
 

  

Abstract—In point cloud-based 3D object detection, 

PointPillars encodes features into a pseudo-image by 

partitioning the point cloud into voxels with unrestricted height 

and subsequently extracting features using a 2D convolutional 

architecture. This approach significantly enhances 

computational efficiency. However, feature extraction occurs on 

a per-voxel basis, which limits the receptive field and introduces 

a bottleneck in detection accuracy. Furthermore, the Feature 

Pyramid Network (FPN) employed in PointPillars results in 

information loss during downsampling, particularly affecting 

the detection of small objects.To address these limitations, we 

propose a novel 3D object detection framework based on the 

Transformer architecture. Specifically, we introduce a 

Transformer Feature Encoding (TFE) module to encode voxel 

features, thereby expanding the receptive field. Additionally, we 

incorporate an FPN-based Dual Path Convolutional Network 

(DPCN) as the backbone for feature extraction, effectively 

mitigating detail loss during downsampling. Extensive 

experimental evaluations demonstrate that our proposed 

approach outperforms PointPillars and other voxel-based 

methods, particularly in detecting small objects. 

 
Index Terms—Autonomous vehicles, Point-cloud, 3D object 

detection, Transformer, 2D convolution 

I. INTRODUCTION 

D object detection [1]−[3] enables autonomous 

vehicles [4] to recognize and characterize obstacles, 

making it a key technology in driverless driving and a focal 

point of research. Among existing approaches, point 

cloud-based 3D object detection has garnered significant 

attention due to the unique advantages of LiDAR sensors. 

Consequently, improving detection accuracy and 

computational efficiency has become a major research focus. 

Point-based methods [5]−[7] perform object detection by 

clustering or segmenting the point cloud, extracting features 
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from the identified clusters or foreground points, and 

mapping them back to 3D detection boxes. By directly 

processing point cloud data, these methods effectively 

preserve geometric details, leading to high detection accuracy. 

However, as feature extraction is performed on a per-point 

basis, these approaches struggle to meet real-time 

requirements when processing large-scale point clouds. 

Voxel-based methods [8]−[10] partition the 3D space into 

structured grids, extracting feature representations at the 

voxel level. These features are then processed using 3D 

convolution [11], as seen in [8]−[9], or handcrafted feature 

extraction techniques, as in [10], followed by a 2D 

convolutional detection framework [12]. This transformation 

of unordered, sparse point cloud data into a structured format 

facilitates efficient feature extraction via 2D convolution. 

However, the reliance on 3D convolution significantly 

increases computational complexity, making real-time 

processing challenging. 

PointPillars [13], proposed by Alex H. Lang et al., 

addresses this issue by adopting a more efficient voxelization 

strategy. Unlike traditional voxel-based methods, 

PointPillars partitions the space into pillars (columns with 

unrestricted height) and employs PointNet [14] to extract 

features within each pillar. This approach eliminates the need 

for computationally expensive 3D convolutions, significantly 

improving inference speed while maintaining competitive 

detection accuracy. 

PointPillars strikes a balance between detection accuracy 

and real-time performance, making it a significant step 

toward the practical application of 3D object detection. 

However, it still faces several limitations. First, since features 

are extracted at the voxel level, the model struggles to capture 

contextual and global information, restricting its receptive 

field and thereby limiting detection accuracy. Second, the 

Feature Pyramid Network (FPN) [15] utilized in PointPillars 

leads to information loss during downsampling. Moreover, 

its simplistic downsampling strategy fails to fully leverage 

pseudo-image features, negatively impacting object detection, 

particularly for small objects. 

To address these challenges, we propose a 

Transformer-based 3D object detection algorithm for point 

cloud processing. First, the point cloud is partitioned into 3D 

non-overlapping voxels along the height dimension. Features 

are then extracted from the point cloud within these voxels to 

generate voxel-level feature representations. The 

Transformer enhancing the model’s ability to capture global 

contextual dependencies and expanding the receptive field. 

Subsequently, the features undergo further processing via a    
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Fig. 1. Overall pipeline of our method 

 

2D convolutional architecture, where a Dual-Path 

Convolutional Network (DPCN) based on FPN is designed to 

capture multi-scale features and reduce information loss, 

thereby improving detection accuracy, particularly for small 

objects. Finally, the processed feature map is passed to the 

detection head to complete object detection. The main 

workflow of the proposed algorithm is illustrated in Fig. 1. 

