
 

 

Abstract— During the early stages of software development, 

monolithic architectures predominated within software 

systems. However, their limitations in effectively 

accommodating dynamic user demands prompted the 

widespread adoption of microservices architecture. 

Microservices offer solutions by anticipating changes in user 

needs and technological advancements. Most enterprise-grade 

software is now deployed in a cloud-native environment and 

transitioning towards a microservice-based architecture. This 

study investigates how inter-service communication affects the 

performance of the overall microservices architecture. In order 

to find the optimal communication segments, the researchers 

have conducted several experiments. The research experiments 

also considered software quality attributes such as 

maintainability, scalability, portability, testability, and 

reliability. The evaluations' findings indicate that a discernible 

decrease in overall system performance occurs when more than 

six microservices are communicated to fulfil user 

requirements. This emphasizes how crucial it is for architects 

to consider communication patterns when designing or 

transitioning to microservices prudently. The findings and 

insights from this study are anticipated to contribute valuable 

knowledge and guidance for future advancements in 

microservices developments. 

 
Index Terms—Microservices, Inter-service communication, 

Performance, Reference architecture 

 

I. INTRODUCTION 

In the '90s and early '20s, most enterprise-grade software 

followed monolithic architecture. Back in the day, the 

user requirements were found to be very simple and not 

subject to constant change. Additionally, change requests 

did not come through often, and software maintainability 

was much easier for development and support teams. 

However, user requirements became complex over time, 

requiring frequent changes. This complexity resulted in the 

need to change software to accommodate those changes in 

requirements. However, the behaviour and the structure of 

the monolithic software development do not allow further 

changes to the system.  
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The Service-oriented architecture (SOA) was introduced to 

mitigate this obstacle, assisting in the system's design by 

separating concepts [1]. The monolithic-based system 

moved towards service-oriented architecture, using that 

architecture to implement changes in user requirements. All 

the services in the SOA system are orchestrated by an 

Enterprise Service Bus (ESB) [2]. When the overall system 

traffic is getting high traffic, the service orchestration 

becomes a bottleneck and decreases the application 

performance. Microservice architecture has been introduced 

to the world as a solution to the possible problems when 

using software architecture.  

The microservices paradigm has emerged as a 

transformative approach in the software architecture 

landscape, offering a migration from traditional monolithic 

architecture. With this transformation, most services 

migrated to cloud-based deployments [3]. Microservices 

represent a service and distributed architectural style where 

applications are composed of independently deployable and 

scalable services. Unlike monolithic architectures, where the 

entire application is a single, tightly integrated unit, 

microservices advocate breaking down complex systems 

into smaller, self-contained services. Each microservice 

operates as a discrete entity, communicating with others 

through well-defined interfaces. This promotes agility, as 

changes to one service do not necessitate modifications to 

the entire application. Hence, the developers can introduce 

new requirement changes to the software without stirring the 

entire application. It increases the software's maintainability 

and helps all teams. Microservice decentralisation fosters a 

service development process where services can be written 

in different programming languages per technological 

advancements, use diverse data storage solutions, and 

evolve at their own pace. Such autonomy facilitates parallel 

development, leading to faster innovation cycles for the 

engineering teams [4]. Moreover, adopting microservices 

necessitates a cultural shift, with teams embracing new 

practices such as DevOps and continuous integration [5]. 

Microservices enable scalable and resilient systems. Each 

service can be independently scaled based on demand, and 

failures in one service do not necessarily compromise the 

integrity of the entire application. This architecture 

improves fault isolation, identifying and addressing 

problems without affecting the overall system. 

Despite the advantages, implementing microservices 

comes with its set of challenges. Effective communication is 

crucial in a microservices architecture. Microservices 

communicate through various patterns, including 

synchronous HTTP/REST APIs, asynchronous messaging, 

and event-driven architectures. The choice of 
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communication pattern depends on the specific requirements 

of the system and the nature of the tasks that each 

microservice performs. This distributed communication 

model allows flexibility and resilience, ensuring that the 

failure of one microservice does not cascade throughout the 

entire application. Ensuring the security of inter-service 

communication is a top priority in microservices 

architecture. Implementing robust authentication, 

encryption, and authorisation mechanisms safeguards 

sensitive data between services. The landscape of inter-

service communication is dynamic, with continuous 

advancements in technologies and practices. Striking a 

balance between low-latency communication and fault 

tolerance is a complex undertaking that demands thoughtful 

microservice architectural design. 

Transitioning from monolithic architectures to 

microservices involves a strategic approach to ensure a 

seamless and effective decomposition. The foremost step in 

decomposition is to identify logical boundaries for 

microservices. This involves analysing the existing monolith 

to pinpoint distinct business functionalities or modules that 

can operate independently. The goal is to define services 

encapsulating specific concerns, minimising dependencies 

between them. Leveraging principles of Domain-Driven 

Design aids in creating a shared understanding of the 

business domain and informs the delineation of 

microservices [6]. The main point is how much 

microservices need to interact in order to meet the user's 

requirements. Unlike in the monolithic architecture, those 

microservice interactions must pass the data through the 

network. Each communication interaction brings an 

additional latency to the application. This research study 

mainly focuses on how inter-service communication impacts 

microservice-based applications. 

