

Abstract—In point cloud-based 3D object detection,

PointPillars encodes features into a pseudo-image by

partitioning the point cloud into voxels with unrestricted height

and subsequently extracting features using a 2D convolutional

architecture. This approach significantly enhances

computational efficiency. However, feature extraction occurs on

a per-voxel basis, which limits the receptive field and introduces

a bottleneck in detection accuracy. Furthermore, the Feature

Pyramid Network (FPN) employed in PointPillars results in

information loss during downsampling, particularly affecting

the detection of small objects.To address these limitations, we

propose a novel 3D object detection framework based on the

Transformer architecture. Specifically, we introduce a

Transformer Feature Encoding (TFE) module to encode voxel

features, thereby expanding the receptive field. Additionally, we

incorporate an FPN-based Dual Path Convolutional Network

(DPCN) as the backbone for feature extraction, effectively

mitigating detail loss during downsampling. Extensive

experimental evaluations demonstrate that our proposed

approach outperforms PointPillars and other voxel-based

methods, particularly in detecting small objects.

Index Terms—Autonomous vehicles, Point-cloud, 3D object

detection, Transformer, 2D convolution

I. INTRODUCTION

D object detection [1]−[3] enables autonomous

vehicles [4] to recognize and characterize obstacles,

making it a key technology in driverless driving and a focal

point of research. Among existing approaches, point

cloud-based 3D object detection has garnered significant

attention due to the unique advantages of LiDAR sensors.

Consequently, improving detection accuracy and

computational efficiency has become a major research focus.

Point-based methods [5]−[7] perform object detection by

clustering or segmenting the point cloud, extracting features

Manuscript received January 11, 2025; revised April 18, 2025.

This work was supported in part by the Shandong Province Major

Science and Technology Innovation Project under Grant 2023CXGC010111,

and in part by the Small and Medium-sized Enterprise Innovation Capability

Improvement Project under Grant 2022TSGC2277.

Zhibing Duan is a postgraduate student at the Shandong University of

Technology, Zibo, 255000 China (e-mail: zhibingduan6@gmail.com).

Jinju Shao is a professor at the Shandong University of Technology, Zibo,

255000 China (corresponding author to provide phone: 13589573050;

e-mail: sjjgbh@163.com).

Zhipeng Zhai is a postgraduate student at the Shandong University of

Technology, Zibo, 255000 China (e-mail: zhipengzhai31@gmail.com).

Jinlei Zhang is a senior engineer at the Shandong University of

Technology, Zibo, 255000 China (e-mail: hucuijuan@jaran.com.cn).

Lei Wang is a manager at Cestera Motor Co., Ltd., Zibo, 255000 China

(e-mail: wanglei@suntae.cn).

from the identified clusters or foreground points, and

mapping them back to 3D detection boxes. By directly

processing point cloud data, these methods effectively

preserve geometric details, leading to high detection accuracy.

However, as feature extraction is performed on a per-point

basis, these approaches struggle to meet real-time

requirements when processing large-scale point clouds.

Voxel-based methods [8]−[10] partition the 3D space into

structured grids, extracting feature representations at the

voxel level. These features are then processed using 3D

convolution [11], as seen in [8]−[9], or handcrafted feature

extraction techniques, as in [10], followed by a 2D

convolutional detection framework [12]. This transformation

of unordered, sparse point cloud data into a structured format

facilitates efficient feature extraction via 2D convolution.

However, the reliance on 3D convolution significantly

increases computational complexity, making real-time

processing challenging.

PointPillars [13], proposed by Alex H. Lang et al.,

addresses this issue by adopting a more efficient voxelization

strategy. Unlike traditional voxel-based methods,

PointPillars partitions the space into pillars (columns with

unrestricted height) and employs PointNet [14] to extract

features within each pillar. This approach eliminates the need

for computationally expensive 3D convolutions, significantly

improving inference speed while maintaining competitive

detection accuracy.

PointPillars strikes a balance between detection accuracy

and real-time performance, making it a significant step

toward the practical application of 3D object detection.

However, it still faces several limitations. First, since features

are extracted at the voxel level, the model struggles to capture

contextual and global information, restricting its receptive

field and thereby limiting detection accuracy. Second, the

Feature Pyramid Network (FPN) [15] utilized in PointPillars

leads to information loss during downsampling. Moreover,

its simplistic downsampling strategy fails to fully leverage

pseudo-image features, negatively impacting object detection,

particularly for small objects.

To address these challenges, we propose a

Transformer-based 3D object detection algorithm for point

cloud processing. First, the point cloud is partitioned into 3D

non-overlapping voxels along the height dimension. Features

are then extracted from the point cloud within these voxels to

generate voxel-level feature representations. The

Transformer enhancing the model’s ability to capture global

contextual dependencies and expanding the receptive field.

Subsequently, the features undergo further processing via a

The 3D Object Detection Algorithm Based on

Transformer Voxel Encoding for Autonomous

Vehicles

Zhibing Duan, Jinju Shao, Zhipeng Zhai, Jinlei Zhang and Lei Wang

3

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1975-1985

__

M
L

P

M
a
x

p
o

o
li

n
g

T
F

E

W

H

C

C
o
n

v
1

C
o
n

v
2 +

W/2

H/2

C

双路径卷积

W/4

H/4

2C

Conv Conv

W/8

H/84C

W/2

H/2

2C

W/2

H/2

2C

Deconv

Deconv

W/2

H/2

2C

Deconv

6C

W/2

H/2

+

D
ete

ctio
n

 h
ead

 Dual-path convolutional

structure

Fig. 1. Overall pipeline of our method

2D convolutional architecture, where a Dual-Path

Convolutional Network (DPCN) based on FPN is designed to

capture multi-scale features and reduce information loss,

thereby improving detection accuracy, particularly for small

objects. Finally, the processed feature map is passed to the

detection head to complete object detection. The main

workflow of the proposed algorithm is illustrated in Fig. 1.

