

Abstract— During the early stages of software development,

monolithic architectures predominated within software

systems. However, their limitations in effectively

accommodating dynamic user demands prompted the

widespread adoption of microservices architecture.

Microservices offer solutions by anticipating changes in user

needs and technological advancements. Most enterprise-grade

software is now deployed in a cloud-native environment and

transitioning towards a microservice-based architecture. This

study investigates how inter-service communication affects the

performance of the overall microservices architecture. In order

to find the optimal communication segments, the researchers

have conducted several experiments. The research experiments

also considered software quality attributes such as

maintainability, scalability, portability, testability, and

reliability. The evaluations' findings indicate that a discernible

decrease in overall system performance occurs when more than

six microservices are communicated to fulfil user

requirements. This emphasizes how crucial it is for architects

to consider communication patterns when designing or

transitioning to microservices prudently. The findings and

insights from this study are anticipated to contribute valuable

knowledge and guidance for future advancements in

microservices developments.

Index Terms—Microservices, Inter-service communication,

Performance, Reference architecture

I. INTRODUCTION

In the '90s and early '20s, most enterprise-grade software

followed monolithic architecture. Back in the day, the

user requirements were found to be very simple and not

subject to constant change. Additionally, change requests

did not come through often, and software maintainability

was much easier for development and support teams.

However, user requirements became complex over time,

requiring frequent changes. This complexity resulted in the

need to change software to accommodate those changes in

requirements. However, the behaviour and the structure of

the monolithic software development do not allow further

changes to the system.

Manuscript received April 3, 2024; revised January 31, 2025

L.D.S.B Weerasinghe is a postgraduate student of the Department of

Computer Science & Engineering, University of Moratuwa, Sri Lanka. (e-
mail: weerasingheldsb.20@uom.lk).

Indika Perera is a professor at the Department of Computer Science &

Engineering, University of Moratuwa, Sri Lanka (e-mail:
indika@cse.mrt.ac.lk).

The Service-oriented architecture (SOA) was introduced to

mitigate this obstacle, assisting in the system's design by

separating concepts [1]. The monolithic-based system

moved towards service-oriented architecture, using that

architecture to implement changes in user requirements. All

the services in the SOA system are orchestrated by an

Enterprise Service Bus (ESB) [2]. When the overall system

traffic is getting high traffic, the service orchestration

becomes a bottleneck and decreases the application

performance. Microservice architecture has been introduced

to the world as a solution to the possible problems when

using software architecture.

The microservices paradigm has emerged as a

transformative approach in the software architecture

landscape, offering a migration from traditional monolithic

architecture. With this transformation, most services

migrated to cloud-based deployments [3]. Microservices

represent a service and distributed architectural style where

applications are composed of independently deployable and

scalable services. Unlike monolithic architectures, where the

entire application is a single, tightly integrated unit,

microservices advocate breaking down complex systems

into smaller, self-contained services. Each microservice

operates as a discrete entity, communicating with others

through well-defined interfaces. This promotes agility, as

changes to one service do not necessitate modifications to

the entire application. Hence, the developers can introduce

new requirement changes to the software without stirring the

entire application. It increases the software's maintainability

and helps all teams. Microservice decentralisation fosters a

service development process where services can be written

in different programming languages per technological

advancements, use diverse data storage solutions, and

evolve at their own pace. Such autonomy facilitates parallel

development, leading to faster innovation cycles for the

engineering teams [4]. Moreover, adopting microservices

necessitates a cultural shift, with teams embracing new

practices such as DevOps and continuous integration [5].

Microservices enable scalable and resilient systems. Each

service can be independently scaled based on demand, and

failures in one service do not necessarily compromise the

integrity of the entire application. This architecture

improves fault isolation, identifying and addressing

problems without affecting the overall system.

Despite the advantages, implementing microservices

comes with its set of challenges. Effective communication is

crucial in a microservices architecture. Microservices

communicate through various patterns, including

synchronous HTTP/REST APIs, asynchronous messaging,

and event-driven architectures. The choice of

Evaluation of Decomposition to Microservices

with Optimized Inter-Service Communication

Strategy

L.D.S.B Weerasinghe, Indika Perera

I

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1907-1920

__

communication pattern depends on the specific requirements

of the system and the nature of the tasks that each

microservice performs. This distributed communication

model allows flexibility and resilience, ensuring that the

failure of one microservice does not cascade throughout the

entire application. Ensuring the security of inter-service

communication is a top priority in microservices

architecture. Implementing robust authentication,

encryption, and authorisation mechanisms safeguards

sensitive data between services. The landscape of inter-

service communication is dynamic, with continuous

advancements in technologies and practices. Striking a

balance between low-latency communication and fault

tolerance is a complex undertaking that demands thoughtful

microservice architectural design.

Transitioning from monolithic architectures to

microservices involves a strategic approach to ensure a

seamless and effective decomposition. The foremost step in

decomposition is to identify logical boundaries for

microservices. This involves analysing the existing monolith

to pinpoint distinct business functionalities or modules that

can operate independently. The goal is to define services

encapsulating specific concerns, minimising dependencies

between them. Leveraging principles of Domain-Driven

Design aids in creating a shared understanding of the

business domain and informs the delineation of

microservices [6]. The main point is how much

microservices need to interact in order to meet the user's

requirements. Unlike in the monolithic architecture, those

microservice interactions must pass the data through the

network. Each communication interaction brings an

additional latency to the application. This research study

mainly focuses on how inter-service communication impacts

microservice-based applications.

The primary challenge encountered during the transition

from a monolithic to a microservices architecture is the

performance issue arising from microservices' independent

and distributed nature. Unlike in monolithic architectures,

where all functionalities are contained within a single server,

microservices require communication between multiple

servers to generate output, leading to potential performance

bottlenecks. This research primarily focuses on evaluating

the impact of inter-service communication during the

decomposition of monolithic systems to microservices

architecture. By delving into these aspects, the research aims

to provide insights into how architects and developers can

effectively manage inter-service communication to optimize

the decomposition process and enhance the overall

performance of microservices-based systems. Optimized

inter-service communication based on TCP streams is

identified as a critical factor contributing to enhanced

performance in microservices architectural software

regarding response time and throughput. Architects need to

optimise communication strategies and consider the number

of communication pathways required to meet user

requirements. The research evaluation emphasizes the

efficacy of decomposing microservices from monolithic

systems, indicating the potential for attaining optimal

performance within a microservices architecture.

