() (1)

ReLU()

(1) ReLU()

ll l L
u u uL

ll S l
u u uS

h g W h

g W h h −

= +

− +
 (18)

where h
(L)

u is the gating coefficient, controlling the fusion

degree of long-term and short-term information. W
(l)

5 is the

weight matrix used to compress the connection vector.

Independent parameter matrices W
(l)

L and W
(l)

S then process the

long-term and short-term features separately. Preventing

feature mixing while enhancing the model's capacity to pick

up on various user preferences is the aim. The update rule for

item nodes is represented as follows:

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1896-1906

__

() () (1)

5([|| ||])
l l lL S

i ii ig W h h h −
= (19)

() () ()

() () (1)

ReLU()

(1) ReLU()

l l l L
ii i L

l l lS
ii iS

h g W h

g W h h
−

= +

− +
 (20)

C. Adjustment and Optimization

The adjustment and optimization process are crucial for

ensuring that the TaDGSR model can effectively capture

dynamic user preferences and make accurate

recommendations. This section details the dynamic memory

attention module and the prediction layer, which aim to

improve the model's capacity to adjust to modifications in

user behavior and improve recommendation accuracy.

1) Dynamic Memory Attention Module

To precisely capture the dynamic evolution of user

preferences, we propose a DMAM that synergistically

integrates differentiable memory storage with gated attention

mechanisms. As illustrated in Fig. 3, the module operates

through four coordinated phases of memory management.

The dynamic memory attention module effectively stores

and updates the evolving states of user behaviors, thereby

enhancing the model's ability to recognize long-term

dependencies. Its update process comprises four key steps:

erase, write, update, and read. The structure is illustrated in

Fig. 3.

h
l
u

M

Fig. 3. Dynamic Memory Attention Module.

Erase Operation: This step removes information in the

memory that is irrelevant to the current interaction by

computing an elimination signal et. The elimination signal is

computed as follows:

 ()Sigmoid()l
t e u ee W h b= + (21)

where We represents the weight matrix, and be represents the

bias term. The Sigmoid activation function restricts the

values of et to the range [0,1], indicating the proportion of

memory to be erased.

Write Operation: This step integrates new interaction

information into the memory by calculating an addition

signal at, which adds new user node information to the

memory module. The addition signal is computed as follows:

()Tanh()l

t a u aa W h b= + (22)

where Wa represents the weight matrix, and ba represents the

bias term. The Tanh activation function ensures the values of

at fall within the range [-1,1], representing the content to be

added to the memory.

Update Operation: The dynamic memory attention

module M updates its content using weight matrices and bias

parameters. The update process is represented as follows:

 1(1)t t w t w tM M W e W a−= − + (23)

where Ww represents the weight matrix, indicating the impact

of current interactions on the memory matrix. This allows the

memory module to dynamically adjust its content to reflect

the user's latest behavior patterns.

Read Operation: This step retrieves the latest state of the

user node from the module by computing weights through the

product of module Mt and the current interaction node

information h
(l)

u . The weights are then compressed and

activated via a neural network layer to produce the final

output h
(l)

u . The computation process is represented as

follows:

() ()Sigmoid(())l l
u r t u rh W M h b= + (24)

where Wr is the reading weight matrix, and br is the bias term.

The output ()l
uh represents the user node output, providing an

interpretable memory mechanism for the model.

2) Prediction Layer

The prediction layer propagates through multi-layer

dynamic graph neural network modules to obtain multiple

embedding vectors for user nodes at different timestamps.

These vectors reflect user preference features at various time

points. The model concatenates these multi-layer embedding

vectors to derive the final embedding vector for user nodes,

which is represented as follows:

(0) (1) ()|| || || L

u u u uh h h h= (25)

The model employs a link prediction function to assess the

probability of user-item interactions for a specified candidate

item, which is represented as follows:

T

ui u Q iS h W e= (26)

where WQ represents the trainable transformation matrix that

aligns user and item embeddings within a shared space. Sui

denotes the score assigned by user u to candidate item i, while

ei refers to the feature vector associated with item i.

