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Abstract—To tackle the challenges associated with complex
backgrounds, low-resolution images, and similar crack features
that lead to missed detections, false positives, and low accuracy
in pavement defect detection, we propose an enhanced pavement
defect detection model named SDC-YOLO, which builds upon
YOLOv8. Specifically, in the backbone and neck components,
we replaced conventional convolution layers with SPDconv, an
innovative approach that combines spatial-to-depth layers with
non-strided convolution layers, thereby enhancing the model’s
capability to extract small-scale features. Additionally, in the
neck component, we incorporated the lightweight dynamic
upsampling module (Dysample) as a replacement for conven-
tional upsampling techniques, enriching feature details while
reducing computational overhead. Furthermore, we developed
the efficient CSC2f module to minimize redundant features,
enhance multi-scale feature extraction and fusion capabilities,
and reduce the parameter count and computational load. On
the RDD2022 dataset, compared to the baseline model, the
mAP@0.5 of SDC-YOLO has increased by 2.3%, while the
number of parameters and FLOPs has seen a slight rise.
The model consistently outperforms other algorithms, thereby
providing robust validation of its effectiveness and superiority.

Index Terms—road defect detection, YOLOv8, upsampling,
multi-scale features

I. INTRODUCTION

ROADS , as a critical component of modern infrastruc-
ture, play an indispensable role in supporting national

economic and social development. They are also essential for
enhancing the quality of life and promoting balanced regional
growth [1]. The causes of road defects are multifaceted:
natural factors such as temperature variations, freeze-thaw
cycles, precipitation-induced erosion, and geological move-
ments can all contribute to road degradation; human factors
include overloaded vehicles, poor driving practices, and
inadequate maintenance; additionally, substandard materials
or flawed design and construction processes are significant
contributors to road damage [2]. Road deterioration can
have substantial negative impacts on traffic efficiency, ve-
hicle performance, socio-economic development, and public
safety. Consequently, timely and effective road maintenance
and repair are essential for maintaining uninterrupted traffic
flow, reducing operational costs, and safeguarding public
safety. With the ongoing progress in technology, road defect
detection techniques have become increasingly important in
the maintenance and management of modern transportation
infrastructure [3].
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The essential role of pavement defect detection technology
is to detect and assess different kinds of pavement issues,
including cracks, potholes, and rutting, which in turn fa-
cilitates prompt maintenance actions. Advanced detection
methods facilitate early-stage identification of issues, thus
preventing road conditions from deteriorating to the point
where extensive renovations are required. As a result, this
method not only greatly enhances the lifespan of roads but
also considerably cuts down on maintenance expenses in the
long term. In contrast, traditional pavement defect detection
methods primarily rely on manual visual inspections and
simple measurement tools, which are labor-intensive, time-
consuming, and inefficient. Moreover, the accuracy of detec-
tion results can be significantly influenced by the experience
and subjective judgment of the operators, potentially leading
to oversight or misassessment of defects [4]. Automated
pavement defect detection technology leverages advanced
sensors and image processing software [5], achieving sub-
stantial improvements in detection efficiency and accuracy.
However, it also faces several limitations, including high
equipment costs, suboptimal performance in complex envi-
ronments, and stringent requirements for technical expertise.
These factors have constrained its widespread adoption in
practical applications. As a result, algorithms for detecting
pavement defects based on deep learning have become a
potential solution to tackle these challenges.

From the early 21st century onward, object detection
algorithms utilizing deep learning have made remarkable
progress and have been widely applied in numerous fields
[6]. As deep learning technology continues to advance,
object detection algorithms have been divided into two main
categories: one-stage and two-stage approaches. These two
categories differ in their detection modes, processing speeds,
and accuracy levels. Representative two-stage algorithms
include Faster R-CNN [7], Mask R-CNN [8], and R-FCN
[9]. Liang et al. [10] developed a Faster R-CNN-based
method capable of automatically identifying and precisely
locating defects such as cracks, potholes, oil stains, and
spots on road surfaces. Through comprehensive analysis and
rigorous training, they refined an optimized Faster R-CNN
model, which was validated for its accuracy and effectiveness
through data comparison and experimental evaluations.