II. LITERATURE REVIEW

A. Background

Microservice architecture has become widely popular in

software architecture patterns in recent years. In the earlier

days, most of the systems were built as monolithic-based

architecture since they did not have complex user

requirements or many change requests for the software [7].

With the user requirements becoming complicated, the

engineers could not anticipate the requirement changes in

the software with the assistance of monolithic software

architecture. Service-oriented architecture (SOA) was

introduced in software development to address the concerns

of monolithic architecture [8]. In this architecture, services

are segregated as components and are orchestrated by the

Enterprise Service Bus (ESB). Research has shown that ESB

in service-oriented architecture becomes a bottleneck;

hence, it will cause performance degradation of SOA

architecture [2]. Many vendors are offering ESB using

different technologies. However, according to the SOA

architecture, the service component calls passed through the

ESB will cause a performance impact. Nevertheless, SOA

architecture-based reference architectures perform better

than monolithic-based systems. The same research

statistically proves that microservice architecture performs

better than SOA-based software systems. A systematic

review of microservices has been conducted using the

PRISMA model, showing that most microservice-related

researches were conducted from 2015 onwards [9]. Most

software engineers seek quality attributes such as

maintainability, performance, security, cloud support,

observability, etc. [10]. People are moving towards

microservices to achieve software quality attributes quickly.

Ample software frameworks are available in different

programming languages to support building the

microservice with quality attributes. Spring Boot and Vert.X

frameworks for Java language, Go Micro framework for Go

language, and Molecular for Node.js language are a few

examples of microservice development frameworks [11].

Microservices are deployed in the distributed environment,

and inter-service communication brings in additional latency

for the inter-service communication, which results in a

performance impact on the overall system response time and

throughput. An optimized strategy for inter-service

communication has been introduced from a research study

for microservice architecture [12]. TCP-based stream

communication is enabled as a request/response method to

communicate with internal microservices. Redis server helps

guarantee the exact delivery of the message so that

reliability and quality attributes will be preserved [13].

Academic and industrial testing has statistically proven that

the introduced strategy performed better than the traditional

HTTP methods. Most microservices are now deployed as

containers, yet some continue using on-premises server

deployments [14]. The proper reference architecture will

help bring this solution to the enterprise level for both

clouds and on-premises data centres [15].

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1907-1920

__

B. Others Work

Most of the research was on monolithic to microservice

conversion strategies and their technologies. Florian Auer

and team surveyed the monolithic to microservice

conversion by interviewing industry professionals with the

software [11]. Most architects move from monolithic

architecture to microservices architecture to achieve

maintainability, scalability, and cost [16]. Most people also

consider metrics like response time, resource utilization,

complexity, and functional suitability before migration. By

moving to microservice, software and the organization need

to be reorganized. A group of researchers in Finland

compared technical debt before and after the monolithic to

microservice migration of the 12-year-old monolithic

software, which has 280k lines of code [17]. They have used

the SonarQube software to perform qualitative studies, and

the results have shown a reduced technical debt in the long

run when moving to microservice architecture [18].

However, during the migration period, development

activities are prolonged because of the adaptation and

planning of new technology. Fujitsu Laboratories Ltd

extracted the decomposed candidates from the monolithic

applications code using the SarF algorithm [19]. They have

conducted a case study using a small application and

showed single microservices that can be decomposed from

the existing system. However, their research needed to

improve execution timing and the business domain

segregation. Victor Velepucha and the team researched the

problems and challenges of migrating from monolithic to

microservices[20]. They have highlighted that no single

theory exists when migrating from a monolithic application

to microservices. No such toolkit to use for the migration,

the need to reorganize the development team from scratch,

problems identifying the microservices, issues with

consistency, and the need to wait until the entire application

is migrated are some of the problems they have identified in

the study [21]. The challenges researchers identified during

the study include selecting a suitable framework, changing

the hierarchical structure, and prioritizing the requirements.

III. METHODOLOGY

This research study presents a comprehensive

methodology to derive the impact on microservice

communication when migrating to the microservices from

the monolithic software architecture. At the design stage of

microservices, architects are tasked with considering the

comprehensive spectrum of system functional requirements,

non-functional requirements, and software quality attributes.

Microservice decomposing includes the below steps,

• Understanding the context – When designing the

microservices or migrating the system from monolithic

architecture to microservices architecture, one needs to

understand the organisation's goal, business objectives,

and challenges that the microservice architecture should

address.

• Identify the responsibilities and define services –

Breakdown the system into manageable and independent

components by identifying the business requirements.

Services should have well-defined responsibilities. This

can be based on the principles of domain-driven design

(DDD) [22]. Those components can be mapped to

microservices in the software architecture.

• Data model – Choose which data is stored in the

microservices or what data needs to be communicated

with each microservice. Data storage can either be a

relational database or a non-relational database. Or else it

can be a volatile memory. As this is a crucial step,

architects must make a solid decision to maintain the

entire system's performance [23].

• API design – Define the straightforward API needed by

the external parties, design communication interfaces, and

determine how internal microservices should be

communicated to each other.

• Technology selection - Choose appropriate technology

stacks for each microservice based on its requirements.

Consider programming languages, frameworks, databases,

communication protocols, people expert areas, and the

time required to complete the project.

• Deployment methodology – Decide whether to use the

cloud or on-premise environment, based on the

environment availability and determine whether to use

containerisation or orchestration to manage microservices.

• Testing strategies – Decide on developing comprehensive

testing strategies, including unit testing, integration

testing, and end-to-end testing [24]. Implement

Continuous Integration and Continuous Deployment

(CI/CD) pipelines for automated testing and deployment

[25].

• Evolution and maintenance - Be prepared to iterate on

microservices architecture as a requirement change. Keep

architecture flexible and maintainable to accommodate

evolving business needs.

The process begins with a deep understanding of business

objectives, paving the way for identifying independent

services aligned with domain-driven design principles. The

meticulous consideration of data models, API designs, and

technology stacks ensures the coherent functioning of

microservices. Architects must make informed decisions on

data storage, communication interfaces, and technology

selections to optimize system performance. Deployment

methodologies, testing strategies, and recognizing the need

for evolutionary flexibility round out the methodology. As

microservices architecture inherently accommodates change,

architects should remain adaptable, fostering an

environment that allows for iterative evolution and

maintenance, ensuring the sustained alignment of the

architecture with dynamic business requirements. When

considering the above points, architects can decompose the

monolithic system into microservices.