The model organizes the Sui scores of all candidate items

into a vector, thereby generating a score vector for the user

corresponding to each item. Subsequently, the model

normalizes the score vector Su through the softmax function

to derive the normalized probability distribution of user node

u over the candidate items, which is represented as follows:

 ˆ softmax()u uy S= (27)

To optimize the model parameters, we employ the

cross-entropy loss function as our objective function. The

One-Hot encoding vector representing the next item that user

u interacts with is denoted by the symbol yui. The formulation

of the objective function is presented as follows:

| |

2
1

ˆ ˆln() (1) ln(1)
I

ui ui ui ui

S i

loss y y y y 
=

= − + − − +  (28)

where Θ denotes all trainable parameters within the model,

||.||2 signifies the L2 norm used for parameter regularization,

and λ represents a hyperparameter governing regularization

intensity, which modulates the impact of the regularization

term.

IV. EXPERIMENT

A. Experimental Environment and Experimental Dataset

Experiments were conducted on three benchmark datasets

from the Amazon platform [23]: Beauty, Games, and CDs.

These datasets vary in category diversity, sequence length,

and sparsity, as summarized in Table I.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1896-1906

__

TABLE II
PERFORMANCE COMPARISON OF THE MODELS ON THREE DATASETS

Method
Beauty Games CDs

NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10

FPMC 0.2891 0.4310 0.4680 0.6802 0.3355 0.5122

GRU4Rec+ 0.2642 0.4398 0.4564 0.6715 0.4452 0.6784
Caser 0.2547 0.4264 0.4593 0.6883 0.4585 0.6865

SASRec 0.3219 0.4854 0.5360 0.7398 0.4923 0.7132

SR-GNN 0.3233 0.4862 0.5325 0.7349 0.4895 0.6963
TiSASRec 0.3045 0.4687 0.5019 0.7185 0.4897 0.7100

HGN 0.3247 0.4863 0.4934 0.7142 0.4934 0.7142

HyperRec 0.2326 0.3471 0.4896 0.7124 0.4716 0.7102
DGSR 0.3290 0.4871 0.5618 0.7618 0.5118 0.7213

TaDGSR 0.3615 0.5224 0.5806 0.7762 0.5341 0.7437

An Intel Xeon Platinum 8352V CPU facilitated

computational support for the PyTorch implementation of the

model, which was executed on an NVIDIA GeForce RTX

4090 GPU. All experiments were conducted five times using

different random seeds to ensure reproducibility, and the

average metrics are reported. An embedding size of 50, a

batch size of 50, and a learning rate of 0.01 tuned using the

Adam algorithm were important hyperparameters [24]. To

mitigate overfitting, L2 regularization with a coefficient of

1×10−4 was employed. The network architecture consistently

comprises two layers, and the time-buckets are divided into 4.

The maximum sequence length was fixed at 50 to balance

computational efficiency and information retention.

TABLE I

STATISTICS OF THE EXPERIMENTAL DATASET

Dataset Beauty Games CDs

Number of Users 52204 31013 17052

Number of Items 57289 23715 35118

Interactions 394908 287107 472265

Average sequence length 7.59 9.26 27.70

Density 0.01% 0.04% 0.08%

B. Evaluation Metrics

For the evaluation of top-K recommendations, we utilize

two widely recognized metrics [25]:

Hit@K: This metric indicates whether the target item

appears among the top-K suggestions.

1

1
Hit @ K (K)

| |
snr

i

f Rank
+



=  (29)

where is the test set, and f (.) is an indicator function.

NDCG@K: By assigning greater weights to higher

positions, this metric assesses the quality of the rankings.