The primary challenge encountered during the transition 

from a monolithic to a microservices architecture is the 

performance issue arising from microservices' independent 

and distributed nature. Unlike in monolithic architectures, 

where all functionalities are contained within a single server, 

microservices require communication between multiple 

servers to generate output, leading to potential performance 

bottlenecks. This research primarily focuses on evaluating 

the impact of inter-service communication during the 

decomposition of monolithic systems to microservices 

architecture. By delving into these aspects, the research aims 

to provide insights into how architects and developers can 

effectively manage inter-service communication to optimize 

the decomposition process and enhance the overall 

performance of microservices-based systems. Optimized 

inter-service communication based on TCP streams is 

identified as a critical factor contributing to enhanced 

performance in microservices architectural software 

regarding response time and throughput. Architects need to 

optimise communication strategies and consider the number 

of communication pathways required to meet user 

requirements. The research evaluation emphasizes the 

efficacy of decomposing microservices from monolithic 

systems, indicating the potential for attaining optimal 

performance within a microservices architecture.  

 

II. LITERATURE REVIEW 

A. Background 

Microservice architecture has become widely popular in 

software architecture patterns in recent years. In the earlier 

days, most of the systems were built as monolithic-based 

architecture since they did not have complex user 

requirements or many change requests for the software [7]. 

With the user requirements becoming complicated, the 

engineers could not anticipate the requirement changes in 

the software with the assistance of monolithic software 

architecture. Service-oriented architecture (SOA) was 

introduced in software development to address the concerns 

of monolithic architecture [8]. In this architecture, services 

are segregated as components and are orchestrated by the 

Enterprise Service Bus (ESB). Research has shown that ESB 

in service-oriented architecture becomes a bottleneck; 

hence, it will cause performance degradation of SOA 

architecture [2]. Many vendors are offering ESB using 

different technologies. However, according to the SOA 

architecture, the service component calls passed through the 

ESB will cause a performance impact. Nevertheless, SOA 

architecture-based reference architectures perform better 

than monolithic-based systems. The same research 

statistically proves that microservice architecture performs 

better than SOA-based software systems. A systematic 

review of microservices has been conducted using the 

PRISMA model, showing that most microservice-related 

researches were conducted from 2015 onwards [9]. Most 

software engineers seek quality attributes such as 

maintainability, performance, security, cloud support, 

observability, etc. [10]. People are moving towards 

microservices to achieve software quality attributes quickly. 

Ample software frameworks are available in different 

programming languages to support building the 

microservice with quality attributes. Spring Boot and Vert.X 

frameworks for Java language, Go Micro framework for Go 

language, and Molecular for Node.js language are a few 

examples of microservice development frameworks [11]. 

Microservices are deployed in the distributed environment, 

and inter-service communication brings in additional latency 

for the inter-service communication, which results in a 

performance impact on the overall system response time and 

throughput. An optimized strategy for inter-service 

communication has been introduced from a research study 

for microservice architecture [12]. TCP-based stream 

communication is enabled as a request/response method to 

communicate with internal microservices. Redis server helps 

guarantee the exact delivery of the message so that 

reliability and quality attributes will be preserved [13]. 

Academic and industrial testing has statistically proven that 

the introduced strategy performed better than the traditional 

HTTP methods. Most microservices are now deployed as 

containers, yet some continue using on-premises server 

deployments [14]. The proper reference architecture will 

help bring this solution to the enterprise level for both 

clouds and on-premises data centres [15]. 
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B. Others Work 

Most of the research was on monolithic to microservice 

conversion strategies and their technologies. Florian Auer 

and team surveyed the monolithic to microservice 

conversion by interviewing industry professionals with the 

software [11]. Most architects move from monolithic 

architecture to microservices architecture to achieve 

maintainability, scalability, and cost [16]. Most people also 

consider metrics like response time, resource utilization, 

complexity, and functional suitability before migration. By 

moving to microservice, software and the organization need 

to be reorganized. A group of researchers in Finland 

compared technical debt before and after the monolithic to 

microservice migration of the 12-year-old monolithic 

software, which has 280k lines of code [17]. They have used 

the SonarQube software to perform qualitative studies, and 

the results have shown a reduced technical debt in the long 

run when moving to microservice architecture [18]. 

However, during the migration period, development 

activities are prolonged because of the adaptation and 

planning of new technology. Fujitsu Laboratories Ltd 

extracted the decomposed candidates from the monolithic 

applications code using the SarF algorithm [19]. They have 

conducted a case study using a small application and 

showed single microservices that can be decomposed from 

the existing system. However, their research needed to 

improve execution timing and the business domain 

segregation. Victor Velepucha and the team researched the 

problems and challenges of migrating from monolithic to 

microservices[20]. They have highlighted that no single 

theory exists when migrating from a monolithic application 

to microservices. No such toolkit to use for the migration, 

the need to reorganize the development team from scratch, 

problems identifying the microservices, issues with 

consistency, and the need to wait until the entire application 

is migrated are some of the problems they have identified in 

the study [21]. The challenges researchers identified during 

the study include selecting a suitable framework, changing 

the hierarchical structure, and prioritizing the requirements. 

III. METHODOLOGY 

This research study presents a comprehensive 

methodology to derive the impact on microservice 

communication when migrating to the microservices from 

the monolithic software architecture. At the design stage of 

microservices, architects are tasked with considering the 

comprehensive spectrum of system functional requirements, 

non-functional requirements, and software quality attributes. 

Microservice decomposing includes the below steps, 

• Understanding the context – When designing the 

microservices or migrating the system from monolithic 

architecture to microservices architecture, one needs to 

understand the organisation's goal, business objectives, 

and challenges that the microservice architecture should 

address.  