A. Inter-service Communication

Intercommunication lies at the heart of microservices

architecture and is pivotal in shaping distributed systems'

performance, scalability, and overall functionality [26]. The

significance of microservice communication stems from

several key aspects that contribute to the success and

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1907-1920

__

efficiency of this architectural paradigm. By decomposing

the microservices and establishing clear communication

paths, this approach ensures that each microservice can

contribute to fulfilling a single user requirement effectively.

However, system designers need a proper idea of the inter-

service communication paths to meet the user's

requirements.

The diagram below (Fig. 1) shows how microservices

communicate in a worst-case scenario. Each microservice

calls to each other to produce the output of that service.

Fig. 1. Worst-case inter-service communication pattern

In this intricate communication pattern, each microservice

is intricately linked to every other service in a one-to-one

relationship, creating an intricate mesh of dependencies.

While such direct communication paths may facilitate data

exchange and collaboration between services, they

inherently raise concerns about system complexity,

maintainability, and scalability. The challenge with this

communication approach lies in the potential for increased

coupling between microservices, where changes in one

service may have a cascading effect, necessitating

modifications in numerous interconnected services. This can

result in challenges related to versioning, code maintenance,

and the overall agility of the system. Moreover, the

extensive inter-service calls in this worst-case scenario may

introduce latency and performance bottlenecks. The need for

each microservice to communicate directly with others may

lead to higher network traffic and increased response times,

potentially impacting the overall system's responsiveness.

The calculation of communication paths in the worst-case

scenario depicted in the microservices architecture can be

approached through graph theory. In this context, the

number of communication paths corresponds to the potential

connections between individual microservices. Considering

a set of microservices as nodes and direct communication

links between them as edges, the number of communication

paths can be determined using the formula for combinations

in graph theory. The equation for calculating the number of

communication paths y in a worst-case scenario with x

microservices is denoted by:

 y = (x * (x - 1)) / 2 (1)

In this formula:

• x represents the total number of microservices.

• (x−1) denotes the number of potential communication

partners for each microservice.

• The division by 2 accounts for avoiding double-counting,

as the communication path from microservice A to B is

the same as from B to A.

By utilizing this formula, architects and system designers

can quantitatively assess the complexity introduced by the

direct communication paths in the microservices

architecture's worst-case scenario. Below is a simple

pseudocode snippet for calculating the number of

communication paths in the worst-case scenario.

TABLE I

PSEUDOCODE FOR A WORST-CASE SCENARIO

//Function

function calculateCommunicationPaths(x):
 // n is the total number of microservices

 // Ensure n is a positive integer
 if n <= 0 or not isInteger(x):

 return "Invalid input. Please provide a positive integer for the

number of microservices."

 // Calculate the number of communication paths(y)

 paths = (x * (x- 1)) / 2

 return paths

// Helper function to check if a number is an integer

function isInteger(num):

 return num == floor(num)

// Example usage:

numberOfMicroservices = 5

result = calculateCommunicationPaths(numberOfMicroservices)

print("Number of Communication Paths:", result)

This function, called calculateCommunicationPaths, takes

a single parameter x, representing a system's total number of

microservices. It first checks whether x is a positive integer.

If x is not a positive integer, or if it's not a whole number

(i.e., not an integer), the function returns an error message

indicating that the input is invalid. Assuming x passes this

validation, the function calculates the number of

communication paths required among the microservices. It

does so using a mathematical formula where each

microservice needs to communicate with every other

microservice except itself. The calculated number of

communication paths is then returned as the output.

Additionally, a helper function named isInteger is used

within calculateCommunicationPaths to check if a given

number is an integer, ensuring the validity of the input.

Overall, this function aids in determining the optimal

communication structure needed for a system with a

specified number of microservices, contributing to efficient

information flow within the architecture. This analysis aids

in understanding the scale of interdependencies and

potential challenges associated with managing

communication within the system, providing valuable

insights for optimizing the architecture for improved

scalability and maintainability.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1907-1920

__

Fig. 2. Best case inter-service communication

The above diagram (Fig. 2) shows the minimal

communication interactions between the microservices. This

architecture reflects a simple, efficient design with direct,

point-to-point interactions. Unlike more complex

communication patterns, such as an entirely interconnected

mesh, this minimalist approach minimizes the number of

communication paths and potential dependencies between

microservices. Each microservice communicates only with

those directly relevant to its functionality, contributing to a

clear and straightforward system. This design choice

emphasizes clarity, ease of management, and reduced

coupling between microservices. The streamlined

communication paths enhance system maintainability and

scalability, as changes to one microservice are less likely to

cascade through an extensive network of interconnected

services. The equation for calculating the number of

communication paths y in a best-case scenario with x

microservices is expressed by:

 y = (x - 1) (2)

This equation signifies a simplified communication

pattern where each microservice communicates directly with

all others except itself, resulting in a linear relationship

between the number of microservices and the

communication paths. Specifically, each microservice

establishes direct communication links with x−1 other

microservices.

If the two equations mentioned above are plotted, the

number of communication paths in the worst-case scenario

is growing exponentially than in the best-case scenario.

Impact analysis can be found under the evaluation section.

IV. IMPLEMENTATION

Implementing a robust microservices architecture in a

distributed environment presents considerable challenges

[27]. The reference ecosystem serves as a crucial step,

transforming abstract designs into concrete building blocks,

thus realising the envisioned communication strategy. Each

microservice can be broken down into smaller pieces that

help implement the microservice better.

Fig. 3. Microservice component diagram

Figure 3 above illustrates the small-scale components

within the microservice, encompassing distinct layers such

as the service, data access, business logic, and

communication layers. These components exhibit varying

ownerships and depict their interactions within the

microservice architecture. The service layer is responsible

for having external APIs for the external systems. This layer

mainly uses the generic REST-based API interface to enable

a better integration layer for the microservices. The data

access layer mainly interacts with the data storing services,

such as relational databases and non-relational databases.