1

1

(K)

2

1 2 1

| | log (1)

rsn

sn

f Rank

i rRank

+

+





−
=

+
NDCG@K (30)

C. Performance Comparison

We conduct a comprehensive evaluation of the proposed

TaDGSR model by comparing it with the following

state-of-the-art techniques:

FPMC [1]. A hybrid model for sequential recommendation

that integrates Markov chains and matrix factorization.

GRU4Rec+ [3]. An enhanced GRU-based model designed

for session-based recommendations, optimized using ranking

loss.

Caser [5]. CNN-based sequential model capturing

high-order item transition patterns.

SASRec [6]. Self-attention sequential recommender with

positional encoding.

SR-GNN [8]. This model employs graph neural networks

for session recommendation, effectively capturing item

transition dynamics.

DGSR [10]. The essence of this approach is to employ

dynamic graph neural networks to effectively capture the

evolving interactions within the user-item graph.

TiSASRec [17]. Time interval-aware self-attention model

for temporal interaction modeling.

HGN [26]. Hierarchical gating network for multi-scale

user interest extraction.

HyperRec [27]. Hypergraph-based sequential

recommendation model capturing high-order item

relationships.

D. Analysis of Experimental Results

1) Evaluation Index Analysis

The performance comparison among the models is

presented in Table II. After analysis, it is evident that all

baseline models are surpassed by the proposed approach.

Notably, this approach improves performance by 7.25%,

1.89%, and 3.11% in Hit@10, and 9.88%, 3.35%, and 4.36%

in NDCG@10 across three datasets in comparison to the

highest-performing baseline model, DGSR. There are two

primary causes for this dominance. First, the introduction of

the time-bucket mechanism allows for better utilization of

user interaction time information in dynamic graph neural

networks. Second, the adoption of the dynamic memory

attention network effectively addresses the limitations of

early interactions in traditional graph neural networks,

thereby significantly enhancing prediction accuracy.

The experimental results of the proposed algorithm, in

comparison to alternative methods, are presented in Fig. 4

and Fig. 5 for the Beauty, Games, and CDs datasets. The

proposed methodology consistently outperforms competing

strategies across all three datasets under various evaluation

metrics, as illustrated by the figures. Notably, it demonstrates

exceptional performance on both the Beauty and CDs

datasets. This can be attributed to the fact that the Beauty

dataset contains a limited number of interactions, with many

users and items engaging infrequently. In this scenario, the

proposed method’s use of time-bucket embedding effectively

mitigates the data sparsity problem. The preliminary analysis

of the CDs dataset indicates that users have relatively long

average sequence lengths. The dynamic memory attention

network demonstrates its ability to capture temporal

dynamics, successfully addressing limitations caused by

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1896-1906

__

TABLE III
ABLATION EXPERIMENTS

DGNN ATTP DMAM DDA Hit@5 Hit@10 Hit@20 NDCG@5 NDCG@10 NDCG@20

1 √ × × √ 0.5721 0.6907 0.7969 0.4376 0.4761 0.5031

2 √ √ × × 0.6042 0.7113 0.8067 0.4853 0.5129 0.5463

3 √ × √ × 0.6387 0.7516 0.8257 0.5110 0.5518 0.5641

4 √ × √ √ 0.6722 0.7688 0.8500 0.5424 0.5737 0.5944

5 √ √ × √ 0.6759 0.7711 0.8516 0.5484 0.5793 0.5996

6 √ √ √ × 0.6771 0.7754 0.8519 0.5482 0.5798 0.6001

7 √ √ √ √ 0.6794 0.7762 0.8561 0.5498 0.5806 0.6010

Beauty Games CDs
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Caser
TaDGSR

DGSR

HGN
HyperRec

TiSASRec

SR-GNN

SASRec

GRU4Rec+

N
D

C
G

@
1

0

 FPMC

 GRU4Rec

 Caser

 SASRec

 SR-GNN

 TiSASRec

 HGN

 HyperRec

 DGSR

 TaDGSR

FPMC

Fig. 4. The NDCG@10 of the methods being compared on different dataset.