The proposed method is evaluated on the KITTI

benchmark dataset, and experimental results demonstrate its

superior performance compared to existing 3D object

detection algorithms. Notably, our approach achieves a

significant improvement in small object detection accuracy,

highlighting its effectiveness in addressing the limitations of

PointPillars and other voxel-based methods.

To summarize, our contribution is as follows:

1) We introduce a novel approach that integrates the

Transformer Feature Encoding (TFE) module into point

cloud-based 3D object detection. This enhances the

model’s receptive field and representation capability,

offering valuable insights into the application of

Transformers for point cloud processing.

2) We propose the Dual-Path Convolutional Network

(DPCN) module, built upon the Feature Pyramid

Network (FPN), which effectively captures multi-scale

features while minimizing information loss during

downsampling, thereby improving the detection

accuracy of small objects.

3) Extensive experiments demonstrate that our

Transformer-based 3D object detection algorithm

surpasses existing methods in accuracy while

maintaining real-time processing efficiency.

The remainder of this paper is organized as follows:

Section 2 reviews related work, including the application of

Transformers in point cloud processing and recent

advancements in 2D convolutional neural networks. Section

3 provides a detailed description of the proposed object

detection algorithm, covering the Transformer Feature

Encoding (TFE) module and the Dual-Path Convolutional

Network (DPCN) architecture. Section 4 presents the

experimental setup, outlining the hardware, software,

experimental parameters, and datasets, followed by

quantitative comparisons and qualitative visual analyses to

demonstrate the superiority of our approach. Finally, Section

5 concludes the paper with key remarks and future research

directions.

II. RELATED WORK

A. Transformer in Point Cloud Processing

The Transformer is a deep learning model based on the

attention mechanism, originally introduced for natural

language processing [17]. In recent years, it has been

successfully adapted for computer vision tasks, particularly

2D object detection, sparking considerable interest in its

application to point cloud object detection. However, due to

the large-scale nature of point cloud data, directly computing

self-attention on individual points incurs significant

computational overhead, hindering real-time deployment. To

mitigate this challenge, various approaches have been

proposed.

Pointformer [18], inspired by PointNet++ [5], employs

farthest point sampling (FPS) to select key points, followed

by a ball query to define local regions around them, within

which the Transformer is applied to local features. While

Pointformer achieves strong detection performance, its high

model complexity leads to slow inference times. Swformer

[19], inspired by the Swin Transformer [20], voxelizes the

point cloud in a bird’s-eye view and partitions it into

windows, computing self-attention within each window.

However, variations in the number of non-empty voxels per

window result in feature sequences of inconsistent lengths,

reducing training efficiency. The Single-Step Sparse

Transformer [21] applies self-attention to predefined regions

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1975-1985

__

after voxelization, but this limits the receptive field.

In summary, directly computing self-attention for each

point incurs excessive computational costs, while applying it

to localized voxel regions constrains the receptive field, and

using point clusters increases model complexity. To address

these limitations, we propose a novel approach where

self-attention is computed interactively across all voxels after

voxelization. This expands the model’s receptive field,

enabling better capture of global contextual information,

while also reducing computational overhead compared to

point-wise self-attention, thereby improving efficiency.

B. 2D Convolutional Neural Networks

In point cloud-based 3D object detection tasks, feature

extraction is typically performed using multi-layer

perceptrons (MLPs), 3D convolution, or 2D convolution.

MLPs are well-suited for point-based detection methods;

however, their computational cost makes them impractical

for real-time processing of large-scale point clouds. 3D

convolution can be applied in two ways: first, by extracting

voxel-based features using 3D convolution, and second, by

performing direct convolution on the original point cloud

with irregular 3D kernels. While the former suffers from high

computational complexity, the latter faces efficiency

challenges. In contrast, 2D convolution is computationally

efficient and well-suited for real-time applications, but its

feature extraction capability is relatively limited.

To enhance the feature extraction capacity of 2D

convolutional networks, He et al. [22] proposed the Residual

Convolutional Network (ResNet), which introduces residual

connections to allow gradient flow across layers. This design

enables the network to bypass less informative layers,

facilitating deeper architectures and improving feature

extraction capabilities. As a result, ResNet has been widely

adopted in various domains [23]-[24]. However, increasing

network depth inevitably leads to higher model complexity

and longer inference times. To address this, DenseNet [25]

was introduced, incorporating dense connectivity where each

layer receives inputs from all preceding layers. This structure

enhances feature reuse and improves representation learning

but also increases the risk of overfitting.

Liu et al. [26] proposed the Adaptive Spatial Feature

Fusion (ASFF) module, based on the Feature Pyramid

Network (FPN) [15], which dynamically selects and fuses

multi-layer feature maps. This approach enhances the

network's ability to capture multi-scale information,

improving detection accuracy. However, it introduces

additional trainable parameters for learning fusion weights,

leading to increased computational overhead and potential

overfitting.