The business logic layer implements all the business logic

related to the functional requirements. The communication

layer is responsible for interacting with other microservices

or third-party systems. Java language is used as the primary

programming language for developing microservices,

leveraging its robust capabilities and utilizing the well-

known Spring Boot framework as a microservices

framework [28]. The decision to use Java brings numerous

advantages, including its widespread adoption, platform

independence, and extensive community support. Java's

versatility enables the researchers to address diverse

requirements within the microservices architecture. Its

object-oriented nature facilitates modular and scalable code

structures, aligning well with the principles of

microservices. Additionally, Java's rich ecosystem of

libraries and tools enhances development efficiency and

provides comprehensive solutions to various challenges.

Spring Boot simplifies the complexities associated with

microservices development by offering conventions and

defaults, reducing boilerplate code, and providing built-in

support for essential features such as configuration

management and dependency injection. Its emphasis on

convention over configuration promotes a streamlined and

standardized approach to microservices development.

Used newly implemented optimized inter-service

communication method for microservices-to-microservices

communication. Redis streams have been used, and

communication is done using the Redis serialization

protocol (RESP) [29]. This method allows developers to

send messages to other microservices in the same way as

REST-based clients. When sending the message to other

microservices, the destination needs to be specified, and

those messages are sent as a byte buffer. Hence, the network

layer resource consumption is less than that of the other

methods. When the microservice starts, it automatically

creates a connection to the Redis server and persists until the

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1907-1920

__

microservices die. Therefore, when sending the message to

other microservice developers, there is no need to open and

close the connection at the code level.

V. RESULTS AND EVALUATION

Most enterprise-grade software is now moving from

monolithic-based applications to microservice-based

architecture, and those microservices are deployed in cloud-

based environments. In order to evaluate inter-service

communication in the microservices architecture, several

microservices were implemented and deployed in a cloud-

native Kubernetes cluster, as shown in Figure 4 [30]. The

evaluation mainly focuses on how the number of inter-

service communications and the allocated resources impact

the overall system performance in terms of response time.

Fig. 4. Testing cloud deployment architecture

The performance of the newly introduced communication

solution was evaluated and compared with the traditional

and the most common HTTP protocol for inter-service

communication. All microservices were developed in Java

using the Spring Boot framework. Standard REST templates

were used for the HTTP inter-service communication. Both

microservices were deployed within the same subnet in a

Kubernetes environment for testing purposes, as per figure

5.

Fig. 5. Deployment for solution comparison

 The turnaround time was measured by checking the logs,

excluding processing time, focusing solely on the request

and response times between Microservice A and

Microservice B. Used URL-only GET request without body

and 1KB payload size POST for both request and response

for testing. Each test case was executed for 1 hour and

repeated three times to account for data variations. Logs

were captured using the Google Logging service and

processed with Python scripts for data analysis. JMeter is

installed in a separate virtual machine in the cloud and

placed in the same network subnet in which the Kubernetes

cluster resides to reduce network latencies [31]. The traffic

is sent in a controlled manner, as there are logically 50

concurrent users at a 150 TPS rate.

Fig. 6. HTTP and proposed solution comparison

Figure 6 illustrates the turnaround times for traditional

HTTP versus the implemented solution methods. The graph

shows that the implemented solution has a shorter

turnaround time than the traditional HTTP method. This

indicates that microservice A receives responses from

microservice B at a faster pace with the implemented

solution. Unlike the HTTP method, the implemented

solution does not involve socket opening and closing

activities. Additionally, data is serialised and transmitted as

a byte buffer record, reducing network consumption. These

factors contribute to the superior performance of the

implemented solution over the traditional method. Based on

the test results, the newly introduced method outperforms

the traditional method. Therefore, further testing will be

continued with the new strategy to assess its impact on

microservice decompositions, inter-service communication,

and overall performance.

Fig. 7. Deployment architecture with proposed solution

0 1 2 3 4

Proposed

solution

HTTP

Trunaround time(ms)

Trunaround Time Comparison

1KB URL

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1907-1920

__

Fig. 8. Deployment architecture with HTTP communication

The diagram in Figure 7 illustrates the microservice

architecture deployed to test in the cloud environment. Java

language with Spring boot is used for microservice

development, and an optimized TCP-based stream

communication method is used for service-to-service

communication, just as in the previous scenario. Figure 8

shows the deployment architecture used to evaluate the

HTTP protocol. Both are deployed in the same environment,

and Spring boot REST templates are used to create HTTP

inter-service communications. 1 KB-sized payload is used

as a request and response. As mentioned earlier, JMeter is

placed on the same subnet on a different VM. The best and

minimal communication approach discussed in the

methodology has been used for microservice

communications. Apache JMeter generates REST-based

API traffic with controlled parameters such as concurrent

users and throughput [32]. One of the microservices faces

the JMeter and accepts the HTTP-based REST API traffic

generated from logical 50 concurrent users at a 150 TPS rate

as previously.

Fig. 9. Inter service communication path and response time comparison

The diagram (Fig. 9) illustrates how increasing the number

of microservices affects the overall system's average

response time within a single-user functional requirement

scenario. This analysis is grounded in data extracted from

JMeter statistic reports, with each experiment conducted

three times to ensure accuracy and reduce potential errors.

The results reveal a definitive pattern: As the number of

microservices grows, the system's average response time

increases proportionally. In the early stages of decomposing

the microservices, up to seven microservices are

decomposed, and the proposed system demonstrates

remarkable efficiency. During this phase, the response time

remains below the linear average, indicating that the system

can absorb the additional microservices without

significantly impacting performance. However, a pivotal

change occurs when the number of microservices exceeds

six. At this point, the system's response time escalates

rapidly, surpassing the linear average and moving into an

exponential growth curve. This shift suggests that the

system's ability to manage the increased load efficiently

diminishes as more microservices are introduced, ultimately

leading to a substantial decline in overall performance.

When the proposed system is compared to the standard

HTTP protocol, both exhibit similar trends in response time

as the number of microservices increases. Yet, a critical

difference emerges in their performance thresholds. The

HTTP protocol not only begins to show a marked increase

in response time at a lower number of microservices, but

this increase is also more pronounced. Specifically, beyond

the six-microservice mark, the HTTP protocol's response

time escalates more sharply, indicating that it struggles to

maintain efficiency under the same conditions where the

proposed system still operates more effectively. This

comparative analysis highlights the proposed system's

superior capacity for handling a higher number of

microservices than the HTTP protocol.