• Identify the responsibilities and define services – 

Breakdown the system into manageable and independent 

components by identifying the business requirements. 

Services should have well-defined responsibilities. This 

can be based on the principles of domain-driven design 

(DDD) [22]. Those components can be mapped to 

microservices in the software architecture.  

• Data model – Choose which data is stored in the 

microservices or what data needs to be communicated 

with each microservice. Data storage can either be a 

relational database or a non-relational database. Or else it 

can be a volatile memory. As this is a crucial step, 

architects must make a solid decision to maintain the 

entire system's performance [23].  

• API design – Define the straightforward API needed by 

the external parties, design communication interfaces, and 

determine how internal microservices should be 

communicated to each other.  

• Technology selection - Choose appropriate technology 

stacks for each microservice based on its requirements. 

Consider programming languages, frameworks, databases, 

communication protocols, people expert areas, and the 

time required to complete the project. 

• Deployment methodology – Decide whether to use the 

cloud or on-premise environment, based on the 

environment availability and determine whether to use 

containerisation or orchestration to manage microservices. 

• Testing strategies – Decide on developing comprehensive 

testing strategies, including unit testing, integration 

testing, and end-to-end testing [24]. Implement 

Continuous Integration and Continuous Deployment 

(CI/CD) pipelines for automated testing and deployment 

[25]. 

• Evolution and maintenance - Be prepared to iterate on 

microservices architecture as a requirement change. Keep 

architecture flexible and maintainable to accommodate 

evolving business needs. 

The process begins with a deep understanding of business 

objectives, paving the way for identifying independent 

services aligned with domain-driven design principles. The 

meticulous consideration of data models, API designs, and 

technology stacks ensures the coherent functioning of 

microservices. Architects must make informed decisions on 

data storage, communication interfaces, and technology 

selections to optimize system performance. Deployment 

methodologies, testing strategies, and recognizing the need 

for evolutionary flexibility round out the methodology. As 

microservices architecture inherently accommodates change, 

architects should remain adaptable, fostering an 

environment that allows for iterative evolution and 

maintenance, ensuring the sustained alignment of the 

architecture with dynamic business requirements. When 

considering the above points, architects can decompose the 

monolithic system into microservices. 

 

A. Inter-service Communication 

Intercommunication lies at the heart of microservices 

architecture and is pivotal in shaping distributed systems' 

performance, scalability, and overall functionality [26]. The 

significance of microservice communication stems from 

several key aspects that contribute to the success and 
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efficiency of this architectural paradigm. By decomposing 

the microservices and establishing clear communication 

paths, this approach ensures that each microservice can 

contribute to fulfilling a single user requirement effectively. 

However, system designers need a proper idea of the inter-

service communication paths to meet the user's 

requirements. 

The diagram below (Fig. 1) shows how microservices 

communicate in a worst-case scenario. Each microservice 

calls to each other to produce the output of that service. 

 

 
Fig. 1. Worst-case inter-service communication pattern 

 

In this intricate communication pattern, each microservice 

is intricately linked to every other service in a one-to-one 

relationship, creating an intricate mesh of dependencies. 

While such direct communication paths may facilitate data 

exchange and collaboration between services, they 

inherently raise concerns about system complexity, 

maintainability, and scalability. The challenge with this 

communication approach lies in the potential for increased 

coupling between microservices, where changes in one 

service may have a cascading effect, necessitating 

modifications in numerous interconnected services. This can 

result in challenges related to versioning, code maintenance, 

and the overall agility of the system. Moreover, the 

extensive inter-service calls in this worst-case scenario may 

introduce latency and performance bottlenecks. The need for 

each microservice to communicate directly with others may 

lead to higher network traffic and increased response times, 

potentially impacting the overall system's responsiveness. 

The calculation of communication paths in the worst-case 

scenario depicted in the microservices architecture can be 

approached through graph theory. In this context, the 

number of communication paths corresponds to the potential 

connections between individual microservices. Considering 

a set of microservices as nodes and direct communication 

links between them as edges, the number of communication 

paths can be determined using the formula for combinations 

in graph theory. The equation for calculating the number of 

communication paths y in a worst-case scenario with x 

microservices is denoted by: 

 

                         y = (x * (x - 1)) / 2                                    (1) 

In this formula: 

• x represents the total number of microservices. 

• (x−1) denotes the number of potential communication 

partners for each microservice. 

• The division by 2 accounts for avoiding double-counting, 

as the communication path from microservice A to B is 

the same as from B to A. 

By utilizing this formula, architects and system designers 

can quantitatively assess the complexity introduced by the 

direct communication paths in the microservices 

architecture's worst-case scenario. Below is a simple 

pseudocode snippet for calculating the number of 

communication paths in the worst-case scenario. 

 
TABLE I 

PSEUDOCODE FOR A WORST-CASE SCENARIO 

//Function 

function calculateCommunicationPaths(x): 
    // n is the total number of microservices 

 

    // Ensure n is a positive integer 
    if n <= 0 or not isInteger(x): 

        return "Invalid input. Please provide a positive integer for the 

number of microservices." 
 