While two-stage algorithms provide greater accuracy, they
compromise on speed and simplicity, which makes them less
ideal for real-time applications and scenarios with limited
resources. On the other hand, one-stage algorithms, such
as SSD [11], RetinaNet [12], and YOLO [13], are widely
adopted in high-real-time and resource-limited environments
due to their efficiency and practicality. Among these, the
YOLO series algorithms have demonstrated significant ap-
plication potential across various fields, attributed to their
rapid detection capabilities and excellent accuracy. Du et al.
[14] proposed a pavement defect detection and classification
strategy based on the YOLO network, addressing challenges
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in pavement defect detection. This approach employs the
YOLO network’s object detection framework to forecast the
positions and types of possible defects. Jiang et al. [15]
designed a new road crack detection algorithm by combining
the Transformer architecture with an explicit visual center,
enabling it to capture long-range dependencies and integrate
essential features. Despite improvements in detection per-
formance, issues such as missed detections, false positives,
and suboptimal multi-scale feature fusion, particularly in
recognizing small cracks, still persist. Han et al. [16] pre-
sented an enhanced pavement defect recognition algorithm
called MS-YOLOv8. This algorithm refines the YOLOv8
model through the integration of three innovative mech-
anisms, which improve detection precision and suitability
for various pavement conditions. Sun et al. [17] introduced
an enhanced YOLOv8 algorithm, where the conventional
convolutions in the network backbone are substituted with
a module consisting of spatial-to-depth layers and non-
strided convolution layers. This modification enhances the
detection of small road defects. Additionally, this algorithm
enhances multi-scale feature extraction by fully fusing spatial
and scale features using the ASF-YOLO neck. Wang et al.
[18] designed an improved road defect detection algorithm
named BL-YOLOv8. This algorithm incorporates the BiFPN
concept to restructure the neck and adopts the SimSPPF
module to lower the number of parameters and computa-
tional requirements, thereby enhancing processing efficiency.
Moreover, the incorporation of a dynamic large convolutional
kernel attention mechanism enlarges the model’s receptive
field, which improves the precision of target detection. These
enhancements are designed to boost the accuracy of detecting
pavement defects while maintaining real-time performance.
Nevertheless, issues like missed detections, false positives,
and the requirement for further enhancement of multi-scale
feature fusion, particularly for small cracks, continue to
remain.

To address the challenges in pavement defect detection,
this paper selects YOLOv8 from the YOLO series as the
foundational algorithm for research. Among the five variants,
YOLOv8s offers a relatively balanced compromise between
speed and accuracy. Nonetheless, there remains potential
for enhancing its detection precision [19]. Thus, this paper
concentrates on refining the YOLOv8s variant to enhance its
detection accuracy. As a result, we introduce an enhanced
pavement defect detection algorithm based on YOLOv8s,
referred to as SDC-YOLO. The primary contributions of this
paper are outlined as follows:

1. Introduction of SPDconv: We replace conventional
convolution layers with SPDconv, which integrates spatial-
to-depth layers and non-strided convolution layers, thereby
minimizing the loss of fine-grained information and enhanc-
ing the extraction of small-scale features.

2. Application of a Lightweight Dynamic Upsampling Op-
erator: This operator optimizes the upsampling process in the
Neck component, thereby reducing the loss of fine-grained
details in low-resolution images, enriching feature details,
effectively capturing context information, and decreasing the
number of parameters and computational burden.

3. Proposal of an Efficient CSC2f Module: This module
minimizes redundant features, enhances multi-scale feature
fusion capabilities, and significantly reduces computational

overhead. By optimizing these aspects, the CSC2f module
improves overall detection performance while maintaining
efficiency.

The rest of this paper is structured as follows. Section 2
provides a review of the related works. Section 3 presents a
detailed description of the proposed SDC-YOLO algorithm.
Section 4 outlines the experimental setup and methodology.
Finally, Section 5 presents the findings and conclusions.

II. RELATED WORK

YOLOv8 carries forward the fundamental concept from
the YOLOv5 series, treating object detection as a regres-
sion problem. This approach allows for efficient end-to-
end detection. The network architecture mainly consists of
three key components: Backbone, Neck, and Head. In the
Backbone and Neck sections, YOLOv8 incorporates the
ELAN design concept introduced in YOLOv7. It replaces the
C3 structure of YOLOv5 with the C2f structure to promote
a richer gradient flow. Moreover, the number of channels is
dynamically adjusted based on different model scales [20].