5.4

9.2

13.5

18.6

25.8

35.9

5.7

9.5

13.9

18.9

26.3

36.1

0 5 10 15 20 25 30 35 40

2

3

4

5

6

7

Time(ms)

N
u
m

b
er

 o
f

m
ic

ro
se

rv
ic

e
p

o
d

s

Inter Service Communication Paths vs Response Time

avarage response time (HTTP) avarage response time (proposed solution)

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1907-1920

__

The table above (Table II) illustrates the variation in inter-

service communication turnaround time across different

service-to-service communication segments as the number

of microservices increases. This data was meticulously

collected from each microservice log using Google's logging

service, ensuring no logic processing time was included and

focusing purely on communication overhead. The results

highlight a critical challenge in microservices architecture:

while the decomposition of services into smaller, isolated

units offers advantages in scalability and modularity, it also

introduces significant communication overhead that can

impact overall system performance. When a new

microservice is introduced by decomposing an existing one

to isolate single responsibilities, the turnaround time for

inter-service communication tends to increase. This increase

is primarily due to the consumption of network layer

resources for each communication packet. The analysis

reveals that with only 2 microservices, the total inter-service

communication time was 1.8ms, corresponding to an

average of 1.8ms per segment. However, as the system

expanded to 3 microservices, the total communication time

increased to 3.8ms, with the second segment experiencing a

16.67% increase in turnaround time. This trend continues as

the system grows: with 4 microservices, the total

communication time rose to 6.3ms, with the second and

third segments showing increases of 11.11% and 38.89%,

respectively. The impact of additional microservices

becomes even more pronounced with further scaling. At 5

microservices, the total time reached 9.6ms, with significant

increases observed across multiple segments: 27.78% in the

second, 38.89% in the third, and 66.67% in the fourth. By

the time the system included 6 microservices, the total time

climbed to 14.4ms, and the incremental increases in

turnaround time became even more substantial: 16.67% in

the second segment,

38.89% in the third, 94.44% in the fourth, and 150% in the

fifth. The most significant jump occurs when the system

scales to 7 microservices. Here, the total inter-service

communication time reaches 21.2ms, with each segment

showing substantial increases: 22.22% in the second

segment, 50.00% in the third, 127.78% in the fourth,

172.22% in the fifth, and a striking 200.00% in the sixth

segment. The average communication time per segment

increases from 1.8ms with two microservices to 3.53ms with

seven microservices, highlighting the cumulative impact of

adding more microservices. This data underscores the

complex trade-offs inherent in microservices architecture.

While microservices improve modularity and scalability,

they also introduce additional communication overhead,

especially as system complexity grows. Each additional

microservice contributes to a significant increase in latency

and has a compounding effect on subsequent

communication segments. This could potentially degrade the

overall performance and responsiveness of the system,

especially in high-traffic environments or in applications

where low-latency communication is critical.

 To better understand the implications of these findings, it

is crucial for microservices architects to carefully consider

the number of communication segments involved in each

business scenario when decomposing services. If the

number of segments exceeds sixth, it could significantly

increase communication latencies, leading to overall

application performance issues. Therefore, it is important to

keep microservice decompositions as streamlined as

possible, minimizing the number of communication

segments to reduce latency and maintain optimal application

responsiveness. This careful balance will help in achieving

the benefits of microservices architecture while mitigating

potential latency problems.

Micro

service

s

Time taken for each individual communication segment (ms) Total inter-

service

communic

ation time

(ms)

Avg. inter-

service

communica

tion time

(ms)

segment

1

segment

2

segment 3 segment

4

segment

5

segment

6

2 1.8 N/A N/A N/A N/A N/A
1.8 1.8

3 1.7 2.1

(+16.67%)

N/A N/A N/A N/A
3.8 1.9

4 1.8 2

(+11..11%)

2.5

(+38.89%)

N/A N/A N/A

6.3 2.1

5 1.8 2.3

(+27.78%)

2.5

(+38.89%)

3

(+66.67%)

N/A N/A

9.6 2.4

6 1.8 2.1

(+16.67%)

2.5

(+38.89%)

3.5

(+94.44%)

4.5

(+150%)

N/A

14.4 2.88

7 1.9 2.2

(+22.22%)

2.7

(+50.00%)

4.1

(+127.78%)

4.9

(+172.22%)

5.4

(+200.00%) 21.2 3.53

TABLE II

INTER SERVICE COMMUNICATION TURNAROUND TIME VARIATION WITH MICROSERVICES

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1907-1920

__

The above graph (Fig. 10) compares response times across

various layers within a microservice architecture, offering

critical insights into how inter-service communication

affects overall system performance. The overall response

time values, derived from JMeter statistics, capture the

complete end-to-end latency experienced by the user. In

contrast, the average single inter-service communication

turnaround times, calculated using Python scripts from

microservice logs, focus exclusively on the latency

introduced by the communication between individual

services. A closer examination of the graph reveals a clear

trend: as additional communication paths are introduced

between microservices, the overall application response time

progressively increases. This escalation is not linear but

exhibits a compounding effect, especially as the number of

communication segments grows.

After the fifth communication path, there is a marked and

dramatic increase in the time required for inter-service

communication, suggesting that the architecture reaches a

critical point where additional communication segments

introduce substantial latency. This phenomenon can be

attributed to several underlying factors. First, each

communication path introduces additional overhead,

including network latency, protocol handling, and data

serialization/deserialization processes. These overheads

accumulate as more paths are added, resulting in longer

delays. Additionally, the increased complexity of managing

multiple communication channels can strain system

resources, leading to inefficient processing and routing of

messages between services. From a scientific perspective,

the observed increase in response time after the fifth

communication path may indicate a threshold in the system's

capacity to efficiently handle distributed communication.

This threshold likely corresponds to network bandwidth

limitations and service orchestration bottlenecks. The

dramatic rise in inter-service communication time highlights

the non-linear nature of latency growth in microservice

architectures, emphasizing the importance of carefully

managing the number of communication paths to avoid

significant performance degradation. Furthermore, the

impact on user experience can overlay with this scenario. As

response times increase, users may perceive the application

as slow or unresponsive, leading to dissatisfaction and

potential loss of engagement. This direct correlation

between the number of communication paths and user-

perceived performance underscores the critical need for

optimization in microservice decomposition, particularly in

scenarios involving complex service interactions.

In conclusion, the analysis of Fig. 10 reinforces the

importance of strategic microservice decomposition and the

careful management of communication paths within a

microservice architecture. The findings suggest that

maintaining a limited number of inter-service

communication paths is crucial for preserving application

performance and ensuring a positive user experience. This

analysis provides a scientific basis for further exploration

into optimizing microservice architectures, particularly in

understanding the thresholds beyond which additional

complexity leads to diminishing returns in performance.