    // Calculate the number of communication paths(y) 

    paths = (x * (x- 1)) / 2 
 

    return paths 

 
// Helper function to check if a number is an integer 

function isInteger(num): 

    return num == floor(num) 
 

 

// Example usage: 

numberOfMicroservices = 5 

result = calculateCommunicationPaths(numberOfMicroservices) 

print("Number of Communication Paths:", result) 
 

 

This function, called calculateCommunicationPaths, takes 

a single parameter x, representing a system's total number of 

microservices. It first checks whether x is a positive integer. 

If x is not a positive integer, or if it's not a whole number 

(i.e., not an integer), the function returns an error message 

indicating that the input is invalid. Assuming x passes this 

validation, the function calculates the number of 

communication paths required among the microservices. It 

does so using a mathematical formula where each 

microservice needs to communicate with every other 

microservice except itself. The calculated number of 

communication paths is then returned as the output. 

Additionally, a helper function named isInteger is used 

within calculateCommunicationPaths to check if a given 

number is an integer, ensuring the validity of the input. 

Overall, this function aids in determining the optimal 

communication structure needed for a system with a 

specified number of microservices, contributing to efficient 

information flow within the architecture. This analysis aids 

in understanding the scale of interdependencies and 

potential challenges associated with managing 

communication within the system, providing valuable 

insights for optimizing the architecture for improved 

scalability and maintainability. 
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Fig.  2. Best case inter-service communication 

 

The above diagram (Fig. 2) shows the minimal 

communication interactions between the microservices. This 

architecture reflects a simple, efficient design with direct, 

point-to-point interactions. Unlike more complex 

communication patterns, such as an entirely interconnected 

mesh, this minimalist approach minimizes the number of 

communication paths and potential dependencies between 

microservices. Each microservice communicates only with 

those directly relevant to its functionality, contributing to a 

clear and straightforward system. This design choice 

emphasizes clarity, ease of management, and reduced 

coupling between microservices. The streamlined 

communication paths enhance system maintainability and 

scalability, as changes to one microservice are less likely to 

cascade through an extensive network of interconnected 

services. The equation for calculating the number of 

communication paths y in a best-case scenario with x 

microservices is expressed by: 

 

                        y = (x - 1)                                             (2) 

 

This equation signifies a simplified communication 

pattern where each microservice communicates directly with 

all others except itself, resulting in a linear relationship 

between the number of microservices and the 

communication paths. Specifically, each microservice 

establishes direct communication links with x−1 other 

microservices. 

If the two equations mentioned above are plotted, the 

number of communication paths in the worst-case scenario 

is growing exponentially than in the best-case scenario. 

Impact analysis can be found under the evaluation section. 

IV. IMPLEMENTATION 

Implementing a robust microservices architecture in a 

distributed environment presents considerable challenges 

[27]. The reference ecosystem serves as a crucial step, 

transforming abstract designs into concrete building blocks, 

thus realising the envisioned communication strategy. Each 

microservice can be broken down into smaller pieces that 

help implement the microservice better. 

 

 
Fig.  3. Microservice component diagram 

 

Figure 3 above illustrates the small-scale components 

within the microservice, encompassing distinct layers such 

as the service, data access, business logic, and 

communication layers. These components exhibit varying 

ownerships and depict their interactions within the 

microservice architecture. The service layer is responsible 

for having external APIs for the external systems. This layer 

mainly uses the generic REST-based API interface to enable 

a better integration layer for the microservices. The data 

access layer mainly interacts with the data storing services, 

such as relational databases and non-relational databases. 

The business logic layer implements all the business logic 

related to the functional requirements. The communication 

layer is responsible for interacting with other microservices 

or third-party systems. Java language is used as the primary 

programming language for developing microservices, 

leveraging its robust capabilities and utilizing the well-

known Spring Boot framework as a microservices 

framework [28]. The decision to use Java brings numerous 

advantages, including its widespread adoption, platform 

independence, and extensive community support. Java's 

versatility enables the researchers to address diverse 

requirements within the microservices architecture. Its 

object-oriented nature facilitates modular and scalable code 

structures, aligning well with the principles of 

microservices. Additionally, Java's rich ecosystem of 

libraries and tools enhances development efficiency and 

provides comprehensive solutions to various challenges. 

Spring Boot simplifies the complexities associated with 

microservices development by offering conventions and 

defaults, reducing boilerplate code, and providing built-in 

support for essential features such as configuration 

management and dependency injection. Its emphasis on 

convention over configuration promotes a streamlined and 

standardized approach to microservices development. 

Used newly implemented optimized inter-service 

communication method for microservices-to-microservices 

communication. Redis streams have been used, and 

communication is done using the Redis serialization 

protocol (RESP) [29]. This method allows developers to 

send messages to other microservices in the same way as 

REST-based clients. When sending the message to other 

microservices, the destination needs to be specified, and 

those messages are sent as a byte buffer. Hence, the network 

layer resource consumption is less than that of the other 

methods. When the microservice starts, it automatically 

creates a connection to the Redis server and persists until the 

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1907-1920

 
______________________________________________________________________________________ 



 

microservices die. Therefore, when sending the message to 

other microservice developers, there is no need to open and 

close the connection at the code level. 

V. RESULTS AND EVALUATION 

Most enterprise-grade software is now moving from 

monolithic-based applications to microservice-based 

architecture, and those microservices are deployed in cloud-

based environments. In order to evaluate inter-service 

communication in the microservices architecture, several 

microservices were implemented and deployed in a cloud-

native Kubernetes cluster, as shown in Figure 4 [30]. The 

evaluation mainly focuses on how the number of inter-

service communications and the allocated resources impact 

the overall system performance in terms of response time.  

