
 

  

Abstract—The rapid evolution of intelligent automotive 

systems has driven the urgent need for advanced damage 

assessment methodologies, revealing critical limitations in 

conventional visual inspection techniques. This study posits a 

multi-task learning architecture for vehicular surface damage 

quantification through synergistic integration of instance 

segmentation and monocular depth estimation. Three key 

technical innovations are incorporated: 1) A Heterogeneous 

Feature Single-Phase Booster (HFSPB) module utilizing 

RepViT layers to optimize backbone feature discriminability; 2) 

A Channel-wise Cross Fusion Block facilitating adaptive 

multi-scale feature amalgamation with intrinsic noise 

attenuation; 3) A depth estimation head implementing Depth 

Interval Attraction Refinement for geometrically consistent 

surface reconstruction. Benchmark evaluations revealed a 

threefold acceleration in inference speed relative to 

conventional approaches, coupled with robust metric 

performance (δ₁: 91.9%, δ₂: 99.4%, δ₃: 99.8%, REL=0.089, 

RMSE=0.312). This integrated framework establishes a 

computationally efficient paradigm for multimodal damage 

characterization, providing critical insights for autonomous 

vehicle maintenance systems. 

 
Index Terms—Automotive Damage Analysis, Monocular 

Depth Estimation, YOLOv8, Attention Mechanism. 

 

I. INTRODUCTION 

HE proliferation of intelligent automotive systems has 

fundamentally reshaped the vehicle diagnostics 

paradigm, as the growing vehicle population necessitates 

enhanced diagnostic throughput. Conventional damage 

assessment protocols are typically performed through manual 

inspections by mechanics, involving sequential evaluations 

of structural components (e.g., bumpers, hoods, door panels, 

and load-bearing pillars) to identify surface defects such as 

scratches, dents, and perforations. This experience-driven 

methodology, while historically effective, increasingly fails 

to meet the precision and scalability requirements of 

next-generation intelligent transportation ecosystems. 

Contemporary deep learning frameworks have 

revolutionized automotive defect identification, superseding 

conventional approaches reliant on hand-engineered feature 
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descriptors. Sophisticated computational tasks, including 

object localization and pixel-wise semantic segmentation, are 

now achievable through end-to-end architectures that 

precisely delineate damage morphology and spatial 

distribution. However, prevailing architectures are 

predominantly characterized by network depth escalation and 

feature extractor optimization, while underrepresenting 

task-specific characteristics inherent to vehicular surface 

defect analysis. Furthermore, systematic investigation of 

composite damage patterns remains conspicuously absent in 

existing implementations. 

The paradigm shift towards intelligent transportation 

ecosystems necessitates next-generation vehicle damage 

analysis systems to integrate multifunctional detection 

capabilities, notably object localization and instance 

segmentation, while generating geometrically annotated 

metadata beyond basic defect identification. Critically, such 

systems should incorporate standardized interfaces for 

multimodal damage interpretation, enabling coordinated 

execution of integrated workflows encompassing defect 

detection, component-level segmentation, and structural 

integrity quantification. 

This study proposes a novel framework integrating 

YOLOv8-based monocular depth estimation with vehicle 

damage assessment, extending our prior architecture. Feature 

extraction capabilities were enhanced through a 

Heterogeneous Feature Single-Phase Booster (HFSPB) 

module, implemented through RepViT operators that 

optimize multi-dimensional feature discrimination. The 

transformed multi-scale data were subsequently encoded into 

hierarchical embeddings, systematically serialized as 

Transformer tokens, and processed through a Channel-wise 

Cross Fusion Block (CCFB) to establish cross-modal feature 

correlations. The architecture culminates in a depth 

estimation head incorporating deep interval attraction 

refinement, achieving enhanced computational efficiency 

while maintaining accuracy degradation compared to 

conventional approaches. Notably, this research pioneers the 

integration of instance segmentation and monocular depth 

estimation within a unified multi-task paradigm. The 

synergistic combination of complementary 3D depth data and 

2D segmentation matrices enables systematic damage 

characterization through three-dimensional geometric 

reconstruction and surface topology analysis, particularly 

critical for assessing collision-induced deformations. 