Beauty Games CDs

0.3

0.4

0.5

0.6

0.7

0.8
Caser

TaDGSR
DGSR

HGN
HyperRec

TiSASRec

SR-GNN

SASRec

GRU4Rec+

H
it

@
1

0

 FPMC

 GRU4Rec

 Caser

 SASRec

 SR-GNN

 TiSASRec

 HGN

 HyperRec

 DGSR

 TaDGSR

FPMC

Fig. 5. The Hit@10 of the methods being compared on different datasets.

sequence length and computational complexity in the model.

2) Ablation and Effectiveness Analyses

To validate the effectiveness of the proposed modules in

sequential recommendation tasks, ablation experiments were

performed on the Games dataset. As shown in Table III, ‘√’

indicates that the specified algorithm policy is adopted.

Ablation experiments 1, 2, and 3 represent the use of

individual methods.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1896-1906

__

TABLE IV
THE EFFECT OF EACH ALGORITHM ON THE COLD-START DATA SET

Algorithm
Beauty Games

Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@10 NDCG@10 Recall@20 NDCG@20

SASRec 0.1623 0.0912 0.2035 0.1093 0.1912 0.1105 0.2116 0.1029

SR-GNN 0.1867 0.0987 0.2293 0.1288 0.2156 0.1231 0.2437 0.1195
DGSR 0.1988 0.1092 0.2416 0.1376 0.2301 0.1328 0.2609 0.1253

TaDGSR 0.2431 0.1365 0.2975 0.1723 0.2789 0.1589 0.3212 0.1645

Recall@10 NDCG@10 Recall@20 NDCG@20

0.00

0.05

0.10

0.15

0.20

0.25

0.30

TaDGSR

DGSR

SR-GNN

 SASRec

 SR-GNN

 DGSR

 TaDGSRSASRec

Recall@10 NDCG@10 Recall@20 NDCG@20

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

TaDGSR

DGSR

SR-GNN

 SASRec

 SR-GNN

 DGSR

 TaDGSRSASRec

Fig. 6. Performance metrics on the Beauty cold-start dataset Fig. 7. Performance metrics on the Games cold-start dataset

Experiment 1 integrates DDA into a dynamic graph neural

network, mainly to enhance the flexibility of the model in

handling complex user and item interactions.

Experiment 2 employs ATTP, optimizing performance by

leveraging sequential data and user behavior changes,

demonstrating strong capabilities in handling temporal

dependencies.

Experiment 3 incorporates DMAM, thereby augmenting

the model's capacity to effectively capture long-term

dependencies and intricate interactions within dynamic

graphs.

Experiments 4, 5, and 6, which use two modules, show

significant performance improvements. Experiment 7 shows

marked enhancements over Experiment 4 in both Hit@10

and NDCG@10, demonstrating that the absence of ATTP

significantly reduces the accuracy of sequential

recommendations. Experiment 5, which excludes DMAM,

underperforms Experiment 7, primarily because DMAM

captures richer temporal dynamics and is particularly

effective in complex time-series tasks. In Experiment 6, the

absence of DDA results in inferior performance compared to

Experiment 7. This indicates that DDA, by providing

independent dynamic adjustment paths, alleviates gradient

vanishing, thereby improving learning stability and

generalization. In Experiment 7, the combined use of ATTP,

DMAM, and DDA further elevates performance,

highlighting the interdependence and necessity of these

modules in sequential recommendation tasks.

3) Performance in Cold-start Scenario

The cold-start problem holds a significant position in

recommendation system experiments. In practical

applications, recommendation systems often encounter new

users or items that lack sufficient historical interaction data.