 

 
Fig.  4. Testing cloud deployment architecture 

 

The performance of the newly introduced communication 

solution was evaluated and compared with the traditional 

and the most common HTTP protocol for inter-service 

communication. All microservices were developed in Java 

using the Spring Boot framework. Standard REST templates 

were used for the HTTP inter-service communication. Both 

microservices were deployed within the same subnet in a 

Kubernetes environment for testing purposes, as per figure 

5. 

 

 
Fig.  5. Deployment for solution comparison 
 

 

 The turnaround time was measured by checking the logs, 

excluding processing time, focusing solely on the request 

and response times between Microservice A and 

Microservice B. Used URL-only GET request without body 

and 1KB payload size POST for both request and response 

for testing. Each test case was executed for 1 hour and 

repeated three times to account for data variations. Logs 

were captured using the Google Logging service and 

processed with Python scripts for data analysis. JMeter is 

installed in a separate virtual machine in the cloud and 

placed in the same network subnet in which the Kubernetes 

cluster resides to reduce network latencies [31].  The traffic 

is sent in a controlled manner, as there are logically 50 

concurrent users at a 150 TPS rate. 
 

 
Fig.  6. HTTP and proposed solution comparison 

 

 

Figure 6 illustrates the turnaround times for traditional 

HTTP versus the implemented solution methods. The graph 

shows that the implemented solution has a shorter 

turnaround time than the traditional HTTP method. This 

indicates that microservice A receives responses from 

microservice B at a faster pace with the implemented 

solution. Unlike the HTTP method, the implemented 

solution does not involve socket opening and closing 

activities. Additionally, data is serialised and transmitted as 

a byte buffer record, reducing network consumption. These 

factors contribute to the superior performance of the 

implemented solution over the traditional method. Based on 

the test results, the newly introduced method outperforms 

the traditional method. Therefore, further testing will be 

continued with the new strategy to assess its impact on 

microservice decompositions, inter-service communication, 

and overall performance. 

 

 
Fig.  7. Deployment architecture with proposed solution 
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Fig.  8. Deployment architecture with HTTP communication 

 

 

The diagram in Figure 7 illustrates the microservice 

architecture deployed to test in the cloud environment. Java 

language with Spring boot is used for microservice 

development, and an optimized TCP-based stream 

communication method is used for service-to-service 

communication, just as in the previous scenario. Figure 8 

shows the deployment architecture used to evaluate the 

HTTP protocol. Both are deployed in the same environment, 

and Spring boot REST templates are used to create HTTP 

inter-service communications. 1 KB-sized payload is used 

as a request and response.  As mentioned earlier, JMeter is 

placed on the same subnet on a different VM. The best and 

minimal communication approach discussed in the 

methodology has been used for microservice 

communications. Apache JMeter generates REST-based 

API traffic with controlled parameters such as concurrent 

users and throughput [32]. One of the microservices faces 

the JMeter and accepts the HTTP-based REST API traffic 

generated from logical 50 concurrent users at a 150 TPS rate 

as previously. 

 
Fig.  9. Inter service communication path and response time comparison  

 

The diagram (Fig. 9) illustrates how increasing the number 

of microservices affects the overall system's average 

response time within a single-user functional requirement 

scenario. This analysis is grounded in data extracted from 

JMeter statistic reports, with each experiment conducted 

three times to ensure accuracy and reduce potential errors. 

The results reveal a definitive pattern: As the number of 

microservices grows, the system's average response time 

increases proportionally. In the early stages of decomposing 

the microservices, up to seven microservices are 

decomposed, and the proposed system demonstrates 

remarkable efficiency. During this phase, the response time 

remains below the linear average, indicating that the system 

can absorb the additional microservices without 

significantly impacting performance. However, a pivotal 

change occurs when the number of microservices exceeds 

six. At this point, the system's response time escalates 

rapidly, surpassing the linear average and moving into an 

exponential growth curve. This shift suggests that the 

system's ability to manage the increased load efficiently 

diminishes as more microservices are introduced, ultimately 

leading to a substantial decline in overall performance. 

When the proposed system is compared to the standard 

HTTP protocol, both exhibit similar trends in response time 

as the number of microservices increases. Yet, a critical 

difference emerges in their performance thresholds. The 

HTTP protocol not only begins to show a marked increase 

in response time at a lower number of microservices, but 

this increase is also more pronounced. Specifically, beyond 

the six-microservice mark, the HTTP protocol's response 

time escalates more sharply, indicating that it struggles to 

maintain efficiency under the same conditions where the 

proposed system still operates more effectively. This 

comparative analysis highlights the proposed system's 

superior capacity for handling a higher number of 

microservices than the HTTP protocol.  
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The table above (Table II) illustrates the variation in inter-

service communication turnaround time across different 

service-to-service communication segments as the number 

of microservices increases. This data was meticulously 

collected from each microservice log using Google's logging 

service, ensuring no logic processing time was included and 

focusing purely on communication overhead. The results 

highlight a critical challenge in microservices architecture: 