Hardware resources significantly impact the performance

of hosted applications, particularly the memory and CPU.

To evaluate the effects of memory and CPU on the

performance of microservices, the researchers have

conducted a series of tests focusing on overall response time

and inter-service communication. In this experimental setup,

memory and CPU resources were allocated to individual

microservice pods with both minimum and maximum

resource limits set to the same values, ensuring full resource

allocation to each pod. This approach allowed a controlled

assessment of how these hardware resources influence

microservice performance and the number of

communication segments.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6

T
im

e
(m

s)

Number of inter service communication paths

Inter Service Communication Paths vs Response Times

overall response time avarage inter service communication time

avarage single inter service communication time

Fig. 10. Response time variation with the number of communication paths

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1907-1920

__

The graph (Fig. 11) provides an insightful comparison of

response time variations as a function of the number of

communication paths and the CPU resources allocated

between the proposed solution and the traditional HTTP

protocol. A thorough data analysis reveals several critical

observations about the performance dynamics of these two

communication strategies. Firstly, the data indicates that

inter-service communication times remain relatively stable

despite increases in CPU allocation to the respective

microservice pods. This stability suggests that the inter-

service communication mechanisms, especially within the

proposed solution, are not heavily dependent on the

available CPU resources. This finding is significant because

it highlights the efficiency of the proposed system in

managing communication overheads independently of

computational power, in contrast to the HTTP protocol,

which may not exhibit the same efficiency level in similar

scenarios. However, when examining overall application

response times, a clear pattern emerges as more CPU cores

are allocated, the overall response time improves noticeably.

This improvement is due to the direct impact of increased

CPU resources on the processing speed of microservices.

More CPU cores enable microservices to execute

computational tasks more swiftly, reducing internal

processing delays and lowering the total response time

experienced by the user. This enhancement is particularly

evident in the proposed solution, which demonstrates a

reduction in response time compared to the HTTP protocol

under similar conditions. The proposed system's

performance can be attributed to its optimized

communication strategy, which is designed to minimize the

overhead typically associated with HTTP-based inter-

service communication. Unlike HTTP, which incurs

substantial protocol overhead, including the need for

repeated header exchanges, connection management, and

stateless interactions, the proposed solution leverages a

Fig. 11. Response time comparison with proposed solution and HTTP protocol in dynamic CPU allocation

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1907-1920

__

more streamlined and efficient communication protocol.

This approach reduces the number of bytes transmitted over

the network and decreases connection establishment

processes, which are known to be resource-intensive in

HTTP-based systems. Furthermore, the proposed system's

ability to maintain consistent inter-service communication

times despite CPU allocation underscores its robustness in

handling varying computational loads. This is particularly

advantageous in cloud-native environments where resource

allocation can fluctuate dynamically based on demand. The

ability of the proposed solution to deliver consistent

performance in such environments makes it a more reliable

choice for applications requiring high scalability and low

latency.

In conclusion, the analysis of Fig. 11 demonstrates that the

proposed system not only outperforms the traditional HTTP

protocol regarding response time when CPU resource

allocation. This makes the proposed solution a more suitable

choice for microservices architectures, particularly in

scenarios where high efficiency and low latency are

paramount. The findings suggest that the proposed system

provides a more optimized approach to inter-service

communication, enhancing overall application performance

and a better user experience.

Fig. 12. Response time comparison with proposed solution and HTTP protocol in dynamic memory allocation

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1907-1920

__

In addition to evaluating the impact of CPU allocation, the

tests also examined how memory allocation variations

influence overall microservice response time and inter-

service communication time. The data depicted in the graph

(Fig. 12) reveals some critical insights that underscore the

strengths of the proposed system compared to the traditional

HTTP protocol. Firstly, the graph illustrates that inter-

service communication time remains largely unaffected by

changes in memory allocation. This observation is

significant because it suggests that the communication

mechanisms employed by the proposed system are not

heavily reliant on the memory resources available to

individual microservice pods. This stability clearly indicates

the proposed system's robustness in handling inter-service

communications efficiently, even when memory resources

vary. HTTP-based communication may exhibit the same

level of independence from memory constraints but with

less performance than the proposed solution. However,

while inter-service communication time shows little

sensitivity to memory allocation, the graph does indicate a

modest improvement in overall application response time

with increased memory allocation. This improvement can be

attributed to the crucial role that adequate memory plays in

maintaining the smooth and efficient operation of

microservices. Specifically, sufficient memory allocation

helps reduce the frequency and duration of garbage

collection cycles, which can reduce latency spikes and

degrade performance.

The proposed system demonstrates a more pronounced

memory utilisation efficiency than the HTTP protocol.

Unlike HTTP, which may suffer from higher memory

consumption due to the overheads associated with managing

stateless requests, connection management, and data

serialization/deserialization processes, the proposed system

optimizes memory usage by streamlining these operations.

As a result, the proposed system can handle larger data loads

more effectively, leading to faster overall response times

and better system performance.

Moreover, the proposed system's ability to handle more

substantial data loads with increased memory allocation

contributes to its superior performance in real-world

scenarios. For instance, in high-traffic environments where

microservices are required to rapidly process and exchange

large volumes of data, the proposed system's efficient

memory management ensures that performance remains

consistent and responsive. When allocating more memory to

the HTTP protocol, there is a performance improvement, but

it does not match the level of enhancement seen with the

proposed system. Furthermore, while the HTTP protocol can

benefit from increased memory allocation to some extent,

the proposed system's architecture inherently makes better

use of available resources. By minimizing the overhead

associated with inter-service communication, the proposed

system ensures that the majority of the memory resources

are dedicated to actual processing tasks rather than

managing communication logistics. This efficiency

translates into more consistent and lower response times

across various memory configurations, making the proposed

system a more reliable choice for memory-constrained

environments.

In conclusion, the comprehensive analysis of memory

allocation's impact on microservice performance reveals that

while both the proposed system and the HTTP protocol

benefit from increased memory, the proposed system

outperforms HTTP by a significant margin. The proposed

system's capacity to maintain stable inter-service

communication times and efficient memory utilization leads

to faster overall response times and improved performance.