II. RELATED WORK 

The automotive damage assessment field has undergone a 

fundamental methodological evolution, progressing from 

conventional manual feature engineering to data-driven deep 
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learning architectures. This transformation has enabled the 

development of advanced computer vision tasks including 

object detection and semantic segmentation, which 

systematically identify structural deformations and surface 

anomalies through pixel-level pattern recognition. 

A. Deep Learning Methods 

Contemporary automotive damage assessment 

predominantly employs deep learning architectures, with 

object detection and semantic segmentation emerging as 

principal modalities for vehicular image analysis. Jiao[1] 

enhanced the Faster R-CNN framework through 

post-RoI-pooling integration of an Online Hard Example 

Minimization algorithm, enabling systematic identification 

of tire defects in X-ray radiographic data. Zhu et al.[2] 

implemented a dual-network architecture combining Faster 

R-CNN with generative adversarial networks for image 

quality augmentation, while upgrading the backbone from 

VGG16 to ResNet101 with Feature Pyramid Network 

integration to enhance semantic feature representation. 

Notably, Sun et al.[3] developed a non-local U-Net variant 

incorporating spatiotemporal dependency modules for 

bearing defect segmentation through cross-dimensional 

feature correlation. Parallel advancements by Tang et al.[4] 

leveraged HRNet-DeepLabv3+ hybrid architectures with 

multi-scale atrous spatial pyramid pooling, establishing 

hierarchical feature fusion mechanisms for wheel defect 

analysis. 

The YOLO architecture series has driven significant 

advancements in real-time automotive defect detection 

frameworks. Zhang et al.[5] proposed a YOLOv3-SPP 

variant incorporating spatial pyramid pooling (SPP) modules 

within the backbone network to synthesize multi-scale 

feature representations, enhancing recognition performance 

for nine distinct wheel region defect categories. In parallel 

developments, Lv[6] optimized the YOLOv5 architecture 

through integration of an Adaptive Structural Feature Fusion 

(ASFF) mechanism coupled with Convolutional Block 

Attention Module (CBAM) components, while implementing 

a ShuffleNetv2-based lightweight backbone, achieving 

efficient detection of glass surface anomalies including 

bubble formations and scratch patterns. 

B. EIS-YOLO 

Building upon our prior work[7], an enhanced instance 

segmentation framework (EIS-YOLO) was developed for 

automotive damage assessment, leveraging the YOLOv8 

architecture as diagrammed in Figure 1. The core innovation 

involved structural reconfiguration of the backbone network 

through replacement of conventional C2f modules with 

multi-scale Channel-Reduction Dense Block (CRDB) units, 

achieving 20.15% parameter reduction while enhancing 

multi-level feature fusion efficacy on the CarDD 

benchmark[8]. Notably, a High-Resolution Feature Pyramid 

Network (HRFPN) was implemented to preserve spatial 

granularity through persistent high-resolution branches, 

synergistically integrated with Attention Feature Fusion 

(AFF) and Bidirectional Attention Module (BiAM) 

components to strengthen cross-scale information 

propagation. The enhanced feature pyramid (E-FPN) 

architecture further optimized inter-layer connectivity 

through streamlined skip connections, complemented by a 

dedicated micro-damage detection head specifically 

engineered for small target recognition and edge delineation. 

Quantitative evaluation demonstrated respective 4.4% (PB) 

and 6.6% (PM) accuracy improvements over baseline models. 
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Fig. 1.  EIS-YOLO Structure Diagram 
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The acquisition of three-dimensional structural data is 

conventionally achieved through photogrammetric 

modalities including LiDAR, structured light illumination, 

Time-of-Flight(ToF) sensors, and structured stereo 

reconstruction systems. However, monocular depth 

estimation has emerged as the preferred methodology when 

considering cost-efficiency and operational versatility, 

despite constituting an ill-posed inverse problem where 

three-dimensional geometry must be reconstructed from 

two-dimensional projective measurements with inherent 

depth information loss. 

Traditional computational geometry approaches relied on 

perspective-n-point algorithms and hand-engineered feature 

descriptors, attempting depth recovery through geometric 

priors such as vanishing point convergence and projective 

size variation. Parallel methodologies exploited manual 

texture analysis using gradient operators, edge detection 

filters, and photometric stereo techniques to infer surface 

orientation. Nevertheless, these heuristic methods 

demonstrated limited reliability due to their dependence on 

scene-specific texture patterns and predefined object shape 

assumptions. 