The backbone network plays a role in extracting features
from the input image and acts as the core foundation of
the entire architecture. In YOLOv8, the backbone adopts
a deeper and wider convolutional layer design to enhance
feature representation capabilities. Positioned between the
backbone and the detection head, the neck network utilizes
the PAN-FPN (Path Aggregation Network - Feature Pyramid
Network) structure to enable information exchange among
multi-scale feature maps. This improves the integration of
contextual information across different scales. The enriched
information flow allows the model to capture target features
more efficiently, thereby enhancing overall detection perfor-
mance.

In contrast to YOLOv5, YOLOv8 incorporates two major
enhancements in the head structure. First, it employs a
decoupled head architecture that divides the classification
and regression tasks while eliminating the objectness branch.
Second, it shifts from a method that relies on anchors to one
that is anchor-free. These modifications aim to simplify the
model architecture, improve localization accuracy, enhance
generalization capability, accelerate the training process, and
boost deployment efficiency. As a result, these enhancements
enable YOLOv8 to achieve superior performance in road
defect detection tasks, particularly in scenarios requiring
rapid and precise identification.

YOLOv8 employs the Task-Aligned Assigner based on
the Best Online Sample (TOOD) for positive and negative
sample matching. The Task-Aligned method implements a
sophisticated fusion of classification scores and IoU, evalu-
ating the consistency of tasks and precisely measuring the
alignment extent at the anchor level for every individual
instance. The loss computation consists of two key elements:
classification and regression. For classification, Binary Cross-
Entropy (BCE) loss is used to discriminate between cate-
gories and output confidence scores. To accommodate the
anchor-free mode and enhance model generalization, the
regression task adopts Dual-Focal Loss (DFL). DFL utilizes
cross-entropy to optimize the probabilities of the two posi-
tions nearest to the label, allowing the network to concentrate
more efficiently on the distribution of the target location and
its neighboring regions. Additionally, Complete Intersection
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over Union (CIoU) loss is utilized. CIoU, an advanced
loss function in object detection, evaluates bounding box
similarity by incorporating center point distance and aspect
ratio differences based on IoU. By considering the location,
scale, and geometry of bounding boxes, CIoU improves the
precision of the model’s regression performance.

III. IMPROVED MODEL

A. SDC-YOLO

In order to tackle the issues of false alarms, missed detec-
tions, and low accuracy in road defect detection tasks while
meeting real-time requirements, YOLOv8s was selected as
the base model. Improvements were implemented in both the
backbone and neck sections to enhance overall performance.
The improved SDC-YOLO structure is illustrated in Figure
1. Firstly, conventional convolution layers were replaced
with SPDconv, which integrates spatial-to-depth layers and
non-strided convolution layers. This modification effectively
captures fine-grained features, minimizes information loss,
and enhances the detection capability for small-sized cracks.
Secondly, an enhanced upsampling operator was introduced
to minimize the loss of low-resolution image information,
enrich feature details, and effectively capture contextual
information. This operator also reduces the number of param-
eters and alleviates computational burden.Finally, an efficient
CSC2f module was proposed to eliminate redundant fea-
tures, enhance feature representation capabilities, and simul-
taneously reduce computational costs. These enhancements
collectively result in the outstanding performance of SDC-
YOLO in detecting road defects.

B. SPDconv moudle

Convolution is a fundamental building block in construct-
ing YOLOv8, serving key functions such as feature extrac-
tion, feature fusion, and dimensionality adjustment of input
features. In object detection tasks, traditional convolutions
generally perform well for high-resolution images and large
target objects. However, their effectiveness diminishes when
applied to small-sized targets and low-resolution images.
In the context of road defect detection, image resolution
is often suboptimal, and the road background is complex,
which can interfere with crack detection. Cracks exhibit
significant irregularity in size and shape, with some being
extremely fine. During the learning process, small cracks
may be overshadowed by larger cracks, leading to missed
detections. In these particular circumstances, conventional
convolutions are prone to losing detailed information, which
impedes the model’s capacity to fully extract and learn the
pertinent features.