The proposed method is evaluated on the KITTI 

benchmark dataset, and experimental results demonstrate its 

superior performance compared to existing 3D object 

detection algorithms. Notably, our approach achieves a 

significant improvement in small object detection accuracy, 

highlighting its effectiveness in addressing the limitations of 

PointPillars and other voxel-based methods. 

To summarize, our contribution is as follows: 

1) We introduce a novel approach that integrates the 

Transformer Feature Encoding (TFE) module into point 

cloud-based 3D object detection. This enhances the 

model’s receptive field and representation capability, 

offering valuable insights into the application of 

Transformers for point cloud processing. 

2) We propose the Dual-Path Convolutional Network 

(DPCN) module, built upon the Feature Pyramid 

Network (FPN), which effectively captures multi-scale 

features while minimizing information loss during 

downsampling, thereby improving the detection 

accuracy of small objects. 

3) Extensive experiments demonstrate that our 

Transformer-based 3D object detection algorithm 

surpasses existing methods in accuracy while 

maintaining real-time processing efficiency. 

The remainder of this paper is organized as follows:  

Section 2 reviews related work, including the application of 

Transformers in point cloud processing and recent 

advancements in 2D convolutional neural networks. Section 

3 provides a detailed description of the proposed object 

detection algorithm, covering the Transformer Feature 

Encoding (TFE) module and the Dual-Path Convolutional 

Network (DPCN) architecture. Section 4 presents the 

experimental setup, outlining the hardware, software, 

experimental parameters, and datasets, followed by 

quantitative comparisons and qualitative visual analyses to 

demonstrate the superiority of our approach. Finally, Section 

5 concludes the paper with key remarks and future research 

directions. 

II. RELATED WORK 

A. Transformer in Point Cloud Processing 

The Transformer is a deep learning model based on the 

attention mechanism, originally introduced for natural 

language processing [17]. In recent years, it has been 

successfully adapted for computer vision tasks, particularly 

2D object detection, sparking considerable interest in its 

application to point cloud object detection. However, due to 

the large-scale nature of point cloud data, directly computing 

self-attention on individual points incurs significant 

computational overhead, hindering real-time deployment. To 

mitigate this challenge, various approaches have been 

proposed. 

Pointformer [18], inspired by PointNet++ [5], employs 

farthest point sampling (FPS) to select key points, followed 

by a ball query to define local regions around them, within 

which the Transformer is applied to local features. While 

Pointformer achieves strong detection performance, its high 

model complexity leads to slow inference times. Swformer 

[19], inspired by the Swin Transformer [20], voxelizes the 

point cloud in a bird’s-eye view and partitions it into 

windows, computing self-attention within each window. 

However, variations in the number of non-empty voxels per 

window result in feature sequences of inconsistent lengths, 

reducing training efficiency. The Single-Step Sparse 

Transformer [21] applies self-attention to predefined regions 
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after voxelization, but this limits the receptive field. 

In summary, directly computing self-attention for each 

point incurs excessive computational costs, while applying it 

to localized voxel regions constrains the receptive field, and 

using point clusters increases model complexity. To address 

these limitations, we propose a novel approach where 

self-attention is computed interactively across all voxels after 

voxelization. This expands the model’s receptive field, 

enabling better capture of global contextual information, 

while also reducing computational overhead compared to 

point-wise self-attention, thereby improving efficiency. 

 

B. 2D Convolutional Neural Networks 

In point cloud-based 3D object detection tasks, feature 

extraction is typically performed using multi-layer 

perceptrons (MLPs), 3D convolution, or 2D convolution. 

MLPs are well-suited for point-based detection methods; 

however, their computational cost makes them impractical 

for real-time processing of large-scale point clouds. 3D 

convolution can be applied in two ways: first, by extracting 

voxel-based features using 3D convolution, and second, by 

performing direct convolution on the original point cloud 

with irregular 3D kernels. While the former suffers from high 

computational complexity, the latter faces efficiency 

challenges. In contrast, 2D convolution is computationally 

efficient and well-suited for real-time applications, but its 

feature extraction capability is relatively limited. 

To enhance the feature extraction capacity of 2D 

convolutional networks, He et al. [22] proposed the Residual 

Convolutional Network (ResNet), which introduces residual 

connections to allow gradient flow across layers. This design 

enables the network to bypass less informative layers, 

facilitating deeper architectures and improving feature 

extraction capabilities. As a result, ResNet has been widely 

adopted in various domains [23]-[24]. However, increasing 

network depth inevitably leads to higher model complexity 

and longer inference times. To address this, DenseNet [25] 

was introduced, incorporating dense connectivity where each 

layer receives inputs from all preceding layers. This structure 

enhances feature reuse and improves representation learning 

but also increases the risk of overfitting. 