These findings underscore the superiority of the proposed

system over the traditional HTTP protocol, particularly in

environments where memory resources are variable or

limited. The proposed system's optimized communication

and resource management strategies make it a more suitable

solution for modern microservices architectures that demand

high efficiency, scalability, and low latency.

Our findings highlight the critical role of adequate

memory allocation in enhancing microservice performance.

Memory allocation improves overall application response

time by optimizing internal processing capabilities but does

not significantly impact inter-service communication times.

Similarly, increasing CPU allocation enhances processing

speed and reduces response time but does not substantially

affect inter-service communication times. This distinction

emphasizes the need to optimize both computational and

communication aspects independently to achieve

comprehensive system performance improvements.

VI. LIMITATIONS

This study continues our research on a newly introduced

communication strategy, aiming to draw concrete

conclusions about its impact on microservices architecture

performance. While previous findings indicated that HTTP-

based communication is predominantly used for inter-

service messaging, our work benchmarks our proposed

solution against HTTP to demonstrate its performance

advantages. Our study primarily investigates how inter-

service communication affects the overall response time of

microservices architectures, comparing HTTP with our

proposed strategy. Unlike previous research, we aimed to

identify optimal segments in HTTP and the newly

introduced strategy. Our findings are limited to identifying

the optimal number of communication segments required to

maintain optimal microservice performance regarding

response time. Additionally, we assessed the impact of

vertical scaling on communication segments. However, we

restricted our analysis to experimental data generated within

controlled environments, which may not fully capture real-

world complexities. Future studies could extend this

research by exploring additional parameters related to

communication segments and examining real-world

deployment scenarios to validate our findings and further

generalize the applicability of the proposed strategy.

VII. SUMMARY AND FUTURE WORKS

The transition from a monolithic software architecture to

a microservices architecture highlights the critical role of

optimized inter-service communication. This emphasis

underscores the significance of establishing efficient

communication pathways among microservices within the

architecture. Organizations can enhance their microservices-

based systems' overall performance, scalability, and

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1907-1920

__

maintainability by prioritizing optimized inter-service

communication. This recognition underscores a fundamental

aspect of successful microservices adoption, as effective

communication mechanisms are essential for facilitating

seamless interactions between microservices and ensuring

the agility and responsiveness required in modern software

architectures. The methodology includes understanding the

organizational context, identifying responsibilities, defining

services based on domain-driven design, establishing data

models, designing clear APIs, selecting appropriate

technologies, deciding deployment methodologies,

implementing testing strategies, and planning for evolution

and maintenance. This research investigates two distinct

communication scenarios within microservices architecture:

a worst-case scenario characterized by intricate meshed

dependencies and a best-case scenario featuring minimal

and direct service interactions. Graph theory principles are

applied to quantitatively analyze the complexity of

communication paths in these scenarios. In the evaluation

phase of the study, microservices are deployed in a cloud-

native Kubernetes cluster environment. Subsequently, the

impact of inter-service communication on the overall system

performance is rigorously assessed. This evaluation involves

measuring various performance metrics, such as response

time, throughput, and resource utilization, to gain insights

into how different communication patterns influence the

efficiency of microservices-based systems deployed in real-

world cloud environments. Through this approach, the

research aims to provide valuable insights to the optimal

design and management of inter-service communication to

maximize the performance and reliability of microservices

architectures. Optimizing both CPU and memory allocations

is crucial for enhancing microservice performance, as they

improve processing efficiency and overall response times,

while network factors and communication strategy primarily

influence inter-service communication. The results

underscore the critical importance of planning and

optimizing inter-service communication to guarantee

microservices-based systems' efficiency, scalability, and

responsiveness.

REFERENCES

[1] M. M. Jamjoom, A. S. Alghamdi, and I. Ahmad, "Service Oriented

Architecture Support in Various Architecture Frameworks: A Brief

Review," 2012.
[2] L. D. S. B. Weerasinghe and I. Perera, "An exploratory evaluation of

replacing ESB with microservices in service-oriented architecture," in

2021 International Research Conference on Smart Computing and

Systems Engineering (SCSE), Sep. 2021, pp. 137–144. doi:

10.1109/SCSE53661.2021.9568289.

[3] King Khalid University and N. Ahmad, "The Structural Modeling of
Significant Factors for Sustainable Cloud Migration," Int. J. Intell.

Eng. Syst., vol. 14, no. 2, pp. 1–10, Apr. 2021, doi:

10.22266/ijies2021.0430.01.
[4] Srinivas Balasubramanian, Prakash Raghavendra, "HAMP - A Highly

Abstracted and Modular Programming Paradigm for Expressing

Parallel Programs on Heterogenous Platforms," Lecture Notes in
Engineering and Computer Science: Proceedings of The World

Congress on Engineering 2012, WCE 2012, 4-6 July, 2012, London,

U.K., pp1130-1135.
[5] L. Liu, X. He, Z. Tu, and Z. Wang, "MV4MS: A Spring Cloud based

Framework for the Co-Deployment of Multi-Version Microservices,"

in 2020 IEEE International Conference on Services Computing
(SCC), Beijing, China: IEEE, Nov. 2020, pp. 194–201. doi:

10.1109/SCC49832.2020.00033.

[6] S. Rochimah, I. M. B. Gautama, and R. J. Akbar, "Refactoring the
Anemic Domain Model using Pattern of Enterprise Application

Architecture and its Impact on Maintainability: A Case Study," 2019.

[7] B. P. Gautam and S. K. Shrestha, "Effective Campus Management
through Web Enabled Campus-SIA (Student Information

Application)," Hong Kong, 2012.

[8] L. O'Brien, P. Merson, and L. Bass, "Quality Attributes for Service-
Oriented Architectures," in International Workshop on Systems

Development in SOA Environments (SDSOA'07: ICSE Workshops

2007), Minneapolis, MN, USA: IEEE, May 2007, pp. 3–3. doi:
10.1109/SDSOA.2007.10.

[9] S. Weerasinghe and I. Perera, "Taxonomical Classification and

Systematic Review on Microservices," Int. J. Eng. Trends Technol.,
vol. 70, no. 3, pp. 222–233, Mar. 2022, doi:

10.14445/22315381/IJETT-V70I3P225.

[10] L. O'Brien, L. Bass, and P. Merson, "Quality Attributes and Service-
Oriented Architectures:," Defense Technical Information Center, Fort

Belvoir, VA, Sep. 2005. doi: 10.21236/ADA441830.