Another strategy to enhance the expressive power of 2D

convolutional networks is the integration of attention

mechanisms, such as the spatial attention mechanism (SAM)

and channel attention mechanism (CAM) proposed by Hu et

al. [27]. These mechanisms assign weights to different spatial

locations or channels to emphasize crucial features, thereby

improving performance in various computer vision tasks.

However, since the weight assignment process lacks

interpretability, the performance gains from these modules

can be unpredictable.

To address these limitations, we propose a Dual-Path

Convolutional Network (DPCN) architecture based on FPN

to enhance the feature extraction capability of 2D

convolutional networks. Our approach employs two parallel

convolutional paths with different kernel sizes to capture

multi-scale point cloud features. The extracted features are

then fused to mitigate information loss, thereby improving

the detection accuracy of small objects. Notably, our design

achieves this enhancement while introducing minimal

additional parameters, ensuring an optimal balance between

accuracy and computational efficiency.

III. METHODOLOGY

A. Transformer feature encoding

The Transformer model captures the importance of each

part of the input data and the relationships between these

parts by directly comparing them. Specifically, it assigns

weights based on the correlations between the input

components, with the final output integrating all parts of the

input features. This ability to model global relationships

makes the Transformer highly suitable for point cloud

processing, as it effectively expands the receptive field.

Moreover, the self-attention mechanism in Transformers is

invariant to the order and quantity of the input data, further

reinforcing its suitability for processing point clouds.

Given the large number of points in a point cloud, directly

computing self-attention on the individual points can be

computationally expensive. Drawing inspiration from

PointPillars, we propose encoding the point cloud using

voxels and applying self-attention directly to the voxel

representations. This method not only enhances the model's

ability to expand its receptive field and improve its

expressive power but also reduces the computational burden

typically associated with processing individual points.

Upon inputting the raw point cloud, it is first divided into

highly unconstrained voxels. Each voxel’s positional

encoding is recorded, followed by feature extraction using

PointNet and pooling [12] to reduce the dimensionality. This

process yields the feature representation of each voxel. For

clarity, the processed point cloud data is represented as a (P,

C) tensor, where P denotes the voxel and C represents the

feature vector dimension. Subsequently, the Transformer

Feature Encoding (TFE) module is employed to encode the

voxel features, as illustrated in Fig. 2.

First, the voxel feature vectors is represented as a set:

1 2
(, , ,)

n
X x x x= , where n represents the number of

non-empty voxels. Then the search weight parameter matrix
kC dqW R

 , the key weight parameter matrix kC dkW R

 ,

and the value weight parameter matrix v C CW R are

initialized, where kd is the dimensionality of the key of the

feature vector. Then the queries 1 2(, , ,)nQ q q q= , keys

1 2(, , ,)nK k k k= and values 1 2(, , ,)nV v v v= of the

feature vector are computed using equations (1), (2), and (3),

respectively:

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1975-1985

__

Wq Wk Wv

kT
1 kT

2 kT
3

q1

q2

qn

v1

v2

vn

Input feature = = =

× × =

z1

z2

zn

×

×

×

x1

x2

xn

Fig. 2. Schematic diagram of the TFE module

 qQ XW= (1)

 kK XW= (2)

 vV XW= (3)

Then, the query iq of each feature vector is multiplied by

the transpose of the key ik of all the other feature vectors,

respectively, and then by 1/ kd . 1/ kd is a scaling factor

to prevent the inner product result from being too large and

causing the gradient to vanish. Then the softmax function [28]

is applied to obtain the weights of the values, and finally the

weights are dot-producted with the values iv of the

corresponding feature vectors, respectively. The attention

score vector for each feature vector is obtained. The above

steps can be expressed in equation (4):

 (, ,) (/)T

kAttention Q K V softmax QK d V= (4)

Next, the attention score vectors of all feature vectors are

summed up, then the self-attention of the feature vectors

1 2(, , ,)nZ z z z= is obtained. The self-attention of the voxel

features is used as the new feature vector and this completes

the encoding of the voxel features. Finally, the position of

each voxel P is reduced according to the voxel encoding to

obtain the pseudo-image data of size (, ,)H W C (where H

denotes the height and W denotes the width), which is easy

to process using 2D convolutional architecture.

B. Dual-path convolutional feature extraction

After the voxel features are encoded by the Transformer,

they undergo additional feature extraction through a 2D

convolutional architecture. Typically, voxel-based methods

employ the 2D convolutional architecture of the Feature

Pyramid Network (FPN) for this task. However, the

downsampling process inherent in such architectures leads to

a partial loss of detailed information, which can hinder the

detection of small objects. To address this challenge, we

propose the Dual-Path Convolutional Network (DPCN) on

the FPN, designed to preserve more detailed information in

the feature map. Moreover, DPCN utilizes convolutions at

multiple scales, further enhancing the model’s expressive

capability.

While the introduction of DPCN adds additional

parameters to the model, it also increases the computational

load and introduces the potential risk of overfitting. To

mitigate these challenges, we incorporate the DPCN

architecture only during the first downsampling stage,

striking a careful balance between performance improvement

and computational efficiency.

After the point cloud data of size (, ,)H W C is fed into the

proposed 2D convolutional architecture, as shown in Fig. 3.

In the first path, the point cloud data is firstly subjected to

convolution operation by the convolution kernel of size 3×3,

step size 2, and padding 1, to obtain the feature map of size

(/ 2, / 2, / 2)H W C , which is a step to downsampling the

point cloud data to reduce the computational amount. Then it

is sequentially processed by two convolution kernels of size

3×3, step size 1, and padding 1. The size of the feature map is

constant to (/ 2, / 2, / 2)H W C after processing. This step

expands the receptive field of the model, allowing the model

to more fully understand the contextual information.