Liu et al. [26] proposed the Adaptive Spatial Feature 

Fusion (ASFF) module, based on the Feature Pyramid 

Network (FPN) [15], which dynamically selects and fuses 

multi-layer feature maps. This approach enhances the 

network's ability to capture multi-scale information, 

improving detection accuracy. However, it introduces 

additional trainable parameters for learning fusion weights, 

leading to increased computational overhead and potential 

overfitting. 

Another strategy to enhance the expressive power of 2D 

convolutional networks is the integration of attention 

mechanisms, such as the spatial attention mechanism (SAM) 

and channel attention mechanism (CAM) proposed by Hu et 

al. [27]. These mechanisms assign weights to different spatial 

locations or channels to emphasize crucial features, thereby 

improving performance in various computer vision tasks. 

However, since the weight assignment process lacks 

interpretability, the performance gains from these modules 

can be unpredictable. 

To address these limitations, we propose a Dual-Path 

Convolutional Network (DPCN) architecture based on FPN 

to enhance the feature extraction capability of 2D 

convolutional networks. Our approach employs two parallel 

convolutional paths with different kernel sizes to capture 

multi-scale point cloud features. The extracted features are 

then fused to mitigate information loss, thereby improving 

the detection accuracy of small objects. Notably, our design 

achieves this enhancement while introducing minimal 

additional parameters, ensuring an optimal balance between 

accuracy and computational efficiency. 

III. METHODOLOGY 

A. Transformer feature encoding 

The Transformer model captures the importance of each 

part of the input data and the relationships between these 

parts by directly comparing them. Specifically, it assigns 

weights based on the correlations between the input 

components, with the final output integrating all parts of the 

input features. This ability to model global relationships 

makes the Transformer highly suitable for point cloud 

processing, as it effectively expands the receptive field. 

Moreover, the self-attention mechanism in Transformers is 

invariant to the order and quantity of the input data, further 

reinforcing its suitability for processing point clouds. 

Given the large number of points in a point cloud, directly 

computing self-attention on the individual points can be 

computationally expensive. Drawing inspiration from 

PointPillars, we propose encoding the point cloud using 

voxels and applying self-attention directly to the voxel 

representations. This method not only enhances the model's 

ability to expand its receptive field and improve its 

expressive power but also reduces the computational burden 

typically associated with processing individual points. 

Upon inputting the raw point cloud, it is first divided into 

highly unconstrained voxels. Each voxel’s positional 

encoding is recorded, followed by feature extraction using 

PointNet and pooling [12] to reduce the dimensionality. This 

process yields the feature representation of each voxel. For 

clarity, the processed point cloud data is represented as a (P, 

C) tensor, where P denotes the voxel and C represents the 

feature vector dimension. Subsequently, the Transformer 

Feature Encoding (TFE) module is employed to encode the 

voxel features, as illustrated in Fig. 2. 

First, the voxel feature vectors is represented as a set: 

1 2
( , , , )

n
X x x x= , where n  represents the number of 

non-empty voxels. Then the search weight parameter matrix 
kC dqW R


 , the key weight parameter matrix kC dkW R


 , 

and the value weight parameter matrix v C CW R   are 

initialized, where kd  is the dimensionality of the key of the 

feature vector. Then the queries 1 2( , , , )nQ q q q= , keys 

1 2( , , , )nK k k k=  and values 1 2( , , , )nV v v v=  of the 

feature vector are computed using equations (1), (2), and (3), 

respectively: 
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Fig. 2. Schematic diagram of the TFE module 

 

 

 qQ XW=  (1) 

 kK XW=  (2) 

 vV XW=  (3) 

 

Then, the query iq  of each feature vector is multiplied by 

the transpose of the key ik  of all the other feature vectors, 

respectively, and then by 1/ kd . 1/ kd  is a scaling factor 

to prevent the inner product result from being too large and 

causing the gradient to vanish. Then the softmax function [28] 

is applied to obtain the weights of the values, and finally the 

weights are dot-producted with the values iv  of the 

corresponding feature vectors, respectively. The attention 

score vector for each feature vector is obtained. The above 

steps can be expressed in equation (4):  
 

 ( , , ) ( / )T

kAttention Q K V softmax QK d V=  (4) 

 

Next, the attention score vectors of all feature vectors are 

summed up, then the self-attention of the feature vectors 

1 2( , , , )nZ z z z=  is obtained. The self-attention of the voxel 

features is used as the new feature vector and this completes 

the encoding of the voxel features. Finally, the position of 

each voxel P  is reduced according to the voxel encoding to 

obtain the pseudo-image data of size ( , , )H W C  (where H  

denotes the height and W  denotes the width), which is easy 

to process using 2D convolutional architecture. 