The paradigm has fundamentally shifted with the advent of 

deep learning architectures, transitioning from manual 

feature engineering to data-driven end-to-end frameworks. 

Contemporary convolutional neural networks and vision 

transformers now enable robust depth prediction through 

hierarchical feature abstraction, achieving superior 

cross-domain generalization compared to conventional 

computer vision techniques while maintaining computational 

tractability. 

III. METHODS 

Traditional monocular depth estimation employs static 

depth bin discretization, formulating prediction as 

classification task through fixed interval quantization. This 

approach suffers from error propagation due to inappropriate 

bin configuration sensitivity. 

Our architecture introduces three key innovations: First, a 

dynamic bin allocation mechanism adaptively optimizes 

depth intervals during training, extending ZoeDepth's 

[9]attraction strategy. Second, the High-Frequency Spatial 

Pyramid Block (HFSPB) mitigates feature degradation 

through multi-scale spatial recalibration, addressing inherent 

signal attenuation in depth tasks. Third, the Cross-Channel 

Fusion Block (CCFB) integrates channel attention with 

dilated convolutions to establish cross-scale dependencies 

while preserving spatial coherence. 

The depth estimation head synergistically combines these 

components with gated skip connections from the backbone 

network, forming an integrated multi-task framework for 

vehicular damage analysis as detailed in Figure 2. 

Subsequent sections delineate each module's operational 

mechanics and topological integration. 

A. Depth Interval Attraction Refinement Strategy 

The primary objective of the Metric Bin Module is to 

categorize depth values into a defined set of depth bins. Each 

bin is associated with a defined depth range, and the model 

forecasts a pixel's depth by evaluating the probability 

distribution over these bins. This approach enhances 

prediction accuracy and improves the management of 

uncertainty in depth estimation. The module initiates by 

establishing the boundaries of depth bins, with the depth 

range from Dmin to Dmax divided into k equally spaced bins. 

The limits of each bin can therefore be established as: 
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Fig. 2.  Multi-task Large Model for Vehicle Exterior Damage 
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The equation 2 defines the depth span of each bin, with the 

depth range for the i-th depth bin expressed as [bi,bi+1]. For 

each pixel in the input image, the model predicts a probability 

distribution for each depth bin via the Metric Bin Module. Let 

the probability distribution for this pixel point be represented 

as P=[p1, p2, …, pK], where the Equation 3 must hold true.  
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Subsequently, the anticipated depth value of the pixel point 

can be calculated using the predicted probability distribution, 

which serves as the final depth estimation value. The formula 

for calculation is as follows: 
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The representative depth value of the i-th depth bin, 

denoted as di, is conventionally defined as the midpoint of the 

fixed bin, expressed mathematically as Equation 5.  

The distinction in the depth interval attraction refinement 

strategy is found in the formulation of an adaptive attraction 

algorithm that progressively modifies the bin intervals to the 

left or right within the depth interval. Multi-scale features are 

employed to predict a set of points on the depth interval that 

will attract the bin center. The formula for the adjustment 

range of attraction is presented as follows: 
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In this context, Ci represents the original center point, 

while the hyperparameters α  and γ dictate the strength of 

the attractor. Figure 3 illustrates the comprehensive structure 

of the Metric Bin Module. 

B. HFSPB 

A Heterogeneous Feature Single-Phase Booster (HFSPB) 

is proposed to augment high-dimensional feature extraction 

capacity, drawing inspiration from transformer architectures. 

This enhancement is particularly critical for monocular depth 

estimation tasks where intricate feature discrimination is 

paramount. Specifically, the HFSPB module amplifies 

feature discriminability in lightweight backbone networks 

through multi-scale receptive field expansion and 

cross-channel attention mechanisms, analogous to signal 

amplification processes in electrical systems. 
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Fig. 4.  Heterogeneous Feature Single-phase Booster 
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This module utilizes multi-scale feature information to 

enhance the network's feature extraction capabilities by 

incorporating the 2x, 4x, 8x, 16x, and 32x downsampled 

feature maps from the EIS-YOLO backbone, as well as the 

32x maps following SPPF pyramid pooling. The Booster 

Block processes these through multiple rounds of feature 

extraction, with N established at 12 in our experiments. The 

Booster Block functions as a layer for feature extraction. 