The second path is the opposite of the first path, where the

point cloud data is first processed by two convolution kernels

of size 3×3, step 1, and fill 1, with a constant feature map size

of (, ,)H W C . Then it is downsampled again by a

convolution kernel processed with a size of 3×3, a step of 2,

and a fill of 1 to obtain a feature map with size

(/ 2, / 2, / 2)H W C . It can be seen that the second path first

expands the receptive field of the original data before

downsampling, which increases part of the computation, but

well preserves the detail information of the feature map,

which is more conducive to the detection of small objects.

The feature maps of the same size obtained on the two

convolutional paths are spliced and fused along the direction

of the feature channel to obtain the fused feature maps under

different scales of feature extraction with the size of

(/ 2, / 2,)H W C . Then, through a series of convolutional

down-sampling, up-sampling and feature map splicing

operations, a feature map of size (/ 2, / 2,6)H W C is

obtained, and finally fed into the single-stage detector (SSD)

[29] to complete the classification of the objects in the point

cloud and the fitting of the detection frame.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1975-1985

__

W

C H

Kernel(3×3,2,1)

Conv

Kernel(3×3,1,1)Kernel(3×3,1,1)

W/2

H/2
C/2

W/2

H/2
C/2

Conv Conv W/2

H/2
C/2

Kernel(3×3,1,1)

Conv

Kernel(3×3,2,1)Kernel(3×3,1,1)

Conv W/2

H/2
C/2

Conv

C/2
H

W

C/2
H

W

+

C
W/2

H/2

W/2

Fig. 3. Schematic diagram of the DPCN architecture

C. loss function

The loss function is set to optimize the parameters of the

model in the training iterations so that the predicted values

can be closer to the real values to achieve the best detection

results. In this paper, the real 3D object frame and anchor

frame are defined by the following variables

(, , , , , ,)x y z w l h , where , ,x y z denotes the coordinate

position of the 3D frame, , ,w l h denotes the width, length

and height of the 3D frame, and denotes the heading angle.

The residuals of the localization regression of the real 3D

object box and anchor box are defined as:

gt a

a

x x
x

d

−
 = ,

gt a

a

y y
y

d

−
 = ,

gt a

a

z z
z

d

−
 =

 log
gt

a

w
w

w
 = , log

gt

a

l
l

l
 = , log

gt

a

h
h

h
 = (5)

 sin()gt a = −

where gtx denotes the real 3D frame, ax denotes the anchor

frame, and 2 2() ()a a ad w l= + . The total localization loss

function locL is then defined as:

(, , , , , ,)

1()loc

b x y z w l h

L SmoothL b

= (6)

Since the heading angle localization loss cannot

distinguish the flipped box, the heading angle is additionally

learned in the discrete direction using softmax to define the

facing loss function dirL .

The target object classification loss function clsL is

defined using the focal loss function:

(1) loga a

cls aL p p= − − (7)

where
ap denotes the probability that the anchor frame is of

a particular category. and are hyperparameters,

following the values of the original paper 0.25 = and

2 = . Thus, the total loss locL is defined as:

1

()loc loc loc cls cls dir dir

pos

L L L L
N

 = + + (8)

where posN is the number of positive samples in the anchor

frame, 2loc = is the weight of the localization loss function,

1cls = is the weight of the classification loss function, and

0.2dir = is the weight of the orientation loss function.

IV. EXPERIMENTS

A. Experimental Setup

Experimental Environment Construction

The object detection algorithm proposed in this paper was

implemented in Python, utilizing several Python libraries,

including PyTorch, NumPy, and OpenCV. The system was

deployed on an Ubuntu 18.04 operating system, based on the

Linux kernel. The hardware configuration consisted of an

Intel i7-9750H CPU, an NVIDIA GeForce RTX 2060 GPU,

and 15.5 GB of RAM.

Data Preparation

The data used in the experiments were sourced from the

KITTI object detection benchmark dataset [30]. Only the

point cloud training data were used to train the model, while

both the image and point cloud test data were employed to

visualize the detection performance. To improve model

training, the official training set was further split into 3,712

training samples and 3,769 validation samples.

Hyperparameter Settings

We set the size of a single voxel to be 0.16m 0.16m, and

set the maximum number of voxels in a single frame during

training to be 16000, and the maximum number of points

within a voxel to be 32. Consider the point cloud range to be

,(, , , ,) (0m, 39.68m, 3m,69.12mmin min min max max maxx y z x y z = − −

,39.68m,1m) . In the Transformer framework, we set the

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1975-1985

__

dimension of the feature vector key kd to 64. The anchor

frame dimensions were (0.6m,0.8m,1.73m) for pedestrians,

(0.6m,1.76m,1.73m) for cyclists, and (1.6 , 3.9 ,1.56)m m m

for bicyclists. In removing the redundant anchor frames using

the Non-maximal Suppression (NMS), the IOU threshold

was set to 0.5 . In addition, the hyperparameter settings

during model training were shown in Table Ⅰ.