 

B. Dual-path convolutional feature extraction 

After the voxel features are encoded by the Transformer, 

they undergo additional feature extraction through a 2D 

convolutional architecture. Typically, voxel-based methods 

employ the 2D convolutional architecture of the Feature 

Pyramid Network (FPN) for this task. However, the 

downsampling process inherent in such architectures leads to 

a partial loss of detailed information, which can hinder the 

detection of small objects. To address this challenge, we 

propose the Dual-Path Convolutional Network (DPCN) on 

the FPN, designed to preserve more detailed information in 

the feature map. Moreover, DPCN utilizes convolutions at 

multiple scales, further enhancing the model’s expressive 

capability. 

While the introduction of DPCN adds additional 

parameters to the model, it also increases the computational 

load and introduces the potential risk of overfitting. To 

mitigate these challenges, we incorporate the DPCN 

architecture only during the first downsampling stage, 

striking a careful balance between performance improvement 

and computational efficiency. 

After the point cloud data of size ( , , )H W C  is fed into the 

proposed 2D convolutional architecture, as shown in Fig. 3. 

In the first path, the point cloud data is firstly subjected to 

convolution operation by the convolution kernel of size 3×3, 

step size 2, and padding 1, to obtain the feature map of size 

( / 2, / 2, / 2)H W C , which is a step to downsampling the 

point cloud data to reduce the computational amount. Then it 

is sequentially processed by two convolution kernels of size 

3×3, step size 1, and padding 1. The size of the feature map is 

constant to ( / 2, / 2, / 2)H W C  after processing. This step 

expands the receptive field of the model, allowing the model 

to more fully understand the contextual information. 

The second path is the opposite of the first path, where the 

point cloud data is first processed by two convolution kernels 

of size 3×3, step 1, and fill 1, with a constant feature map size 

of ( , , )H W C . Then it is downsampled again by a 

convolution kernel processed with a size of 3×3, a step of 2, 

and a fill of 1 to obtain a feature map with size 

( / 2, / 2, / 2)H W C . It can be seen that the second path first 

expands the receptive field of the original data before 

downsampling, which increases part of the computation, but 

well preserves the detail information of the feature map, 

which is more conducive to the detection of small objects. 

The feature maps of the same size obtained on the two 

convolutional paths are spliced and fused along the direction 

of the feature channel to obtain the fused feature maps under 

different scales of feature extraction with the size of 

( / 2, / 2, )H W C . Then, through a series of convolutional 

down-sampling, up-sampling and feature map splicing 

operations, a feature map of size ( / 2, / 2,6 )H W C  is 

obtained, and finally fed into the single-stage detector (SSD) 

[29] to complete the classification of the objects in the point 

cloud and the fitting of the detection frame. 
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Fig. 3. Schematic diagram of the DPCN architecture

 

C. loss function 

The loss function is set to optimize the parameters of the 

model in the training iterations so that the predicted values 

can be closer to the real values to achieve the best detection 

results. In this paper, the real 3D object frame and anchor 

frame are defined by the following variables 

( , , , , , , )x y z w l h  , where , ,x y z  denotes the coordinate 

position of the 3D frame, , ,w l h  denotes the width, length 

and height of the 3D frame, and   denotes the heading angle. 

The residuals of the localization regression of the real 3D 

object box and anchor box are defined as: 

 

 
gt a

a

x x
x

d

−
 = ,

gt a

a

y y
y

d

−
 = ,

gt a

a

z z
z

d

−
 =   

 log
gt

a

w
w

w
 = , log

gt

a

l
l

l
 = , log

gt

a

h
h

h
 =  (5) 

 sin( )gt a   = −   

 

where gtx  denotes the real 3D frame, ax  denotes the anchor 

frame, and 2 2( ) ( )a a ad w l= + . The total localization loss 

function locL  is then defined as: 

 

 
( , , , , , , )

1( )loc

b x y z w l h

L SmoothL b


=   (6) 

 

Since the heading angle localization loss cannot 

distinguish the flipped box, the heading angle is additionally 

learned in the discrete direction using softmax to define the 

facing loss function dirL . 