Following an evaluation of multiple architectures, including 

ResNet[10], EfficientNet v2[11], FastViT[12], and 

EfficientFormer[13], RepViT[14] was selected for the 

Booster Block. The enhanced data subsequently passes 

through a Channel-wise Cross Fusion Block, modeled after 

UCTransNet[15], which integrates multi-scale data into 

transformer-format tokens and processes them using a 

channel-wise cross fusion transformer. This utilizes the 

capacity of transformers to capture long-range dependencies, 

thereby improving depth feature information across various 

scales. The output tokens undergo refinement via an attention 

module to enhance their feature representation. The 

multi-scale feature maps are concatenated with upsampled 

maps and input into the subsequent depth estimation head. 

C. CCFB 

The Channel-wise Cross Fusion Block, illustrated in 

Figure 4, enables the adaptive integration of multi-scale 

features from the Booster and the depth estimation head, 

thereby reducing noise and improving the retention of 

relevant information. This module consists of two 

components: the Channel-wise Cross Fusion Transformer 

(CCFT) and the Efficient Multiscale Attention (EMA). In 

contrast to UCTransNet, we utilize a singular CCFT 

operation. Our findings indicate that the presence of multiple 

Booster feature extraction layers in earlier stages renders 

additional CCFTs unnecessary, thereby increasing 

computational load without enhancing depth estimation 

accuracy. Additionally, we have implemented EMA[16], 

which, in contrast to the simpler CCFA attention of 

UCTransNet, mitigates the effects of dimensionality 

reduction during convolution and promotes a more uniform 

distribution of spatial semantic features, thus enhancing 

feature extraction capabilities. 

The Multi-head Cross-Attention mechanism distinguishes 

itself from the traditional self-attention approach by 

functioning along the channel dimension instead of utilizing 

patches. Additionally, it incorporates instance normalization, 

which normalizes the similarity matrix for each instance 

within the similarity graph, thereby facilitating smooth 

gradient propagation. Consequently, with N attention heads, 

the output computation is performed as outlined in Equation 

8. Following the application of a basic MLP and a residual 

operator, the output is derived according to Equation 9: 
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The EMA reorganizes channels within the batch 

dimension, segmenting the channel space into multiple 

sub-features to enhance spatial semantic distribution and 

optimize feature extraction. In addition to encoding global 

information to optimize channel weights in parallel branches, 

EMA integrates the outputs of these branches through 

cross-dimensional interactions, thereby enhancing the 

precision of pixel-level relationships. The implementation of 

EMA attention enhances the extraction of essential pixel 

information for depth estimation tasks. 

IV. EXPERIMENTAL DESIGN AND IMPLEMENTATION 

A. Dataset Introduction 

Due to the limited availability of datasets for estimating 

automotive damage depth, we trained our monocular depth 

estimation model using a large public dataset. The NYU 

Depth v2 dataset[17], developed by researchers at New York 

University with a Microsoft Kinect RGB and depth camera, 

includes 1449 pairs of densely annotated RGB images and 

their corresponding aligned depth images. The dataset 

encompasses over 1000 categories, featuring 464 new indoor 

scenes from three cities, 26 distinct scene types, and a total of 

407,024 unmarked images, with each object categorized and 

assigned an instance number. 

B. Experimental Setup 

Experiments were conducted on an Ubuntu 20.04 cloud 

server, employing a Python 3.8 development environment 

alongside PyTorch 2.0.0 and CUDA 11.8. The computations 

were powered by the RTX 3090 GPU. We established 300 

epochs for training, utilized a batch size of 16, and 

implemented Mosaic data augmentation, which was disabled 

during the final 10 training rounds. The input image 

dimensions were established at (640, 640), the optimizer 

utilized was AdamW, and the initial learning rate was set to 

0.01. 

In the training for depth estimation, all instance 

segmentation-specific layers following the Backbone were 

frozen, thereby training and immobilizing the complete 

instance segmentation task. This maintained stability in the 

instance segmentation task throughout the depth estimation 

training process. 