TABLE I

HYPERPARAMETER SETTINGS FOR MODEL TRAINING

Hyperparameters Value

Number of Training Epochs 160

Batch Size 6

Weight Decay 0.01

Optimizer Adam

Initial Learning Rate 0.00025

Maximum Learning Rate 0.0025

Learning Strategy Cosine Annealing

B. Experimental Results and Analysis

Training losses

We plot the relationship between the training loss and the

number of steps in Fig. 4. In Fig. 4, the horizontal axis

represents the number of training steps and the vertical axis

represents the training loss. As shown, the training loss

decreases gradually with an increase in the number of

training steps, indicating that the model's prediction accuracy

improves as training progresses.

Quantitative Analysis

After training the model, the official KITTI evaluation

metrics were used to assess the algorithm's detection

performance, specifically the Average Precision (AP) at

different Intersection over Union (IoU) thresholds.

The algorithms were evaluated in four modes on the KITTI

dataset: Bird's Eye View (BEV), 3D, 2D, and Average

Orientation Similarity (AOS) modes. The BEV mode

represents the object's projection onto the ground from a

top-down view and is primarily used to evaluate the accuracy

of the object's horizontal position and the algorithm's

perception of lane boundaries. The 3D mode assesses the

accuracy of the object's dimensions and pose, including its

length, width, height, and orientation. The AOS mode

measures the discrepancy between the predicted and actual

object orientation. The 2D mode evaluates the algorithm’s

accuracy in the image plane, although we do not focus on this

mode in our evaluation.

The KITTI dataset is divided into three difficulty levels:

easy, medium, and hard. As the difficulty level increases,

object occlusion becomes more pronounced, and the point

cloud becomes sparser. We quantitatively compare the

detection accuracy of our algorithm with MV3D [31],

AVOD-FPN [32], VoxelNet [8], SECOND [9],

SECOND-V1.5, F-ConvNet [33], and PointPillars [13],

covering almost all voxel-based 3D object detection methods.

This comparison demonstrates the superiority of our method

among voxel-based detection approaches.

Table II presents a comparison of detection accuracy for

cars, pedestrians, and cyclists at the three difficulty levels in

BEV mode. The mAP (Mean Average Precision) in the table

represents the average accuracy of car, pedestrian, and cyclist

detection under medium difficulty. This metric is used by the

official KITTI dataset to rank the performance of each

algorithm.

Fig. 4. Plot of the training loss

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1975-1985

__

TABLE Ⅱ

COMPARISON OF OBJECT DETECTION ACCURACY AMONG ALGORITHMS IN BEV MODE

Algorithms mAP
Car Pedestrian Cyclist

Easy Mod Hard Easy Mod Hard Easy Mod Hard

VoxelNet 58.25 89.35 79.26 77.39 46.13 40.74 38.11 66.70 54.76 50.55

MV3D - 86.62 78.93 69.80 - - - - - -

AVOD-FPN 63.86 88.53 83.79 77.90 58.49 50.32 46.98 68.03 57.48 50.77

SECOND 60.56 88.07 79.37 77.95 55.10 46.27 44.76 73.67 56.04 48.78

SECOND-V1.5 - 89.27 86.37 81.04 - - - - - -

F-ConvNet 67.23 89.51 85.84 76.11 57.04 48.96 44.33 84.16 66.88 60.05

Pointpillars 69.67 89.62 87.55 85.32 59.11 54.32 50.50 84.41 67.14 63.74

Ours 71.27 89.81 87.65 85.48 63.90 58.35 54.74 85.38 67.80 64.23

TABLE Ⅲ

COMPARISON OF OBJECT DETECTION ACCURACY OF ALGORITHMS IN 3D MODE

Algorithms mAP
Car Pedestrian Cyclist

Easy Mod Hard Easy Mod Hard Easy Mod Hard

VoxelNet 49.05 77.47 65.11 57.73 39.48 33.69 31.5 61.22 48.36 44.37

MV3D - 74.97 63.63 54.00 - - - - - -

AVOD-FPN 55.44 81.94 71.88 66.38 50.46 42.27 38.08 64.00 52.18 46.61

SECOND 56.69 83.13 73.66 66.20 51.07 42.56 37.29 70.51 53.85 46.90

SECOND-V1.5 - 84.65 75.96 68.71 - - - - - -

F-ConvNet 61.61 86.36 76.39 66.69 52.16 43.38 38.80 81.98 65.07 56.54

Pointpillars 62.78 86.42 76.71 74.17 51.35 47.98 43.80 81.75 63.66 60.91

Ours 64.57 86.55 77.23 74.30 54.69 51.03 46.67 83.87 65.46 62.57

TABLE Ⅳ

COMPARISON OF OBJECT DETECTION ACCURACY OF EACH ALGORITHM IN AOS MODE

Algorithms mAP
Car Pedestrian Cyclist

Easy Mod Hard Easy Mod Hard Easy Mod Hard

SECOND 54.53 87.84 81.31 71.95 51.56 43.51 38.78 80.97 57.20 55.14

Pointpillars 68.17 90.49 88.68 85.73 49.36 46.73 43.84 85.02 69.10 66.28

Ours 71.83 90.68 89.13 87.60 56.14 52.45 49.29 87.44 73.90 71.01

As shown in Table II, the average mAP of our algorithm

in BEV mode was the highest, with a 1.46% improvement

compared to PointPillars, which ranked second. Notably,

our algorithm excelled in pedestrian detection and also

demonstrated strong performance in car and cyclist

detection.