This makes it difficult for traditional recommendation

algorithms, which rely on historical behavior, to accurately

predict preferences or features, thereby affecting

recommendation effectiveness. Thus, the ability to provide

accurate recommendations for new users or items quickly in

cold-start scenarios has become a key challenge in evaluating

recommendation system performance.

In order to confirm that the TaDGSR algorithm effectively

reduces cold-start problems for users and items, experiments

were conducted on the Beauty and CDs datasets. In

performance evaluation, standard ranking evaluation metrics

for top-K recommendations were adopted, including

Recall@K and NDCG@K. A few items and corresponding

users were selected for interaction in cold-start experiments.

Cold-start users are defined as individuals who have engaged

in fewer than 20 interactions within the test set, and a

dedicated cold-start test set was constructed. The results are

shown in Table IV and visualized in Fig. 6 and Fig. 7 for easy

comparison. The TaDGSR model outperformed other models

in all metrics across the two datasets, indicating its significant

role in addressing cold-start problem in recommendation

systems.

4) Parameter Sensitivity Analysis

We conducted experiments focusing on several key

hyperparameters in the proposed method, specifically the

number of layers in the dynamic graph network, the number

of time-buckets, the maximum sequence length, and the

embedding size. These parameters were examined to assess

their impact on model performance. Fig. 8 to Fig. 11 present

the results of our model's evaluation using the Games dataset.

Impact of TaDGSR Network Layers: To evaluate the effect

of different network layers, we experimented with varying

numbers of layers in the TaDGSR network, ranging from 0 to

4. As shown in Fig. 8, increasing the number of layers

significantly improves performance, demonstrating that

leveraging higher-order user sequence information

effectively enhances recommendation quality. The optimal

performance was achieved with 2 layers. Further increasing

the number of layers led to performance degradation, most

likely as a result of the over-smoothing problem in graph

neural networks that arises from having too many

propagation layers.

Impact of Time-Bucket Count: To evaluate the influence of

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1896-1906

__

0 1 2 3 4

62.4

67.6

72.8

78.0

83.2

88.4

93.6

Hit@10

Hit@10
v

al
u

e

number of network layers

 Hit@10

 Hit@20

0 1 2 3 4

45.9

48.6

51.3

54.0

56.7

59.4

62.1

NDCG@10

v
al

u
e

number of network layers

 NDCG@10

 NDCG@20

NDCG@20

2 3 4 5 6

73.6

75.9

78.2

80.5

82.8

85.1

87.4

Hit@10

Hit@20

v
al

u
e

number of time-buckets

 Hit@10

 Hit@20

2 3 4 5 6

57.2

57.8

58.3

58.8

59.4

59.9

60.5
NDCG@20

NDCG@10

v
al

u
e

number of time-buckets

 NDCG@10

 NDCG@20

Fig. 8. Impact of the number of network layers. Fig. 9. Impact of the number of time-buckets.

10 20 30 40 50 60

76.8

79.2

81.6

84.0

86.4

88.8

Hit@10

Hit@20

v
al

u
e

 sequence length

Hit@10

Hit@20

10 20 30 40 50 60
57.0

57.6

58.2

58.8

59.4

60.0

60.6 NDCG@20

NDCG@10

v
al

u
e

sequence length

 NDCG@10

 NDCG@20

25 50 75 100 125

63.0

67.5

72.0

76.5

81.0

85.5

90.0 Hit@20

v
al

u
e

embedding size

 Hit@10

 Hit@20

Hit@10

25 50 75 100 125
52.5

54.0

55.5

57.0

58.5

60.0

61.5

NDCG@10v
al

u
e

embedding size

 NDCG@10

 NDCG@20

NDCG@20

Fig. 10. Impact of the maximum sequence length. Fig. 11. Impact of the embedding size.

time-bucket count, we tested values from 2 to 6. As shown in

Fig. 9, when the number of time-bucket was increased from 2

to 4, there was a significant improvement in the model's

performance, reaching its peak at 4. Fewer time-buckets

failed to capture fine-grained temporal dynamics, while

excessive buckets disrupted behavioral patterns and

introduced noise.