while the decomposition of services into smaller, isolated 

units offers advantages in scalability and modularity, it also 

introduces significant communication overhead that can 

impact overall system performance. When a new 

microservice is introduced by decomposing an existing one 

to isolate single responsibilities, the turnaround time for 

inter-service communication tends to increase. This increase 

is primarily due to the consumption of network layer 

resources for each communication packet. The analysis 

reveals that with only 2 microservices, the total inter-service 

communication time was 1.8ms, corresponding to an 

average of 1.8ms per segment. However, as the system 

expanded to 3 microservices, the total communication time 

increased to 3.8ms, with the second segment experiencing a 

16.67% increase in turnaround time. This trend continues as 

the system grows: with 4 microservices, the total 

communication time rose to 6.3ms, with the second and 

third segments showing increases of 11.11% and 38.89%, 

respectively. The impact of additional microservices 

becomes even more pronounced with further scaling. At 5 

microservices, the total time reached 9.6ms, with significant 

increases observed across multiple segments: 27.78% in the 

second, 38.89% in the third, and 66.67% in the fourth. By 

the time the system included 6 microservices, the total time 

climbed to 14.4ms, and the incremental increases in 

turnaround time became even more substantial: 16.67% in 

the second segment,  

 

38.89% in the third, 94.44% in the fourth, and 150% in the 

fifth. The most significant jump occurs when the system 

scales to 7 microservices. Here, the total inter-service 

communication time reaches 21.2ms, with each segment 

showing substantial increases: 22.22% in the second 

segment, 50.00% in the third, 127.78% in the fourth, 

172.22% in the fifth, and a striking 200.00% in the sixth 

segment. The average communication time per segment 

increases from 1.8ms with two microservices to 3.53ms with 

seven microservices, highlighting the cumulative impact of 

adding more microservices. This data underscores the 

complex trade-offs inherent in microservices architecture. 

While microservices improve modularity and scalability, 

they also introduce additional communication overhead, 

especially as system complexity grows. Each additional 

microservice contributes to a significant increase in latency 

and has a compounding effect on subsequent 

communication segments. This could potentially degrade the 

overall performance and responsiveness of the system, 

especially in high-traffic environments or in applications 

where low-latency communication is critical. 

 To better understand the implications of these findings, it 

is crucial for microservices architects to carefully consider 

the number of communication segments involved in each 

business scenario when decomposing services. If the 

number of segments exceeds sixth, it could significantly 

increase communication latencies, leading to overall 

application performance issues. Therefore, it is important to 

keep microservice decompositions as streamlined as 

possible, minimizing the number of communication 

segments to reduce latency and maintain optimal application 

responsiveness. This careful balance will help in achieving 

the benefits of microservices architecture while mitigating 

potential latency problems. 

# 

Micro 

service

s 

Time taken for each individual communication segment (ms) Total inter-

service 

communic

ation time 

(ms) 

Avg. inter-

service 

communica

tion time 

(ms) 

segment 

1 

segment  

2 

segment 3 segment  

4 

segment  

5 

segment  

6 

2 1.8 N/A N/A N/A N/A N/A 
1.8 1.8 

3 1.7 2.1  

(+16.67%) 

N/A N/A N/A N/A 
3.8 1.9 

4 1.8 2 

(+11..11%) 

2.5  

(+38.89%) 

N/A N/A N/A 

6.3 2.1 

5 1.8 2.3  

(+27.78%) 

2.5  

(+38.89%) 

3  

(+66.67%) 

N/A N/A 

9.6 2.4 

6 1.8 2.1  

(+16.67%) 

2.5  

(+38.89%) 

3.5  

(+94.44%) 

4.5   

(+150%) 

N/A 

14.4 2.88 

7 1.9 2.2  

(+22.22%) 

2.7  

(+50.00%) 

4.1  

(+127.78%) 

4.9  

(+172.22%) 

5.4  

(+200.00%) 21.2 3.53 

TABLE II 

INTER SERVICE COMMUNICATION TURNAROUND TIME VARIATION WITH MICROSERVICES 
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The above graph (Fig. 10) compares response times across 

various layers within a microservice architecture, offering 

critical insights into how inter-service communication 

affects overall system performance. The overall response 

time values, derived from JMeter statistics, capture the 

complete end-to-end latency experienced by the user. In 

contrast, the average single inter-service communication 

turnaround times, calculated using Python scripts from 

microservice logs, focus exclusively on the latency 

introduced by the communication between individual 

services. A closer examination of the graph reveals a clear 

trend: as additional communication paths are introduced 

between microservices, the overall application response time 

progressively increases. This escalation is not linear but 

exhibits a compounding effect, especially as the number of 

communication segments grows. 

After the fifth communication path, there is a marked and 

dramatic increase in the time required for inter-service 

communication, suggesting that the architecture reaches a 

critical point where additional communication segments 

introduce substantial latency. This phenomenon can be 

attributed to several underlying factors. First, each 

communication path introduces additional overhead, 

including network latency, protocol handling, and data 

serialization/deserialization processes. These overheads 

accumulate as more paths are added, resulting in longer 

delays. Additionally, the increased complexity of managing 

multiple communication channels can strain system 

resources, leading to inefficient processing and routing of 

messages between services. From a scientific perspective, 

the observed increase in response time after the fifth 

communication path may indicate a threshold in the system's 

capacity to efficiently handle distributed communication. 

This threshold likely corresponds to network bandwidth 

limitations and service orchestration bottlenecks. The 

dramatic rise in inter-service communication time highlights 

the non-linear nature of latency growth in microservice 

architectures, emphasizing the importance of carefully 

managing the number of communication paths to avoid 

significant performance degradation. Furthermore, the 

impact on user experience can overlay with this scenario. As 

response times increase, users may perceive the application 

as slow or unresponsive, leading to dissatisfaction and 

potential loss of engagement. This direct correlation 

between the number of communication paths and user-

perceived performance underscores the critical need for 

optimization in microservice decomposition, particularly in 

scenarios involving complex service interactions. 