In order to tackle the limitations of conventional convo-
lution in road defect detection tasks, we introduce SPD-
conv [21] to replace certain traditional convolution layers.
This replacement is intended to avoid information loss and
strengthen the network’s capability to extract small-scale
features. SPDconv is an innovative spatial encoding method
that improves the performance of models by efficiently
processing image data. It comprises two key components: a
spatial-to-depth layer and a non-strided convolutional layer.

The spatial-to-depth layer transforms the spatial dimen-
sions of the feature map into the depth dimension, thereby

increasing the number of channels to preserve more detailed
information. The subsequent non-strided convolutional layer
maintains the spatial resolution while reducing the number of
channels, ensuring that fine-grained features are retained. By
integrating these components, SPDconv effectively mitigates
information loss and enables the network to capture more
refined features, thereby enhancing performance in road
defect detection tasks. We will provide a detailed illustration
of this mechanism through specific examples below.

Assume that there exists a feature map X with dimensions
L × L × C1. Sub-feature maps are extracted from X using
a stride of S, where S denotes the step size for segmentation:

f0,0=X[0 :L :s,0 :L :s], f1,0=X[1 :L :s,0 :L :s], . . . ,

fs−1,0 = X[s− 1 :L :s,0 :L :s];

f0,1=X[0 :L :s,1 :L :s],f1,1=X[1 :L :s,1 :L :s], . . . ,

fs−1,1 = X[s− 1 :L :s,1 :L :s];

. . .

f0,s−1=X[0 :L :s,s− 1 :L :s], f1,s−1, . . . ,

fs−1,s−1 = X[s− 1 :L :s,s− 1 :L :s]

(1)

Where fx,y consists of all elements X(i,j) that satisfy the
condition ”both i+x and j+y are divisible by L”. For each
subgraph, the feature map X is downsampled by a factor of
s. Specifically, when s = 2, downsampling X results in four
subgraphs: f0,0, f1,0, f0,1, and f1,1, each with dimensions
(L/2, L/2, C1). These four subgraphs are then combined
along the channel dimension and subjected to an element-
wise addition operation, yielding a new feature map with 4C1

channels and spatial dimensions reduced by half. Following
the spatial-to-depth transformation, a convolutional layer
with no stride conducts a convolution operation using a
stride of 1. This process reduces the number of channels
to C2 while preserving the spatial resolution at half the
original size. The primary rationale for selecting non-strided
convolution is to retain the maximum amount of distinctive
feature information. Conversely, using a 3 × 3 filter with a
stride set to 2 or 3 would result in significant loss of critical
feature details during the downsampling procedure.

C. Dysample module
The upsampling operator refers to a set of operations

aimed at recovering the spatial resolution of feature maps. Its
main objective is to transform low-resolution feature maps
into high-resolution ones, enabling more effective capture
and representation of detailed information. In the YOLOv8
model, the upsampling process employs the nearest neighbor
interpolation (Nearest Neighbor Upsampling) technique. This
method increases the size of the feature map by selecting the
pixel value closest to the target pixel, thereby improving its
spatial resolution.

In the context of road surface defect detection, cracks
exhibit irregular sizes and shapes; some may be extremely
small or have complex geometries, making accurate detection
challenging for the model. Traditional upsampling methods
often result in images that have irregular edges or appear
blurry, which can lead to the loss of critical detail information
and weaken the model’s ability to detect features effectively.

To address these limitations, we introduce the Dysample
operator, which enhances the upsampling process while
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Fig. 2: The structure of the SPDconv module

enriching feature representation. Dysample adaptively selects
the optimal upsampling strategy, effectively preserving key
details. This approach not only reduces computational re-
source consumption but also improves the model’s accuracy
in detecting small-sized targets.

Dysample is a lightweight dynamic upsampling operator
that can not only efficiently capture fine-grained details but
also produce more precise high-resolution feature maps,
thereby significantly improving the overall performance of
the model [22]. Compared to other upsampling methods,
Dysample achieves higher accuracy while significantly re-
ducing computational costs.

The detailed procedure for Dysample’s upsampling op-
eration is as follows: Initially, the input feature map is
processed by a sampling point generator to produce a set of
sampling points. Subsequently, grid sampling is applied to
re-sample the feature map based on the positions specified
in the sampling set, resulting in a high-resolution feature
map. This process ensures that critical details are preserved
during upsampling, leading to improved detection accuracy.
The sampling method employed by Dysample is illustrated
in Figure 3.