The target object classification loss function clsL  is 

defined using the focal loss function: 

 

 

 
(1 ) loga a

cls aL p p= − −  (7) 

 

where 
ap  denotes the probability that the anchor frame is of 

a particular category.   and   are hyperparameters, 

following the values of the original paper 0.25 =  and  

 

2 = . Thus, the total loss locL  is defined as: 

 

 
1

( )loc loc loc cls cls dir dir

pos

L L L L
N

  = + +  (8) 

 

where posN  is the number of positive samples in the anchor 

frame, 2loc =  is the weight of the localization loss function, 

1cls =  is the weight of the classification loss function, and 

0.2dir =  is the weight of the orientation loss function. 

IV. EXPERIMENTS 

A. Experimental Setup 

 

Experimental Environment Construction 

The object detection algorithm proposed in this paper was 

implemented in Python, utilizing several Python libraries, 

including PyTorch, NumPy, and OpenCV. The system was 

deployed on an Ubuntu 18.04 operating system, based on the 

Linux kernel. The hardware configuration consisted of an 

Intel i7-9750H CPU, an NVIDIA GeForce RTX 2060 GPU, 

and 15.5 GB of RAM. 

 

Data Preparation 

The data used in the experiments were sourced from the 

KITTI object detection benchmark dataset [30]. Only the 

point cloud training data were used to train the model, while 

both the image and point cloud test data were employed to 

visualize the detection performance. To improve model 

training, the official training set was further split into 3,712 

training samples and 3,769 validation samples. 

 

Hyperparameter Settings 

We set the size of a single voxel to be 0.16m 0.16m, and 

set the maximum number of voxels in a single frame during 

training to be 16000, and the maximum number of points 

within a voxel to be 32. Consider the point cloud range to be  

,( , , , , ) (0m, 39.68m, 3m,69.12mmin min min max max maxx y z x y z = − −

,39.68m,1m) . In the Transformer framework, we set the 
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dimension of the feature vector key kd  to 64. The anchor 

frame dimensions were (0.6m,0.8m,1.73m)  for pedestrians, 

(0.6m,1.76m,1.73m) for cyclists, and (1.6 , 3.9 ,1.56 )m m m  

for bicyclists. In removing the redundant anchor frames using 

the Non-maximal Suppression (NMS), the IOU threshold 

was set to 0.5 . In addition, the hyperparameter settings 

during model training were shown in Table Ⅰ. 

 
TABLE I 

HYPERPARAMETER SETTINGS FOR MODEL TRAINING 

Hyperparameters Value 

Number of Training Epochs 160 

Batch Size 6 

Weight Decay 0.01 

Optimizer Adam 

Initial Learning Rate 0.00025 

Maximum Learning Rate 0.0025 

Learning Strategy Cosine Annealing 

 

B. Experimental Results and Analysis 

 

Training losses 

We plot the relationship between the training loss and the 

number of steps in Fig. 4. In Fig. 4, the horizontal axis 

represents the number of training steps and the vertical axis 

represents the training loss. As shown, the training loss 

decreases gradually with an increase in the number of 

training steps, indicating that the model's prediction accuracy 

improves as training progresses. 

 

Quantitative Analysis 

After training the model, the official KITTI evaluation 

metrics were used to assess the algorithm's detection 

performance, specifically the Average Precision (AP) at 

different Intersection over Union (IoU) thresholds. 

The algorithms were evaluated in four modes on the KITTI 

dataset: Bird's Eye View (BEV), 3D, 2D, and Average 

Orientation Similarity (AOS) modes. The BEV mode 

represents the object's projection onto the ground from a 

top-down view and is primarily used to evaluate the accuracy 

of the object's horizontal position and the algorithm's 

perception of lane boundaries. The 3D mode assesses the 

accuracy of the object's dimensions and pose, including its 

length, width, height, and orientation. The AOS mode 

measures the discrepancy between the predicted and actual 

object orientation. The 2D mode evaluates the algorithm’s 

accuracy in the image plane, although we do not focus on this 

mode in our evaluation. 

The KITTI dataset is divided into three difficulty levels: 

easy, medium, and hard. As the difficulty level increases, 

object occlusion becomes more pronounced, and the point 

cloud becomes sparser. We quantitatively compare the 

detection accuracy of our algorithm with MV3D [31], 

AVOD-FPN [32], VoxelNet [8], SECOND [9], 

SECOND-V1.5, F-ConvNet [33], and PointPillars [13], 

covering almost all voxel-based 3D object detection methods. 