Impact of Maximum Sequence Length: To evaluate the

effect of sequence length, we tested values from 10 to 60. As

shown in Fig. 10, the model showed better recommendation

performance across all tested lengths, with performance

steadily increasing as the sequence length grew. Performance

plateaued at a sequence length of 50, beyond which

computational costs rose sharply. Therefore, we selected a

sequence length of 50 as the optimal value.

Impact of Embedding Size: To evaluate the effect of

embedding size, we conducted experiments with dimensions

ranging from 25 to 125. As shown in Fig. 11, model

performance improved with increasing embedding size.

However, excessively large dimensions risked overfitting, as

the model might focus too much on minor variations in

training data. Choosing an appropriate embedding size is

critical for balancing expressiveness and generalization. We

ultimately selected an embedding size of 50, which

maintained sufficient expressiveness while minimizing

overfitting risks.

V. CONCLUSIONS

This paper primarily investigates the impact of the time

interval of user behavior and early interactions on prediction

effectiveness within the realm of sequence recommendation.

Traditional sequence recommendation methods often neglect

to adequately consider the temporal aspects of user behavior,

leading to limited predictive accuracy. To address this issue,

this study introduces a time-adaptive prediction dynamic

graph neural network for sequential recommendation By

innovatively incorporating time-bucket, a dynamic memory

attention network, and a dual-branch dynamic weighted

activation strategy, the model's capacity to capture relevant

outcomes is significantly enhanced. The experimental results

indicate that this model exhibits substantial performance

enhancements when compared to the benchmark model index

values across multiple datasets, thereby fully demonstrating

its superiority in addressing sequence recommendation tasks.

Further research will focus on real-time deployment and

online learning to facilitate continuous model updates in

dynamic environments. Extending the framework to

cross-domain recommendations and incorporating causal

inference for interpretable predictions are promising

directions.

REFERENCES

[1] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme,

"Factorizing personalized Markov chains for next-basket
recommendation," in Proceedings of the 19th International Conference

on World Wide Web, 2010, pp811-820.

[2] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and
Domonkos Tikk, "Session-based recommendations with recurrent

neural networks," arXiv preprint arXiv:1511.06939, 2015.
[3] Balázs Hidasi and Alexandros Karatzoglou, "Recurrent neural

networks with top-k gains for session-based recommendations," in

Proceedings of the 27th ACM International Conference on Information
and Knowledge Management, 2018, pp843-852.

[4] Junyoung Chung, Çağlar Gülçehre, Kyunghyun Cho, and Yoshua

Bengio, "Empirical evaluation of gated recurrent neural networks on
sequence modeling," arXiv preprint arXiv:1412.3555, 2014.

[5] Jiaxi Tang and Ke Wang, "Personalized top-N sequential

recommendation via convolutional sequence embedding," in
Proceedings of the eleventh ACM International Conference on Web

Search and Data Mining, 2018, pp565-573.

[6] Wang-Cheng Kang and Julian McAuley, "Self-attentive sequential
recommendation," in 2018 IEEE International Conference on Data

Mining, 2018, pp197-206.

[7] Thomas N.Kipf and Max Welling, "Semi-supervised classification

with graph convolutional networks," arXiv preprint arXiv:1609.02907,

2016.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1896-1906

__

[8] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and
Tieniu Tan, "Session-based recommendation with graph neural

networks," in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 33, no. 1, pp346-353, 2019.
[9] Mengqi Zhang, Shu Wu, Meng Gao, Xin Jiang, Ke Xu, and Liang

Wang, "Personalized graph neural networks with attention mechanism

for session-aware recommendation," IEEE Transactions on
Knowledge and Data Engineering, vol. 34, no. 8, pp3946–3957, 2020.