For a feature map M with dimensions C×H×W and an
upsampling scale factor α, a linear transformation is utilized,
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with the input channel size being C and the output channel
size configured as 2α2. This is followed by pixel shuffling to
generate an offset O of size 2×αH×αW . The original grid
G is then added to the offset O to obtain the final sampling
set S, as described by the following formula:

O = 0.25 linear (X),

S = G+O
(2)

Herein, 0.25 is the range factor, which restricts the offset
range of the sampling positions to alleviate their overlap.
Finally, the original feature M and the sampling set S
generate a new feature M ′ through grid sampling, and the
formulation is as follows:

D. CSC2f module

The C2f module plays a key role in the YOLOv8 network
model, functioning as a convolutional neural network (CNN)
module with residual connections. Its primary role is to
perform feature extraction and fusion. The efficiency and
effectiveness of the C2f module play a significant role in
shaping the overall performance of the YOLOv8 model.
Road surface cracks are often small, irregularly shaped, and
embedded in complex backgrounds, further complicated by
external factors such as weather and lighting conditions.
These characteristics pose significant challenges for the
C2f module, potentially leading to the capture of excessive
irrelevant information, resulting in feature redundancy and
degraded model performance.

In order to tackle these limitations, we introduce the
CSC2f module, illustrated in Figure 4. This module op-
timizes the C2f module by incorporating the Spatial and
Channel Reconfigurable Convolution Block (SCCB), which
replaces the original Bottleneck structure. The core inno-
vation lies in the introduction of the spatial and channel
reconfigurable convolution (SCConv) [23]. The distinctive
architecture and algorithm of SCConv improve the model’s
capacity to extract and process complex feature information
with greater efficiency.

Additionally, SCConv optimizes the utilization of com-
putational resources, thereby improving both the model’s
performance and operational efficiency. This improvement
offers substantial assistance for the model’s successful op-
eration in identifying road defects, ensuring better accuracy
and reliability in challenging environments.

SCConv is an efficient convolutional module designed to
minimize spatial and channel redundancies within convolu-
tional neural networks (CNNs). Its primary objective is to
minimize computational resources and enhance performance
by optimizing the feature extraction process.

The SCConv module consists of a Spatial Reconstruction
Unit (SRU) and a Channel Reconstruction Unit (CRU).
The SRU mitigates spatial redundancy through a sepa-
ration and reconstruction approach, effectively preserving
critical spatial information. Meanwhile, the CRU employs
a segmentation-transformation-fusion strategy to alleviate
channel redundancy, ensuring that only the most relevant
features are retained. The specific structure of these units
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is depicted in Figure 5. By integrating these innovative com-
ponents, SCConv not only reduces computational overhead
but also improves the model’s ability to capture and process
complex feature information accurately.

Given an input feature X ∈ RC×H×W , where C denotes
the number of channels, H represents the height, and W
indicates the width, the input first passes through the SRU.
In the SRU, X undergoes group normalization to reduce
scale differences among different feature maps. The formula
for calculating the normalization-related weights is provided
in Figure 5, where γ is a trainable parameter that reflects
variations in spatial information. By applying a series of
weights to the features, mapping them through a Sigmoid
activation function, and setting a threshold, the method
distinguishes between information weights W1 and non-
information weights W2. The specific formula is as follows:

W = Threshold (Sigmoid (Wγ(GN(X))) ) (3)

Subsequently, the initial feature X is multiplied element-wise
by W1 and W2 to obtain Xw

1 , which contains a higher infor-
mation content, and Xw

2 , which contains a lower information
content. Xw

2 is typically considered redundant information.
To decrease spatial redundancy, a reconstruction process is
performed by adding the information-rich feature Xw

1 and
the information-dense feature Xw

2 in a cross-reconstruction
manner. The reconstructed features Xw1 and Xw2 are then
concatenated to form the final feature X , which has had
spatial redundancy removed. The specific process is detailed
as follows:

Xw
1 = W1 ×X,

Xw
2 = W2 ×X,

Xw
11 +Xw

22 = Xw1,

Xw
21 +Xw

12 = Xw2,

Xw1 ∪Xw1 = Xw

(4)