In conclusion, the analysis of Fig. 10 reinforces the 

importance of strategic microservice decomposition and the 

careful management of communication paths within a 

microservice architecture. The findings suggest that 

maintaining a limited number of inter-service 

communication paths is crucial for preserving application 

performance and ensuring a positive user experience. This 

analysis provides a scientific basis for further exploration 

into optimizing microservice architectures, particularly in 

understanding the thresholds beyond which additional 

complexity leads to diminishing returns in performance. 

Hardware resources significantly impact the performance 

of hosted applications, particularly the memory and CPU. 

To evaluate the effects of memory and CPU on the 

performance of microservices, the researchers have 

conducted a series of tests focusing on overall response time 

and inter-service communication. In this experimental setup, 

memory and CPU resources were allocated to individual 

microservice pods with both minimum and maximum 

resource limits set to the same values, ensuring full resource 

allocation to each pod. This approach allowed a controlled 

assessment of how these hardware resources influence 

microservice performance and the number of 

communication segments. 
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The graph (Fig. 11) provides an insightful comparison of 

response time variations as a function of the number of 

communication paths and the CPU resources allocated 

between the proposed solution and the traditional HTTP 

protocol. A thorough data analysis reveals several critical 

observations about the performance dynamics of these two 

communication strategies. Firstly, the data indicates that 

inter-service communication times remain relatively stable 

despite increases in CPU allocation to the respective 

microservice pods. This stability suggests that the inter-

service communication mechanisms, especially within the 

proposed solution, are not heavily dependent on the 

available CPU resources. This finding is significant because 

it highlights the efficiency of the proposed system in 

managing communication overheads independently of 

computational power, in contrast to the HTTP protocol, 

which may not exhibit the same efficiency level in similar 

scenarios. However, when examining overall application 

response times, a clear pattern emerges as more CPU cores 

are allocated, the overall response time improves noticeably. 

This improvement is due to the direct impact of increased 

CPU resources on the processing speed of microservices. 

More CPU cores enable microservices to execute 

computational tasks more swiftly, reducing internal 

processing delays and lowering the total response time 

experienced by the user. This enhancement is particularly 

evident in the proposed solution, which demonstrates a 

reduction in response time compared to the HTTP protocol 

under similar conditions. The proposed system's 

performance can be attributed to its optimized 

communication strategy, which is designed to minimize the 

overhead typically associated with HTTP-based inter-

service communication. Unlike HTTP, which incurs 

substantial protocol overhead, including the need for 

repeated header exchanges, connection management, and 

stateless interactions, the proposed solution leverages a 

Fig.  11. Response time comparison with proposed solution and HTTP protocol in dynamic CPU allocation 
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more streamlined and efficient communication protocol. 

This approach reduces the number of bytes transmitted over 

the network and decreases connection establishment 

processes, which are known to be resource-intensive in 

HTTP-based systems. Furthermore, the proposed system's 

ability to maintain consistent inter-service communication 

times despite CPU allocation underscores its robustness in 

handling varying computational loads. This is particularly 

advantageous in cloud-native environments where resource 

allocation can fluctuate dynamically based on demand. The 

ability of the proposed solution to deliver consistent 

performance in such environments makes it a more reliable 

choice for applications requiring high scalability and low 

latency. 

 

In conclusion, the analysis of Fig. 11 demonstrates that the 

proposed system not only outperforms the traditional HTTP 

protocol regarding response time when CPU resource 

allocation. This makes the proposed solution a more suitable 

choice for microservices architectures, particularly in 

scenarios where high efficiency and low latency are 

paramount. The findings suggest that the proposed system 

provides a more optimized approach to inter-service 

communication, enhancing overall application performance 

and a better user experience. 

 

 

 

 

 

Fig.  12. Response time comparison with proposed solution and HTTP protocol in dynamic memory allocation 
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In addition to evaluating the impact of CPU allocation, the 

tests also examined how memory allocation variations 

influence overall microservice response time and inter-

service communication time. The data depicted in the graph 

(Fig. 12) reveals some critical insights that underscore the 

strengths of the proposed system compared to the traditional 

HTTP protocol. Firstly, the graph illustrates that inter-

service communication time remains largely unaffected by 

changes in memory allocation. This observation is 

significant because it suggests that the communication 

mechanisms employed by the proposed system are not 

heavily reliant on the memory resources available to 

individual microservice pods. This stability clearly indicates 

the proposed system's robustness in handling inter-service 

communications efficiently, even when memory resources 

vary. HTTP-based communication may exhibit the same 

level of independence from memory constraints but with 

less performance than the proposed solution. However, 

while inter-service communication time shows little 

sensitivity to memory allocation, the graph does indicate a 

modest improvement in overall application response time 

with increased memory allocation. This improvement can be 

attributed to the crucial role that adequate memory plays in 

maintaining the smooth and efficient operation of 

microservices. Specifically, sufficient memory allocation 

helps reduce the frequency and duration of garbage 

collection cycles, which can reduce latency spikes and 

degrade performance.  

The proposed system demonstrates a more pronounced 

memory utilisation efficiency than the HTTP protocol. 