[10] Mengqi Zhang, Shu Wu, Xueli Yu, Qiang Liu, and Liang Wang,

"Dynamic graph neural networks for sequential recommendation,"
IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 5,

pp4741-4753, 2022.

[11] Yue Teng and Kai Yang, "Research on Enhanced Multi-head
Self-Attention Social Recommendation Algorithm Based on Graph

Neural Network," IAENG International Journal of Computer Science,

vol. 51, no. 7, pp754-764, 2024.
[12] Yangyang Guo, Zhiyong Cheng, Liqiang Nie, Yinglong Wang, Jun Ma,

and Mohan Kankanhalli, "Attentive long short-term preference

modeling for personalized product search," ACM Transactions on
Information Systems, vol. 37, no. 2, pp1-27, 2019.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N.Gomez, Łukasz Kaiser, and Illia Polosukhin,

"Attention is all you need," Advances in Neural Information

Processing Systems, vol. 30 , 2017.

[14] Hong Huang, Zixuan Fang, Xiao Wang, Youshan Miao, and Hai Jin,
"Motif-preserving temporal network embedding," in IJCAI, 2020,

pp1237-1243.
[15] Hao Ren, Baisong Liu, Jinyang Sun, Qian Dong, and Jiangbo Qian, "A

time and relation-aware graph collaborative filtering for cross-domain

sequential recommendation," Journal of Computer Research and
Development, vol. 60, no. 1, pp112-124, 2023.

[16] Chen Ma, Liheng Ma, Yingxue Zhang, Jianing Sun, Xue Liu, and Mark

Coates, "Memory Augmented Graph Neural Networks for Sequential
Recommendation," in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 34, no. 4, pp5045-5052, 2020.

[17] Jiacheng Li, Yujie Wang, and Julian McAuley, "Time interval aware
self-attention for sequential recommendation," in Proceedings of the

13th International Conference on Web Search and Data Mining, 2020,

pp322-330.
[18] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William

L.Hamilton, and Jure Leskovec, "Graph convolutional neural networks

for web-scale recommender systems," in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2018, pp974-983.

[19] Liwei Huang, Yutao Ma, Yanbo Liu, Bohong Danny Du, Shuliang
Wang, and Deyi Li, "Position-enhanced and time-aware graph

convolutional network for sequential recommendations," ACM

Transactions on Information Systems, vol. 41, no. 1, pp1-32, 2023.
[20] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and

Kannan Achan, "Inductive representation learning on temporal

graphs," arXiv preprint arXiv:2002.07962, 2020.
[21] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang,

"DySAT: Deep neural representation learning on dynamic graphs via

self-attention networks," in Proceedings of the 13th International
Conference on Web Search and Data Mining, 2020, pp519-527.

[22] Haibo Hu, Dan Yang, and Yu Zhang, "DPRec: Social

Recommendation Based on Dynamic User Preferences," IAENG
International Journal of Computer Science, vol. 50, no. 3, pp980-987,

2023.

[23] Julian McAuley, Christopher Targett, Qinfeng Shi and Anton van den
Hengel, "Image-based recommendations on styles and substitutes," In

Proceedings of the 38th International ACM SIGIR Conference on

Research and Development in Information Retrieval, 2015, pp43-52.
[24] Diederik P.Kingma and Jimmy Ba, "Adam: A method for stochastic

optimization," arXiv preprint arXiv:1412.6980, 2014.

[25] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and
Tat-Seng Chua, "Neural collaborative filtering," In Proceedings of the

26th International Conference on World Wide Web, 2017, pp173-182.

[26] Chen Ma, Peng Kang, and Xue Liu, "Hierarchical gating networks for
sequential recommendation," in Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2019, pp825-833.
[27] Jianling Wang, Kaize Ding, Liangjie Hong, Huan Liu, and James

Caverlee, "Next-item recommendation with sequential hypergraphs,"

in Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2020,

pp1101-1110.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1896-1906

__