Where ∪ denotes concatenation. Although feature Xw has re-
duced spatial redundancy, it still contains redundant features
in the channel dimension. Subsequently, the CRU performs
further operations on the refined feature Xw that has been
processed by the SRU. First, the channels of Xw are split into
αC channels and (1 − α)C channels, where α represents
the partition ratio and 0 ≤ α ≤ 1. In order to improve
computational efficiency, 1 × 1 convolution is utilized to
reduce the number of channels, while a compression ratio is
defined to regulate the channel count. After completing the
division and compression operations, feature Xw is split into
the left part Xl and the right part Xr. High-level information
is obtained from the feature-rich Xl through GWC and PWC,
which helps to decrease computational costs. The results of
these operations are then aggregated to produce the refined
feature Y1. The equation for the left transformation stage is
presented as follows:

Y1 = MGXl +MP1Xl (5)

In this context, MG and MP1 represent the trainable weight
matrices corresponding to GWC and PWC. During the right-
stage processing, a 1 × 1 PWC is utilized on the feature
Xr, and the result is then concatenated with the original
Xr, without introducing extra computational expenses. This

operation yields Y2, capturing shallow hidden detail features.
The equation for this procedure is presented below:

Y2 = Xr ∪MP2Xr (6)

In this context, MP2 represents the trainable weight matrix
for PWC, while ∪ signifies the concatenation operation.
After the exchange stage, Y

′

1 and Y
′

2 are merged through a
weighted summation by utilizing global average pooling and
SoftMax activation along the channel dimension, resulting
in the refined feature Y . Upon going through the CRU,
the refined feature Y further diminishes redundancy in the
channel dimension. The CRU effectively extracts informative
and distinctive features while keeping the computational cost
minimal.

IV. EXPERIMENT

A. Experimental Environment and Parameters

The experiment was carried out on a Windows 10 plat-
form, utilizing an Intel(R) Xeon(R) Silver 4210R CPU
and an NVIDIA GTX 3090 GPU equipped with 24GB of
video memory. The PyTorch framework was employed, using
CUDA 12.0 as the GPU accelerator and Python 3.8 for
programming. The input images were adjusted to a size of
640×640 pixels.

The training configuration included an initial learning rate
of 0.01, weight decay of 0.0005, a batch size of 64, and
momentum of 0.937. Training proceeded for 100 epochs,
during which all parameters remained constant. This setup
ensured consistent and reproducible experimental conditions.

B. Experimental Data Set

We utilized the RDD2022 dataset for our experiments,
which includes images from six distinct countries. The
dataset comprises a total of 47,420 images and covers
nine types of pavement defects: D00 (longitudinal cracks),
D01 (construction joint areas), D10 (transverse cracks),
D11 (construction joint areas), D20 (alligator cracks), D40
(potholes), D43 (blurred pedestrian crossings), D44 (blurred
white lines), and D50 (manhole covers).

Following the removal of unlabeled images, the remaining
images were split into training and validation sets in a ratio
of 8:2. In detail, the training dataset includes 20,911 images,
while the validation dataset contains 5,227 images. This
partitioning guarantees a well-balanced allocation of data for
both robust model training and effective evaluation.

C. Evaluation Measures

For assessing the overall performance of the SDC-YOLO
model, we adopted a wide range of metrics, including
mean Average Precision (mAP), Precision, Recall, number
of parameters (Params), Gigaflops (GFlops), and Frames Per
Second (FPS).

Precision indicates the ratio of true positive predictions
to all positive predictions, showcasing the accuracy of the
model’s positive classifications. Recall evaluates the model’s
capability to accurately identify all genuine positive in-
stances, reflecting its effectiveness in detecting true positives.
These two metrics provide insights into the model’s detection
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accuracy and coverage. The equations for precision and recall
are presented below:

P =
TP

FP + TP

R =
TP

TP + FN

(7)

Here, TP represents true positives, FP stands for false
positives, and FN indicates false negatives. The metric
mAP is utilized to assess the model’s average detection
performance across various categories. The formula for cal-
culating mAP is presented below:

mAP =
1

n

n∑
k=1

APk =
1

n

n∑
k=1

∫ 1

0

P (R)dR (8)

In these metrics, n indicates the number of classes, while
AP corresponds to the precision for a single class. Params

indicates the total amount of trainable parameters within the
model, FLOPs reflects the computational quantity necessary
for the model to carry out a single forward reasoning, and
FPS measures the number of samples that the model can
handle per second.