Unlike HTTP, which may suffer from higher memory 

consumption due to the overheads associated with managing 

stateless requests, connection management, and data 

serialization/deserialization processes, the proposed system 

optimizes memory usage by streamlining these operations. 

As a result, the proposed system can handle larger data loads 

more effectively, leading to faster overall response times 

and better system performance. 

Moreover, the proposed system's ability to handle more 

substantial data loads with increased memory allocation 

contributes to its superior performance in real-world 

scenarios. For instance, in high-traffic environments where 

microservices are required to rapidly process and exchange 

large volumes of data, the proposed system's efficient 

memory management ensures that performance remains 

consistent and responsive. When allocating more memory to 

the HTTP protocol, there is a performance improvement, but 

it does not match the level of enhancement seen with the 

proposed system. Furthermore, while the HTTP protocol can 

benefit from increased memory allocation to some extent, 

the proposed system's architecture inherently makes better 

use of available resources. By minimizing the overhead 

associated with inter-service communication, the proposed 

system ensures that the majority of the memory resources 

are dedicated to actual processing tasks rather than 

managing communication logistics. This efficiency 

translates into more consistent and lower response times 

across various memory configurations, making the proposed 

system a more reliable choice for memory-constrained 

environments. 

 

In conclusion, the comprehensive analysis of memory 

allocation's impact on microservice performance reveals that 

while both the proposed system and the HTTP protocol 

benefit from increased memory, the proposed system 

outperforms HTTP by a significant margin. The proposed 

system's capacity to maintain stable inter-service 

communication times and efficient memory utilization leads 

to faster overall response times and improved performance. 

These findings underscore the superiority of the proposed 

system over the traditional HTTP protocol, particularly in 

environments where memory resources are variable or 

limited. The proposed system's optimized communication 

and resource management strategies make it a more suitable 

solution for modern microservices architectures that demand 

high efficiency, scalability, and low latency. 

Our findings highlight the critical role of adequate 

memory allocation in enhancing microservice performance. 

Memory allocation improves overall application response 

time by optimizing internal processing capabilities but does 

not significantly impact inter-service communication times. 

Similarly, increasing CPU allocation enhances processing 

speed and reduces response time but does not substantially 

affect inter-service communication times. This distinction 

emphasizes the need to optimize both computational and 

communication aspects independently to achieve 

comprehensive system performance improvements. 

VI. LIMITATIONS 

 

This study continues our research on a newly introduced 

communication strategy, aiming to draw concrete 

conclusions about its impact on microservices architecture 

performance. While previous findings indicated that HTTP-

based communication is predominantly used for inter-

service messaging, our work benchmarks our proposed 

solution against HTTP to demonstrate its performance 

advantages. Our study primarily investigates how inter-

service communication affects the overall response time of 

microservices architectures, comparing HTTP with our 

proposed strategy. Unlike previous research, we aimed to 

identify optimal segments in HTTP and the newly 

introduced strategy. Our findings are limited to identifying 

the optimal number of communication segments required to 

maintain optimal microservice performance regarding 

response time. Additionally, we assessed the impact of 

vertical scaling on communication segments. However, we 

restricted our analysis to experimental data generated within 

controlled environments, which may not fully capture real-

world complexities. Future studies could extend this 

research by exploring additional parameters related to 

communication segments and examining real-world 

deployment scenarios to validate our findings and further 

generalize the applicability of the proposed strategy. 

VII. SUMMARY AND FUTURE WORKS 

The transition from a monolithic software architecture to 

a microservices architecture highlights the critical role of 

optimized inter-service communication. This emphasis 

underscores the significance of establishing efficient 

communication pathways among microservices within the 

architecture. Organizations can enhance their microservices-

based systems' overall performance, scalability, and 
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maintainability by prioritizing optimized inter-service 

communication. This recognition underscores a fundamental 

aspect of successful microservices adoption, as effective 

communication mechanisms are essential for facilitating 

seamless interactions between microservices and ensuring 

the agility and responsiveness required in modern software 

architectures. The methodology includes understanding the 

organizational context, identifying responsibilities, defining 

services based on domain-driven design, establishing data 

models, designing clear APIs, selecting appropriate 

technologies, deciding deployment methodologies, 

implementing testing strategies, and planning for evolution 

and maintenance. This research investigates two distinct 

communication scenarios within microservices architecture: 

a worst-case scenario characterized by intricate meshed 

dependencies and a best-case scenario featuring minimal 

and direct service interactions. Graph theory principles are 

applied to quantitatively analyze the complexity of 

communication paths in these scenarios. In the evaluation 

phase of the study, microservices are deployed in a cloud-

native Kubernetes cluster environment. Subsequently, the 

impact of inter-service communication on the overall system 

performance is rigorously assessed. This evaluation involves 

measuring various performance metrics, such as response 

time, throughput, and resource utilization, to gain insights 

into how different communication patterns influence the 

efficiency of microservices-based systems deployed in real-

world cloud environments. Through this approach, the 

research aims to provide valuable insights to the optimal 

design and management of inter-service communication to 

maximize the performance and reliability of microservices 

architectures. Optimizing both CPU and memory allocations 

is crucial for enhancing microservice performance, as they 

improve processing efficiency and overall response times, 

while network factors and communication strategy primarily 

influence inter-service communication. The results 

underscore the critical importance of planning and 

optimizing inter-service communication to guarantee 

microservices-based systems' efficiency, scalability, and 

responsiveness. 
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