C. Comparative Experiments 

This research assessed the effects of different 

improvements in the monocular depth estimation component 

utilizing the NYU Depth v2 dataset. The branch integrated an 

HFSPB into the backbone to enhance feature extraction 

through an additional booster layer. The CCFB module in the 

booster enabled feature fusion and integration with the 

decoder, utilizing multi-scale data. 

We evaluated various prominent lightweight backbone 

architectures utilizing convolutional neural networks and 

Vision Transformers for the Booster network selection. The 

findings are presented in Table Ⅰ. 

Among lightweight networks, Vision Transformers (ViT) 
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demonstrate superior performance compared to 

convolution-based models in depth estimation tasks, 

underscoring the necessity for effective feature extraction 

capabilities. Our experiments demonstrate that RepViT 

performs exceptionally in depth feature extraction, attaining 

δ metrics of 91.9%, 99.4%, and 99.8%, alongside the lowest 

REL and RMSE values. 

In comparing our monocular depth estimation branch to 

prior models, as illustrated in Table Ⅱ, our analysis reveals 

that although our ViT-based model exhibits a marginally 

slower inference time than the convolution-based BTS[18], it 

demonstrates a substantial improvement in depth estimation 

accuracy. In comparison to other ViT-based models such as 

AdaBins[19], LocalBins[20], and NeWCRFs[21], our 

method demonstrates both improved speed and marginally 

enhanced accuracy. In conclusion, while our model exhibits 

slightly lower accuracy than ZoeDepth, it offers an inference 

speed that is nearly three times faster, rendering it suitable for 

the lightweight and real-time requirements of automotive 

damage analysis. 

D. Ablation Experiments 

We conducted ablation experiments on the model to verify 

the effectiveness of our improvements, with results presented 

in Table Ⅲ. 

Directly appending a depth estimation head to the 

backbone resulted in suboptimal outcomes due to insufficient 

feature extraction, thereby undermining the accuracy of 

depth estimation. However, the addition of a Booster 

substantially enhanced feature extraction, leading to 

improved experimental outcomes and corroborating prior 

findings. The incorporation of the CCFB module improved 

the model's capacity to identify multi-scale key features, 

leading to a 5 percentage point increase in the δ metric. 

Transitioning from CCFA attention to EMA attention 

improved the outcomes, demonstrating the efficacy of the 

enhancements. 
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Fig. 5.  Specification of CCFB 

 

 

 

TABLE I.  Experimental Results of Lightweight Feature Extraction Networks in Booster 

 

Booster δ1 δ2 δ3 REL RMSE  log10 

CNN Based 

+ResNet50 0.861 0.983 0.993 0.128 0.432 0.051 

+MobileNet v2 0.821 0.965 0.989 0.154 0.531 0.059 

+GhostNet 0.843 0.975 0.991 0.14 0.516 0.053 

+FasterNet 0.869 0.985 0.996 0.127 0.407 0.049 

ViT Based 

+MobileViT 0.863 0.983 0.995 0.129 0.412 0.05 

+FastViT 0.881 0.985 0.997 0.109 0.341 0.041 

+EfficientFormer 0.907 0.993 0.997 0.096 0.321 0.039 

+RepViT 0.919 0.994 0.998 0.089 0.312 0.037 
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TABLE Ⅱ.  Comparative Experiments with Other Models 

 

Method δ1 δ2 δ3 REL RMSE  log10 Inference time/s 

BTS 0.883 0.977 0.994 0.112 0.392 0.048 6.2 

AdaBins 0.901 0.983 0.997 0.105 0.369 0.044 20.3 

LocalBins 0.903 0.986 0.998 0.102 0.358 0.042 20.5 

NeWCRFs 0.911 0.991 0.998 0.098 0.334 0.041 29.8 

ZoeD-X-N 0.946 0.995 0.999 0.082 0.294 0.035 33.2 

ours 0.919 0.994 0.998 0.089 0.312 0.037 11.1 

 

TABLE Ⅲ.  Ablation experiments 

 

Booster CCFT CCFA EMA δ1 δ2 δ3 REL RMSE  log10 

    0.722 0.942 0.981 0.191 0.693 0.067 

√    0.851 0.981 0.993 0.133 0.439 0.053 

√ √ √  0.903 0.994 0.998 0.107 0.326 0.041 

√ √   √ 0.919 0.994 0.998 0.089 0.312 0.037 
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Fig. 6.  Visual Contrast 

 

E. Experimental Results Visualization 

Our enhanced HFSPB structure, which incorporates a 

Booster layer with RepViT networks for improved feature 

extraction and a CCFB module for effective multi-scale 

feature integration, significantly enhances depth map 

visualization compared to the straightforward attachment of 

the ZoeDepth depth estimation head to the backbone, as 

demonstrated in the comparative Figure 6. 