D. Visualization Analysis

To provide a clearer and more intuitive visualization of
SDC-YOLO’s detection performance, Figure 6 provides a
comparative evaluation of the detection outcomes achieved
by YOLOv8s and SDC-YOLO. The upper portion of Figure 6
displays the detection outcomes of the YOLOv8s algorithm,
while the lower portion illustrates the results obtained by the
SDC-YOLO algorithm.

By comparing these images, it is evident that the improved
SDC-YOLO model demonstrates enhanced detection accu-
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Fig. 6: Comparison of the detection results between YOLOv8s and SDC-YOLO

TABLE I: Ablation experiment

YOLOv8s SPDconv Dysample CSC2f P(%) R(%) mAP@0.5(%) Params(M ) FLOPs(G) FPS
√ 67.2 56.5 62.1 11.1 28.7 107
√ √ 64.8 60.4 62.9 13.3 31.3 100
√ √ 69.3 55.1 63.3 11.1 27.5 108
√ √ 63.1 58.7 63 10.5 27.4 112
√ √ √ 71.6 53.2 63.8 13.3 30.1 101
√ √ √ √ 75.1 56.5 64.4 12.7 29.2 105

racy and can identify targets that were previously undetected
by the original YOLOv8s model. Specifically, SDC-YOLO
significantly reduces missed detections of minor cracks and
improves overall detection precision. This enhancement is
particularly notable in complex road defect scenarios where
small and irregularly shaped cracks are common.In summary,
SDC-YOLO outperforms YOLOv8s by effectively address-
ing the limitations of the original model, thereby providing
more reliable and accurate detection results.

The overall performance of the proposed SDC-YOLO
model is assessed by means of the precision-recall (P-R)
curves of SDC-YOLO and YOLOv8s. For specific details,
please refer to Figure 7. An in-depth analysis of these P-
R curves reveals the performance trends of each model,
providing a more accurate reflection of their ability to
identify positive examples and offering robust support for
model evaluation and optimization.

Specifically, Figure 7(a) illustrates the P-R curve for
the YOLOv8s algorithm, while Figure 7(b) shows the P-
R curve for the SDC-YOLO algorithm. The thicker blue
curve represents the overall mAP@0.5, while the thinner

curves in different colors correspond to the mAP@0.5 for
individual categories. Notably, the mAP@0.5 for YOLOv8s
is 62.1%, compared to 64.4% for SDC-YOLO, representing
an improvement of 2.3%.

This enhancement highlights the improved efficiency of
the SDC-YOLO algorithm, especially in its capacity to
identify small and irregularly shaped road defects more
accurately. The rise in mAP@0.5 suggests that SDC-YOLO
attains greater accuracy while preserving an improved equi-
librium between precision and recall, thus enhancing its
reliability for real-world applications.

E. Ablation Study

The SDC-YOLO model is developed based on the
YOLOv8s architecture and integrates three primary optimiza-
tion strategies. To systematically evaluate the effectiveness of
each measure, an ablation study was conducted to compare
their individual and combined impacts on detection perfor-
mance. Table I summarizes the ablation results as follows:

1. In the baseline model, traditional convolutional layers
were replaced with SPDconv to enhance feature extraction
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Fig. 7: The P-R curves of YOLOv8s and SDC-YOLO

TABLE II: Performance comparison of mainstream algorithms

Model Name P(%) R(%) mAP@0.5(%) Params(M ) FLOPs(G) FPS
Faster R-CNN [7] 69.1 65.2 66.8 38.2 47.3 53
YOLO-LRDD[24] 61 57.8 59.5 19.8 17.4 87

YOLOv5s 58.4 55.6 57.2 9.1 23.8 95
YOLOv6s [25] 50.1 56 56.4 16 44 72

YOLOv7-tiny [26] 64.2 57.6 58.7 6.3 13.6 127
YOLOv8n 57.2 57.8 56.7 3 8.1 135
YOLOv8s 67.2 56.5 62.1 11.1 28.7 107

YOLOv9S [27] 69.5 53 62.7 7.1 26.2 113
YOLOv10s [28] 70.8 58.5 63.3 7 21.4 115

ours 75.1 56.5 64.4 12.7 29.2 105

capabilities.
2. The ordinary upsampling operator was replaced with

Dysample to enhance spatial resolution and better preserve
details.