This comparison demonstrates the superiority of our method 

among voxel-based detection approaches. 

Table II presents a comparison of detection accuracy for 

cars, pedestrians, and cyclists at the three difficulty levels in 

BEV mode. The mAP (Mean Average Precision) in the table 

represents the average accuracy of car, pedestrian, and cyclist 

detection under medium difficulty. This metric is used by the 

official KITTI dataset to rank the performance of each 

algorithm. 

 
Fig. 4. Plot of the training loss 
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TABLE Ⅱ 

COMPARISON OF OBJECT DETECTION ACCURACY AMONG ALGORITHMS IN BEV MODE 

Algorithms mAP 
Car Pedestrian Cyclist 

Easy Mod Hard Easy Mod Hard Easy Mod Hard 

VoxelNet 58.25 89.35 79.26 77.39 46.13 40.74 38.11 66.70 54.76 50.55 

MV3D - 86.62 78.93 69.80 - - - - - - 

AVOD-FPN 63.86 88.53 83.79 77.90 58.49 50.32 46.98 68.03 57.48 50.77 

SECOND 60.56 88.07 79.37 77.95 55.10 46.27 44.76 73.67 56.04 48.78 

SECOND-V1.5 - 89.27 86.37 81.04 - - - - - - 

F-ConvNet 67.23 89.51 85.84 76.11 57.04 48.96 44.33 84.16 66.88 60.05 

Pointpillars 69.67 89.62 87.55 85.32 59.11 54.32 50.50 84.41 67.14 63.74 

Ours 71.27 89.81 87.65 85.48 63.90 58.35 54.74 85.38 67.80 64.23 

 

TABLE Ⅲ 

COMPARISON OF OBJECT DETECTION ACCURACY OF ALGORITHMS IN 3D MODE 

Algorithms mAP 
Car Pedestrian Cyclist 

Easy Mod Hard Easy Mod Hard Easy Mod Hard 

VoxelNet 49.05 77.47 65.11 57.73 39.48 33.69 31.5 61.22 48.36 44.37 

MV3D - 74.97 63.63 54.00 - - - - - - 

AVOD-FPN 55.44 81.94 71.88 66.38 50.46 42.27 38.08 64.00 52.18 46.61 

SECOND 56.69 83.13 73.66 66.20 51.07 42.56 37.29 70.51 53.85 46.90 

SECOND-V1.5 - 84.65 75.96 68.71 - - - - - - 

F-ConvNet 61.61 86.36 76.39 66.69 52.16 43.38 38.80 81.98 65.07 56.54 

Pointpillars 62.78 86.42 76.71 74.17 51.35 47.98 43.80 81.75 63.66 60.91 

Ours 64.57 86.55 77.23 74.30 54.69 51.03 46.67 83.87 65.46 62.57 

 

TABLE Ⅳ 

COMPARISON OF OBJECT DETECTION ACCURACY OF EACH ALGORITHM IN AOS MODE 

Algorithms mAP 
Car Pedestrian Cyclist 

Easy Mod Hard Easy Mod Hard Easy Mod Hard 

SECOND 54.53 87.84 81.31 71.95 51.56 43.51 38.78 80.97 57.20 55.14 

Pointpillars 68.17 90.49 88.68 85.73 49.36 46.73 43.84 85.02 69.10 66.28 

Ours 71.83 90.68 89.13 87.60 56.14 52.45 49.29 87.44 73.90 71.01 

 

As shown in Table II, the average mAP of our algorithm 

in BEV mode was the highest, with a 1.46% improvement 

compared to PointPillars, which ranked second. Notably, 

our algorithm excelled in pedestrian detection and also 

demonstrated strong performance in car and cyclist 

detection. 

Table III presents a comparison of detection accuracies 

for cars, pedestrians, and cyclists at three difficulty levels in 

3D mode. From Table III, it is evident that our algorithm 

achieved the highest average accuracy in 3D mode, with a 

1.86% improvement over PointPillars, the second-best 

performer. Our algorithm outperformed all other methods in 

detecting all object types across all difficulty levels, with 

particularly strong results in pedestrian and cyclist detection. 

Table IV shows the comparison of detection accuracies 

for SECOND, PointPillars, and our algorithm in AOS mode 

for cars, pedestrians, and cyclists. As shown in Table IV, our 

algorithm’s average mAP was the highest in AOS mode, 

surpassing PointPillars by 3.66%. Our algorithm led in 

detection accuracy for all object types, with notable 

improvements in pedestrian and cyclist detection. 