Table III presents a comparison of detection accuracies

for cars, pedestrians, and cyclists at three difficulty levels in

3D mode. From Table III, it is evident that our algorithm

achieved the highest average accuracy in 3D mode, with a

1.86% improvement over PointPillars, the second-best

performer. Our algorithm outperformed all other methods in

detecting all object types across all difficulty levels, with

particularly strong results in pedestrian and cyclist detection.

Table IV shows the comparison of detection accuracies

for SECOND, PointPillars, and our algorithm in AOS mode

for cars, pedestrians, and cyclists. As shown in Table IV, our

algorithm’s average mAP was the highest in AOS mode,

surpassing PointPillars by 3.66%. Our algorithm led in

detection accuracy for all object types, with notable

improvements in pedestrian and cyclist detection.

In summary, the quantitative experimental results

demonstrate that our algorithm consistently outperforms

similar algorithms in all three modes, achieving the highest

average mAP. Apart from a modest improvement in cyclist

detection accuracy in BEV mode, our algorithm showed

significant gains in pedestrian and cyclist detection,

especially in 3D and AOS modes. The overall improvement

in pedestrian detection accuracy in BEV mode further

highlights the effectiveness of our algorithm in detecting

small objects like pedestrians and cyclists.

We tested the average running time of our algorithm using

Python’s time function. Table V presents a comparison of

the running times of our algorithm with other similar object

detection algorithms. As shown in Table V, our algorithm

has an average processing time of 16.95 ms per frame of

point cloud data, operating at approximately 59 Hz. This

performance meets the real-time requirements for object

detection, as algorithms are typically considered real-time if

they process point clouds at a frequency greater than 20 Hz.

Furthermore, our algorithm runs faster than most of its

counterparts. Although the running time of our algorithm is

slightly longer compared to PointPillars, which runs at 62

Hz, as mentioned in the previous section, the detection

accuracy of our algorithm is significantly higher than that of

PointPillars.

TABLE Ⅴ

COMPARISON OF RUNNING TIME OF EACH ALGORITHM

Algorithms Time(s)

VoxelNet 0.22

MV3D 0.24

AVOD-FPN 0.1

SENCOND 0.05

Pointpillars 0.016

Ours 0.017

Qualitative Inorganic Analysis

To offer a more intuitive comparison of object detection

performance, we visualized the detection results of both the

PointPillars algorithm and the proposed algorithm in various

scenarios from the KITTI and nuScenes datasets. This

visualization enables a direct comparison of the detection

performance between the two algorithms.

1) On the KITTIi dataset

Fig. 5 and Fig. 6 present a comparison of the detection

performance of the two algorithms in scenes with a higher

number of vehicles. Figure (a) showed the visualization of

the detection effect of the algorithm proposed in this paper,

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1975-1985

__

and Figure (b) showed the visualization of the detection

effect of Pointpillars. The gray points in the figure were

point clouds and the blue box indicates the car's 3D detection

box. In Fig. 5(b), PointPillars failed to detect the fourth car

on the right side of the road, while the proposed algorithm

successfully detected it, as shown in Fig. 5(a). Similarly, in

Fig. 6(b), PointPillars missed the car in the right lane ahead,

but our algorithm detected it successfully, as shown in Fig.

6(a). These visual results clearly demonstrate that the

proposed algorithm outperforms PointPillars in detecting

vehicles.

Fig. 7 and Fig. 8 show the comparison of detection

performance in scenes with more cyclists and pedestrians.

Figure (a) showed the visualization of the detection effect of

the algorithm proposed in this paper, and Figure (b) showed

the visualization of the detection effect of Pointpillars. The

gray points in the figure were point clouds, the red box is the

pedestrian detection box, the green box was the cyclist

detection box, and the blue box is the car detection box. In

Fig. 7(b), PointPillars failed to detect the pedestrians on the

left side of the scene, whereas the proposed algorithm

successfully detected them, as seen in Fig. 7(a). In Fig. 8(b),

where five cyclists are present in the middle of the road,

PointPillars detected only two, with the others either missed

or misdetected. In contrast, our algorithm successfully

detected all five cyclists, as shown in Fig. 8(a).

2) On the nuScenes dataset

Fig. 9 and Fig. 10 illustrate the comparison of target

detection performance between our algorithm and

PointPillars. Figure (a) shows the visualization of the

detection effect of the algorithm proposed in this paper, and

Figure (b) shows the visualization of the detection effect of

Pointpillars. The gray points in the figure are point clouds,

the red box is the pedestrian detection box, and the blue box

is the car detection box.

As shown in these figures, our algorithm outperforms

PointPillars in detecting both cars and pedestrians. These

results, derived from the nuScenes dataset, further highlight

the strong generalization ability of our algorithm. Missed

detections of distant targets are mainly attributed to sparse

point clouds, where insufficient data is available at greater

distances. Overall, our algorithm excels at detecting nearby

targets.

In conclusion, although the proposed algorithm still

missed some detections, its overall detection accuracy,

particularly for pedestrians and cyclists, is superior to that of

PointPillars, with significant improvements in detecting

small objects like pedestrians and cyclists.