3. The standard C2f module in the baseline model was
substituted with the CSC2f module to enhance feature fusion
and minimize redundancy.

4. Two of the aforementioned measures were combined in
the baseline model to evaluate their synergistic effects.

5. All three measures were jointly integrated into the
baseline model to assess their comprehensive impact on
overall performance.

As presented in Table I, the introduction of SPDconv
resulted in a 0.8% increase in mAP@0.5, allowing the
network to extract more detailed and nuanced features and
thereby enhancing detection accuracy. More specifically, the
integration of SPDconv enhanced the model’s capacity to
identify small and complex details, which in turn resulted in
improved overall performance.

By replacing the nearest-neighbor interpolation upsam-
pling operator with Dysample, mAP@0.5 increased by 1.2%,
while FLOPS decreased by 1.2G and FPS improved slightly.
This substitution not only boosted the model’s accuracy but
also significantly reduced computational overhead, making

the model more efficient.
Additionally, the CSC2f module contributed to a 0.9%

improvement in mAP@0.5, reduced the number of param-
eters by 0.6M, decreased FLOPs by 1.3G, and increased
FPS by 5 frames per second. These optimizations effectively
enhanced feature extraction, reduced resource consumption,
and improved overall performance.

When all three measures were integrated, it was observed
that the combination of Dysample and CSC2f mitigated the
increase in parameters and FLOPs while further improving
accuracy. In contrast to the original YOLOv8s model, SDC-
YOLO attained greater detection accuracy while preserving a
nearly identical detection speed. The experimental outcomes
clearly highlight the efficacy of the proposed enhancements.

F. Comparison with Other State-of-the-Art Object Detection
Algorithms

In order to confirm the superiority of the SDC-YOLO
algorithm over other state-of-the-art object detection models,
comparative experiments were carried out on the RDD2022
dataset. As shown in Table II, our SDC-YOLO model was
benchmarked against several advanced algorithms, includ-
ing Faster R-CNN [7], YOLO-LRDD [24] , YOLOv5s,
YOLOv6s [25], YOLOv7tiny [26], YOLOv8n, YOLOv8s,
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YOLOv9s [27], and YOLOv10s [28]. Using evaluation met-
rics such as mAP@0.5, Params, FLOPS, and FPS, we
performed a comprehensive and precise assessment of the
model’s performance.

Specifically, while some algorithms achieved higher
mAP@0.5 scores, our SDC-YOLO model demonstrated su-
perior performance in terms of computational efficiency,
featuring lower Params, reduced FLOPS, and improved FPS.
Notably, compared with YOLOv9s and YOLOv10s, our
model not only outperformed them in detection accuracy but
also achieved a well-balanced compromise between accuracy
and efficiency.

A holistic analysis of all indicators reveals that although
our model has slightly slower detection speed compared
to certain algorithms, it achieves a significant improvement
in accuracy. This highlights the efficacy and efficiency of
the proposed SDC-YOLO algorithm, rendering it especially
appropriate for real-world applications where both accuracy
and resource management are essential.

V. CONCLUSION

In order to tackle the problems of missed detections, false
alarms, and low accuracy in road defect detection tasks,
we introduce a new road defect detection model called
SDC-YOLO, which is built upon the YOLOv8 algorithm.
By incorporating SPDconv, the model significantly reduces
information loss during feature extraction and enhances its
capability to represent small-scale features. The lightweight
dynamic upsampling module not only improves upsampling
performance but also preserves critical details while reducing
computational overhead. Additionally, the CSC2f module
minimizes redundant features, optimizes the extraction pro-
cess, and lowers overall complexity. Comprehensive exper-
iments carried out on the RDD2022 dataset show that, in
comparison with other leading-edge algorithms, the SDC-
YOLO model attains higher performance with respect to
both accuracy and efficiency. Specifically, it outperforms
existing models in detecting small and intricate road defects,
while maintaining a balanced trade-off between precision and
resource utilization.The research presented in this paper not
only advances the development of pavement defect detec-
tion technology but also establishes a scalable framework
applicable to small target detection and real-time detection
tasks. This work holds significant practical value across
various domains, including intelligent transportation systems
and automated road maintenance.
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