In summary, the quantitative experimental results 

demonstrate that our algorithm consistently outperforms 

similar algorithms in all three modes, achieving the highest 

average mAP. Apart from a modest improvement in cyclist 

detection accuracy in BEV mode, our algorithm showed 

significant gains in pedestrian and cyclist detection, 

especially in 3D and AOS modes. The overall improvement 

in pedestrian detection accuracy in BEV mode further 

highlights the effectiveness of our algorithm in detecting 

small objects like pedestrians and cyclists. 

We tested the average running time of our algorithm using 

Python’s time function. Table V presents a comparison of  

the running times of our algorithm with other similar object  

 

detection algorithms. As shown in Table V, our algorithm 

has an average processing time of 16.95 ms per frame of 

point cloud data, operating at approximately 59 Hz. This 

performance meets the real-time requirements for object 

detection, as algorithms are typically considered real-time if 

they process point clouds at a frequency greater than 20 Hz. 

Furthermore, our algorithm runs faster than most of its 

counterparts. Although the running time of our algorithm is 

slightly longer compared to PointPillars, which runs at 62 

Hz, as mentioned in the previous section, the detection 

accuracy of our algorithm is significantly higher than that of 

PointPillars. 

 
TABLE Ⅴ 

COMPARISON OF RUNNING TIME OF EACH ALGORITHM 

Algorithms Time(s) 

VoxelNet 0.22 

MV3D 0.24 

AVOD-FPN 0.1 

SENCOND 0.05 

Pointpillars 0.016 

Ours 0.017 

 

Qualitative Inorganic Analysis 

To offer a more intuitive comparison of object detection 

performance, we visualized the detection results of both the 

PointPillars algorithm and the proposed algorithm in various 

scenarios from the KITTI and nuScenes datasets. This 

visualization enables a direct comparison of the detection 

performance between the two algorithms. 

 

1) On the KITTIi dataset 

Fig. 5 and Fig. 6 present a comparison of the detection 

performance of the two algorithms in scenes with a higher 

number of vehicles. Figure (a) showed the visualization of 

the detection effect of the algorithm proposed in this paper, 
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and Figure (b) showed the visualization of the detection 

effect of Pointpillars. The gray points in the figure were 

point clouds and the blue box indicates the car's 3D detection 

box. In Fig. 5(b), PointPillars failed to detect the fourth car 

on the right side of the road, while the proposed algorithm 

successfully detected it, as shown in Fig. 5(a). Similarly, in 

Fig. 6(b), PointPillars missed the car in the right lane ahead, 

but our algorithm detected it successfully, as shown in Fig. 

6(a). These visual results clearly demonstrate that the 

proposed algorithm outperforms PointPillars in detecting 

vehicles. 

Fig. 7 and Fig. 8 show the comparison of detection 

performance in scenes with more cyclists and pedestrians. 

Figure (a) showed the visualization of the detection effect of 

the algorithm proposed in this paper, and Figure (b) showed 

the visualization of the detection effect of Pointpillars. The 

gray points in the figure were point clouds, the red box is the 

pedestrian detection box, the green box was the cyclist 

detection box, and the blue box is the car detection box. In 

Fig. 7(b), PointPillars failed to detect the pedestrians on the 

left side of the scene, whereas the proposed algorithm 

successfully detected them, as seen in Fig. 7(a). In Fig. 8(b), 

where five cyclists are present in the middle of the road, 

PointPillars detected only two, with the others either missed 

or misdetected. In contrast, our algorithm successfully 

detected all five cyclists, as shown in Fig. 8(a). 

 

2) On the nuScenes dataset 

Fig. 9 and Fig. 10 illustrate the comparison of target 

detection performance between our algorithm and 

PointPillars. Figure (a) shows the visualization of the 

detection effect of the algorithm proposed in this paper, and 

Figure (b) shows the visualization of the detection effect of 

Pointpillars. The gray points in the figure are point clouds, 

the red box is the pedestrian detection box, and the blue box 

is the car detection box. 

As shown in these figures, our algorithm outperforms 

PointPillars in detecting both cars and pedestrians. These 

results, derived from the nuScenes dataset, further highlight 

the strong generalization ability of our algorithm. Missed 

detections of distant targets are mainly attributed to sparse 

point clouds, where insufficient data is available at greater 

distances. Overall, our algorithm excels at detecting nearby 

targets. 