[11] F. Auer, V. Lenarduzzi, M. Felderer, and D. Taibi, "From monolithic
systems to Microservices: An assessment framework," Inf. Softw.

Technol., vol. 137, p. 106600, Sep. 2021, doi:

10.1016/j.infsof.2021.106600.
[12] S. Weerasinghe and I. Perera, "Optimised Strategy for Inter-Service

Communication in Microservices," Int. J. Adv. Comput. Sci. Appl.,

vol. 14, no. 2, 2023, doi: 10.14569/IJACSA.2023.0140233.
[13] N. Levin, "How to Build Apps using Redis Streams",Available:

https://www.academia.edu/40811333/How_to_Build_Apps_using_Re
dis_Streams

[14] S. T. Aung, L. H. Aung, N. Funabiki, S. Yamaguchi, Y. W. Syaifudin,

and W.-C. Kao, "An Implementation of Web-based Personal Platform
for Programming Learning Assistant System with Instance File

Update Function," vol. 32, no. 2, 2024.

[15] Y. Wang, T. Towara, and R. Anderl, "Topological Approach for
Mapping Technologies in Reference Architectural Model Industrie

4.0 (RAMI 4.0)," 2017.

[16] M.-D. Cojocaru, A. Uta, and A.-M. Oprescu, “Attributes Assessing
the Quality of Microservices Automatically Decomposed from

Monolithic Applications,” p. 10.

[17] V. Lenarduzzi, F. Lomio, N. Saarimäki, and D. Taibi, "Does
migrating a monolithic system to microservices decrease the technical

debt?," J. Syst. Softw., vol. 169, p. 110710, Nov. 2020, doi:

10.1016/j.jss.2020.110710.

[18] M. I. Murillo and M. Jenkins, "Technical Debt Measurement during

Software Development using Sonarqube: Literature Review and a

Case Study," in 2021 IEEE V Jornadas Costarricenses de
Investigación en Computación e Informática (JoCICI), Oct. 2021, pp.

1–6. doi: 10.1109/JoCICI54528.2021.9794341.

[19] M. Kamimura, K. Yano, T. Hatano, and A. Matsuo, "Extracting
Candidates of Microservices from Monolithic Application Code," in

2018 25th Asia-Pacific Software Engineering Conference (APSEC),

Nara, Japan: IEEE, Dec. 2018, pp. 571–580. doi:
10.1109/APSEC.2018.00072.

[20] V. Velepucha and P. Flores, "Monoliths to microservices - Migration

Problems and Challenges: A SMS," in 2021 Second International
Conference on Information Systems and Software Technologies

(ICI2ST), Quito, Ecuador: IEEE, Mar. 2021, pp. 135–142. doi:

10.1109/ICI2ST51859.2021.00027.
[21] X. Liu, S. Jiang, X. Zhao, and Y. Jin, "A Shortest-Response-Time

Assured Microservices Selection Framework," in 2017 IEEE

International Symposium on Parallel and Distributed Processing with
Applications and 2017 IEEE International Conference on Ubiquitous

Computing and Communications (ISPA/IUCC), Guangzhou: IEEE,

Dec. 2017, pp. 1266–1268. doi: 10.1109/ISPA/IUCC.2017.00192.
[22] A. Singjai, U. Zdun, and O. Zimmermann, "Practitioner Views on the

Interrelation of Microservice APIs and Domain-Driven Design: A

Grey Literature Study Based on Grounded Theory," in 2021 IEEE
18th International Conference on Software Architecture (ICSA), Mar.

2021, pp. 25–35. doi: 10.1109/ICSA51549.2021.00011.

[23] D. Sanchez, A. E. Rojas, and H. Florez, "Towards a Clean
Architecture for Android Apps using Model Transformations," vol.

49, no. 1, 2022.

[24] L. Lun, X. Chi, and H. Xu, "Coverage Criteria for Component Path-
oriented in Software Architecture," 2019.

[25] E. M. I. M. Ekanayaka, J. K. K. H. Thathsarani, D. S. Karunanayaka,

N. Kuruwitaarachchi, and N. Skandhakumar, "Enhancing Devops
Infrastructure For Efficient Management Of Microservice

Applications," in 2023 IEEE International Conference on e-Business
Engineering (ICEBE), Nov. 2023, pp. 63–68. doi:

10.1109/ICEBE59045.2023.00035.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1907-1920

__

[26] Christy Sibi Pachikkal, "Interservice Communication in
Microservices," Int. J. Adv. Res. Sci. Commun. Technol..

[27] B. Götz, D. Schel, D. Bauer, C. Henkel, P. Einberger, and T.

Bauernhansl, “Challenges of Production Microservices,” Procedia
CIRP, vol. 67, pp. 167–172, 2018, doi: 10.1016/j.procir.2017.12.194.

[28] H. Suryotrisongko, D. P. Jayanto, and A. Tjahyanto, "Design and

Development of Backend Application for Public Complaint Systems
Using Microservice Spring Boot," Procedia Comput. Sci., vol. 124,

pp. 736–743, 2017, doi: 10.1016/j.procs.2017.12.212.

[29] "RESP protocol spec," Redis. [Online]. Available:
https://redis.io/docs/reference/protocol-spec/

[30] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek,

"Kubernetes as an Availability Manager for Microservice
Applications".

[31] "Google Kubernetes Engine (GKE) | Google Cloud." [Online].

Available: https://cloud.google.com/kubernetes-engine
[32] R. B. Khan, "Comparative Study of Performance Testing Tools:

Apache JMeter and HP LoadRunner," p. 57.

L.D.S.B Weerasinghe is a postgraduate student at the Department of

Computer Science and Engineering, the University of Moratuwa. He
received B.Sc. (Hons) in Computer Science with first class from the

Kotelawala Defence University and M.Sc. in Computer Science

(Specialization in Cloud Computing) from the University of Moratuwa. His
research interests include software architecture, cloud computing and

distributed computing.
Indika Perera is a Professor at the Department of Computer Science and

Engineering, the University of Moratuwa. He received the B.Sc.

Engineering (Hons.) and M.Sc. degrees from the University of Moratuwa,
Sri Lanka, the Master of Business Studies from the University of Colombo,

Sri Lanka, and the Ph.D. degree from the University of St Andrews, U.K.

His research interests include artificial intelligence, software engineering,
and application development for bio-health research.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1907-1920

__