The refined depth head outputs exhibit enhanced depth 

information across various car details, demonstrating 

improved precision particularly at door frames, wheel hubs, 

and damage edges. This advancement facilitates more precise 

internal damage assessment, which is advantageous for 

subsequent damage analysis or efficient modeling processes. 

F. Exploration of Vehicle Damage Analysis 

Utilizing our multi-task model, we have accomplished 

instance segmentation for damage and obtained the 

corresponding depth data. This facilitates the integration of 

data with the previously mentioned sources, allowing for a 

systematic analysis of automotive accident damage. This is 

essential for intricate activities such as vehicle testing, 

insurance services, and accident scene reconstruction. 

Although a multi-task automotive damage dataset is absent, 

our algorithmic design enables sophisticated damage 

analysis. 

 

 

 

Fig. 7.  Examples of window damage 
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Traditional models for window damage primarily focus on 

segmenting the damaged areas to identify issues, which is 

inadequate for comprehensive analysis. With 3D information, 

it is possible to distinguish between a crack and penetration, 

evaluate the proportion of the damaged area relative to the 

component, and determine the shape of the damage. 

Window damage typically impacts the front windshield, 

side windows, and rear windshield. Damage generally 

advances from cracks to shattering and subsequently to 

breaking. Instance segmentation is capable of detecting 

damaged windows; however, it is unable to perform 

assessments regarding their condition. Depth maps convey 

this information via variations in depth intervals, as 

illustrated in Figure 7. This highlights the significance of 3D 

data in the analysis of automotive damage. 

Initially, we input images of the damaged car into a 

multi-task model for specific operations. This model 

provides precise instance segmentation of the car's damaged 

areas, producing contours and positional data for each 

affected region. Simultaneously, it produces depth maps that 

represent the depth information of each pixel, facilitating the 

comprehension of the three-dimensional structure of the 

damage. Using instance segmentation results, we isolate the 

window glass components from the depth map, a critical step 

that focuses the analysis on the specific window glass area 

while excluding irrelevant regions. Subsequently, we utilize 

image processing algorithms to analyze the depth map, 

focusing on pixel depth information to detect anomalies 

within the window. By calculating the maximum and 

minimum depths of the window area and comparing the 

difference, one can infer the presence of a hole if the 

difference exceeds a predetermined threshold. Based on this 

inference, subsequent image processing utilizing a region 

growing algorithm delineates potential hole areas on the 

depth map. This method determines the presence of a hole 

and accurately delineates its shape and size, enabling the 

calculation of the damage proportion. Figure 8 illustrates the 

entire process. We successfully calculate the window hole 

rate and determine the shape of the hole. 

V. CONCLUSION 

This study utilizes the YOLOv8 benchmark and extends 

previous research to create a monocular depth estimation 

branch for analyzing automotive damage. The depth 

estimation head employs a dynamic strategy for adjusting 

depth ranges, thereby enhancing the accuracy of depth 

predictions. We propose the incorporation of an HFSPB 

feature extraction module between the depth head and the 

backbone network to facilitate the integration of instance 

segmentation with depth estimation. This module 

incorporates a Booster layer utilizing RepViT and a CCFB 

module with CCFT and EMA, thereby improving multi-scale 

feature extraction and enhancing the accuracy of depth 

prediction. The model attains δ metrics of 91.9%, 99.4%, and 

99.8%, demonstrating minimal relative error (REL) and root 

mean square error (RMSE). Our model provides faster 

inference, reduced computational costs, and improved edge 

deployment capabilities compared to existing models, 

effectively addressing the requirements of automotive 

damage analysis. 

Our multi-task approach to automotive damage analysis 

has revealed deeper insights and methodologies for specific 

damages, providing a foundation for future end-to-end 

solutions in this area. 
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Fig. 8.  Comprehensive analytical flowchart for vehicular window impairment 
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