In conclusion, although the proposed algorithm still 

missed some detections, its overall detection accuracy, 

particularly for pedestrians and cyclists, is superior to that of 

PointPillars, with significant improvements in detecting 

small objects like pedestrians and cyclists. 

 

 

 
(a) (b) 

Fig. 5. Comparison of the two algorithms' detection effect visualization results in the first scenario of the KITTI dataset 

 

 

 
(a) (b) 

Fig. 6. Comparison of the two algorithms' detection effect visualization results in the second scenario of the KITTI dataset 
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(a) (b) 

Fig. 7. Comparison of the two algorithms' detection effect visualization results in the third scenario of the KITTI dataset 

 

 

 
(a) (b) 

Fig. 8. Comparison of the two algorithms' detection effect visualization results in the fourth scenario of the KITTI dataset 

 

 
(a) (b) 

Fig. 9. Comparison of the results of the visualization of the detection effect of the two algorithms in the first scene of the nuScenes dataset 

 

C.  Ablation Experiment 

To validate the effectiveness of the TFE module and the 

dual-path convolutional architecture proposed in this 

paper, we conducted ablation experiments. We compared 

the detection accuracies of PointPillars, PointPillars + TFE 

module, and PointPillars + TFE module + DPCN 

architecture for cars, pedestrians, and cyclists across three 

difficulty levels in 3D mode. The specific results are 

shown in Table Ⅵ, where "+" indicates PointPillars + TFE 

module and "++" indicates PointPillars + TFE module + 

DPCN architecture. 

As shown in Table Ⅵ, adding the Transformer Feature 

Encoding (TFE) module to PointPillars resulted in a slight
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(a) (b) 

Fig. 10. Comparison of the results of the visualization of the detection effect of the two algorithms in the second scene of the nuScenes dataset 

 

TABLE Ⅵ 

COMPARISON OF ACCURACY OF OBJECT DETECTION BY POINTPILLARS IN 3D MODE WITH OR WITHOUT THIS PAPER MODULE 

Algorithms mAP 
Car Pedestrian Cyclist 

Easy Mod Hard Easy Mod Hard Easy Mod Hard 

Pointpillars 62.78 86.63 76.71 74.17 51.35 47.98 43.80 81.75 63.66 60.91 

+ 62.86 86.81 76.92 74.66 53.10 47.51 44.12 81.36 64.16 62.29 

++ 64.64 86.55 77.23 74.30 54.69 51.03 46.67 83.87 65.46 62.57 

 

increase in mAP (0.08%). However, notable improvements 

were observed in pedestrian detection accuracy at the easy 

level (1.75%) and cyclist detection accuracy at the hard level 

(1.38%). After incorporating 

the dual-path convolutional architecture (DPCN), the 

mAP showed significant improvement, with substantial 

increases in detection accuracy for pedestrians and cyclists. 

These ablation experiment results effectively demonstrate 

the contributions of the TFE module and DPCN architecture 

in enhancing object detection accuracy. 

Ⅴ.   CONCLUSION 

In the field of 3D object detection based on LiDAR point 

clouds, challenges arise from the limited receptive field in 

voxel-based methods and the information loss caused by 

downsampling in 2D convolutional architectures of feature 

pyramids. To address these issues, we propose a novel 3D 

object detection algorithm based on the Transformer model. 

First, we introduce a voxel-based Transformer Feature 

Encoding (TFE) module that effectively expands the 

model’s receptive field. This improvement enhances the 

model’s ability to capture global contextual information, 

which is crucial for detecting objects in complex 

environments. 

Additionally, we integrate a dual-path convolutional 

architecture based on the Feature Pyramid Network (FPN). 

This architecture reduces information loss during the 

downsampling process while improving the model’s 

expressive power by utilizing convolutions at different 

scales for feature extraction. This enables the model to  

handle multi-scale objects more effectively. 

Through quantitative experiments, we show that our 

proposed algorithm outperforms other voxel-based methods 

in terms of detection accuracy, particularly for small objects. 

The results demonstrate significant improvements in 

detecting challenging objects such as vehicles, pedestrians, 

and cyclists in 3D point cloud data. 

Finally, qualitative experiments and visualizations 

confirm that our algorithm effectively detects various 

objects in real-world scenarios. Ablation experiments 

further validate that both the Transformer-based feature 

encoding module and the dual-path convolution architecture 

significantly enhance the model’s detection accuracy. 
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