(a) (b)

Fig. 5. Comparison of the two algorithms' detection effect visualization results in the first scenario of the KITTI dataset

(a) (b)

Fig. 6. Comparison of the two algorithms' detection effect visualization results in the second scenario of the KITTI dataset

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1975-1985

__

(a) (b)

Fig. 7. Comparison of the two algorithms' detection effect visualization results in the third scenario of the KITTI dataset

(a) (b)

Fig. 8. Comparison of the two algorithms' detection effect visualization results in the fourth scenario of the KITTI dataset

(a) (b)

Fig. 9. Comparison of the results of the visualization of the detection effect of the two algorithms in the first scene of the nuScenes dataset

C. Ablation Experiment

To validate the effectiveness of the TFE module and the

dual-path convolutional architecture proposed in this

paper, we conducted ablation experiments. We compared

the detection accuracies of PointPillars, PointPillars + TFE

module, and PointPillars + TFE module + DPCN

architecture for cars, pedestrians, and cyclists across three

difficulty levels in 3D mode. The specific results are

shown in Table Ⅵ, where "+" indicates PointPillars + TFE

module and "++" indicates PointPillars + TFE module +

DPCN architecture.

As shown in Table Ⅵ, adding the Transformer Feature

Encoding (TFE) module to PointPillars resulted in a slight

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1975-1985

__

(a) (b)

Fig. 10. Comparison of the results of the visualization of the detection effect of the two algorithms in the second scene of the nuScenes dataset

TABLE Ⅵ

COMPARISON OF ACCURACY OF OBJECT DETECTION BY POINTPILLARS IN 3D MODE WITH OR WITHOUT THIS PAPER MODULE

Algorithms mAP
Car Pedestrian Cyclist

Easy Mod Hard Easy Mod Hard Easy Mod Hard

Pointpillars 62.78 86.63 76.71 74.17 51.35 47.98 43.80 81.75 63.66 60.91

+ 62.86 86.81 76.92 74.66 53.10 47.51 44.12 81.36 64.16 62.29

++ 64.64 86.55 77.23 74.30 54.69 51.03 46.67 83.87 65.46 62.57

increase in mAP (0.08%). However, notable improvements

were observed in pedestrian detection accuracy at the easy

level (1.75%) and cyclist detection accuracy at the hard level

(1.38%). After incorporating

the dual-path convolutional architecture (DPCN), the

mAP showed significant improvement, with substantial

increases in detection accuracy for pedestrians and cyclists.

These ablation experiment results effectively demonstrate

the contributions of the TFE module and DPCN architecture

in enhancing object detection accuracy.

Ⅴ. CONCLUSION

In the field of 3D object detection based on LiDAR point

clouds, challenges arise from the limited receptive field in

voxel-based methods and the information loss caused by

downsampling in 2D convolutional architectures of feature

pyramids. To address these issues, we propose a novel 3D

object detection algorithm based on the Transformer model.

First, we introduce a voxel-based Transformer Feature

Encoding (TFE) module that effectively expands the

model’s receptive field. This improvement enhances the

model’s ability to capture global contextual information,

which is crucial for detecting objects in complex

environments.

Additionally, we integrate a dual-path convolutional

architecture based on the Feature Pyramid Network (FPN).

This architecture reduces information loss during the

downsampling process while improving the model’s

expressive power by utilizing convolutions at different

scales for feature extraction. This enables the model to

handle multi-scale objects more effectively.

Through quantitative experiments, we show that our

proposed algorithm outperforms other voxel-based methods

in terms of detection accuracy, particularly for small objects.

The results demonstrate significant improvements in

detecting challenging objects such as vehicles, pedestrians,

and cyclists in 3D point cloud data.

Finally, qualitative experiments and visualizations

confirm that our algorithm effectively detects various

objects in real-world scenarios. Ablation experiments

further validate that both the Transformer-based feature

encoding module and the dual-path convolution architecture

significantly enhance the model’s detection accuracy.

REFERENCES

[1] Yukang Chen, Jianhui Liu, Xiangyu Zhang, Xiaojuan Qi, and Jiaya

Jia, "VoxelNeXt: Fully Sparse VoxelNet for 3D Object Detection and

Tracking," in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, June 2023, pp. 21674–21683.

[2] Hai Wu, Chenglu Wen, Shaoshuai Shi, Xin Li, and Cheng Wang,

"Virtual Sparse Convolution for Multimodal 3D Object Detection," in

Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, June 2023, pp. 21653–21662.

[3] Yilun Chen, Zhiding Yu, Yukang Chen, Shiyi Lan, Animashree

Anandkumar, Jiaya Jia, and Jose M. Alvarez, "FocalFormer3D:

Focusing on Hard Instances for 3D Object Detection," in Proceedings

of the IEEE/CVF International Conference on Computer Vision,

October 2023, pp. 8394–8405.

[4] Md Mashrur Rana and Kazi Iftekharul Hossain, "Connected and

Autonomous Vehicles and Infrastructures: A Literature Review,"

International Journal of Pavement Research and Technology, vol. 16,

no. 2, pp. 264–284, March 2023.

[5] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas, "PointNet++:

Deep Hierarchical Feature Learning on Point Sets in a Metric Space,"

in Advances in Neural Information Processing Systems, vol. 30, 2017.

[6] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li, "PointRCNN: 3D

Object Proposal Generation and Detection from Point Cloud," in

Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, June 2019, pp. 770–779.

[7] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia, "3DSSD:

Point-Based 3D Single-Stage Object Detector," in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

June 2020, pp. 11040–11048.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1975-1985

__

[8] Yin Zhou and Oncel Tuzel, "VoxelNet: End-to-End Learning for

Point Cloud-Based 3D Object Detection," in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, June 2018,

pp. 4490–4499.

[9] Yan Yan, Yuxing Mao, and Bo Li, "SECOND: Sparsely Embedded

Convolutional Detection," Sensors, vol. 18, no. 10, p. 3337, October

2018.

[10] Bin Yang, Wenjie Luo, and Raquel Urtasun, "PIXOR: Real-Time 3D

Object Detection from Point Clouds," in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, June 2018,

pp. 7652–7660.

[11] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik

Learned-Miller, "Multi-View Convolutional Neural Networks for 3D

Shape Recognition," in Proceedings of the IEEE International

Conference on Computer Vision, December 2015, pp. 945–953.

[12] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner,

"Gradient-Based Learning Applied to Document Recognition,"

Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, November

1998.

[13] Alexander H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,

Jiong Yang, and Oscar Beijbom, "PointPillars: Fast Encoders for

Object Detection from Point Clouds," in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

June 2019, pp. 12697–12705.

[14] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas,

"PointNet: Deep Learning on Point Sets for 3D Classification and

Segmentation," in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, July 2017, pp. 652–660.

[15] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath

Hariharan, and Serge Belongie, "Feature Pyramid Networks for

Object Detection," in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, July 2017, pp. 2117–2125.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin,

"Attention Is All You Need," in Advances in Neural Information

Processing Systems, vol. 30, 2017.

[17] Junhong Chen, Hong Dai, Shuang Wang, and Chengrui Liu,

"Improving Accuracy and Efficiency in Time Series Forecasting with

an Optimized Transformer Model," Engineering Letters, vol. 32, no. 1,

pp. 1-11, 2024.

[18] Xinwei Pan, Zhichao Zhou, Shuran Song, Li Erran Li, and Gao Huang,

"3D Object Detection with PointFormer," in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

June 2021, pp. 7463–7472.

[19] Peng Sun, Ming Tan, Wenhai Wang, Changqian Liu, Fangyun Zhao,

Zhiliang Leng, and Dragomir Anguelov, "SWFormer: Sparse

Window Transformer for 3D Object Detection in Point Clouds," in

European Conference on Computer Vision, October 2022, pp.

426–442, Cham: Springer Nature Switzerland.

[20] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,

Stephen Lin, and Baining Guo, "Swin Transformer: Hierarchical

Vision Transformer Using Shifted Windows," in Proceedings of the

IEEE/CVF International Conference on Computer Vision, October

2021, pp. 10012–10022.

[21] Lincheng Fan, Zihan Pang, Tian Zhang, Yuxuan Wang, Hang Zhao,

Feixiang Wang, Nan Wang, and Zhenguo Zhang, "Embracing Single

Stride 3D Object Detector with Sparse Transformer," in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2022, pp. 8458–8468.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, "Deep

Residual Learning for Image Recognition," in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2016,

pp. 770–778.

[23] Aji Setiawan, Kusworo Adi, and Catur Edi Widodo, "Comparative

Analysis of Deep Convolutional Neural Network for Accurate

Identification of Foreign Objects in Rice Grains," Engineering Letters,

vol. 32, no. 2, pp. 315-324, 2024.

[24] Zhengpeng Li, Jun Hu, Zhuang Liang, and Jiansheng Wu,

"MRAUnet++: A Novel Multi-Scale Residual Attention Network for

Enhanced Rectal Cancer Segmentation," Engineering Letters, vol. 32,

no. 4, pp. 880-888, 2024.

[25] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q.

Weinberger, "Densely Connected Convolutional Networks," in

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017, pp. 4700–4708.

[26] Songtao Liu, Di Huang, Yunhong Wang, "Learning Spatial Fusion for

Single-Shot Object Detection," arXiv preprint, arXiv:1911.09516,

Nov. 2019.

[27] Jie Hu, Li Shen, Gang Sun, "Squeeze-and-Excitation Networks," in

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 7132-7141.

[28] John S. Bridle, "Probabilistic Interpretation of Feedforward

Classification Network Outputs, with Relationships to Statistical

Pattern Recognition," in Neurocomputing: Algorithms, Architectures,

and Applications, May 1990, pp. 227-236, Berlin, Heidelberg:

Springer Berlin Heidelberg.

[29] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,

Scott Reed, Cheng-Yang Fu, Alexander C. Berg, "SSD: Single Shot

Multibox Detector," in Computer Vision–ECCV 2016: 14th European

Conference, Amsterdam, The Netherlands, Oct. 11-14, 2016, pp.

21-37, Springer International Publishing.

[30] Andreas Geiger, Philip Lenz, Raquel Urtasun, "Are We Ready for

Autonomous Driving? The KITTI Vision Benchmark Suite," in 2012

IEEE Conference on Computer Vision and Pattern Recognition, Jun.

16, 2012, pp. 3354-3361, IEEE.

[31] Shuang Li, Kai Geng, Guoyuan Yin, Zhenyu Wang, Minghui Qian,

"MVMM: Multiview Multimodal 3D Object Detection for

Autonomous Driving," IEEE Transactions on Industrial Informatics,

vol. 20, no. 1, pp. 845-853, 2023.

[32] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, Steven L.

Waslander, "Joint 3D Proposal Generation and Object Detection from

View Aggregation," in 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Oct. 2018, pp. 1-8, IEEE.

[33] Zhixin Wang, Kui Jia, "Frustum ConvNet: Sliding Frustums to

Aggregate Local Point-Wise Features for Amodal 3D Object

Detection," in 2019 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Nov. 2019, pp. 1742-1749, IEEE.

IAENG International Journal of Computer Science

Volume 52, Issue 6, June 2025, Pages 1975-1985

__

