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Abstract—Student retention is crucial for educational 

institutions, influencing reputation, finances, and ranking 

metrics. Engagement, reflecting a student's connection, 

interest, and effort, plays a vital role in learning, fostering 

critical thinking, and supporting retention. Recent 

advancements use students' poses to predict engagement, 

providing valuable insights without disrupting the teaching-

learning dynamic. The prevailing research trend leans toward 

employing multi-modal approaches, such as a combination of 

pose detection with object detection. However, current 

methods use out-of-date object detection methods and manual 

dataset creation, which is cumbersome, requiring thousands of 

manually annotated data. This problem is then addressed by 

proposing a novel method of student engagement detection, 

using a combination of You Only Look Once Version 8 Mini 

(YOLOv8m) and MediaPipe as state-of-the-art alternatives to 

improve both object detection and human pose estimation. The 

(YOLOv8m + MediaPipe) method surpasses the baseline 

(YOLOv4 + OpenPose) with higher accuracy (0.70 vs. 0.41) 

and lower cross-entropy loss (0.40 vs. 0.60) on the test set, 

confirmed by a statistically significant paired t-test. It also 

exhibits a remarkable speed advantage, around 16 times faster 

than the baseline in pose detection data collection rates. Despite 

not being designed for it, the proposed method achieves 

multiple keypoint detection, matching the baseline’s amount. 

 
Index Terms—computer vision, object detection, pose 

detection, student engagement 

I. INTRODUCTION 

HE ever-expanding application of artificial intelligence 

(AI) impacts people's daily lives. This includes the field 

of education, where AI is being used to develop methods to 

aid learning. Learning is a critical measure of the world's 

civilization and evolution, with enormous implications for 

individuals and societies [1], [2]. Furthermore, university or 

school-related variables like ranking, revenue, and 

reputation are linked to student retention. Therefore, 

learning and engagement in such activities should be 
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monitored and evaluated, and as such, machine learning 

applications in the field of education are necessary [3].  

The level of engagement that students demonstrate with 

the information they are taught is an important aspect of 

learning that must be evaluated. Their conscious or 

subconscious behaviors will be imitated as posture states, 

also referred to as poses, and knowing this can assist 

teachers in providing valuable feedback, enhancing their 

instruction, and gauging the cognitive load of their 

students—especially during complicated learning [4], [5]. 

Applying AI techniques such as machine learning (ML) 

techniques can provide significant insights and highlight 

important trends in students' learning practices [6]. 

Non-verbal clues obtained from the video picture frames 

of the classroom data may be used to identify the non-

intrusive students' participation [7] efficiently. Computer 

vision is particularly good at posture estimation to determine 

human behavior [2], [8]. However, datasets that contain 

engagement levels in a teaching-learning setting are 

extraordinarily rare, especially when the learning is done 

onsite in a classroom setting. Therefore, a primary dataset 

was used for this research, and the process of collecting and 

using the primary dataset combined with the object 

detection mechanism will also be explained. 

 To ensure learners understand the learning materials, 

the teacher-learner interaction must be invested in making 

appropriate educational decisions that can continue and even 

intervene when learners are not engaging. As discussed, the 

current trend mostly uses varied methods to detect non-

intrusive student engagement levels. However, two main 

weaknesses in such methods arise. The first major issue is 

current methods that use out-of-date object detection 

methods, such as YOLOv3 and YOLOv5, which have been 

beaten in accuracy and performance time with current state-

of-the-art object detection methods such as YOLOv8 [9], 

[10], [11], [12], [13]. Data collection presents a second 

challenge, as the process often requires substantial time and 

effort to gather, organize, and validate information, 

especially for large or complex datasets. This intensive 

demand for resources slows down the workflow and limits 

the method's responsiveness to changes, as adjustments may 

require additional data gathering and verification rounds. 

Consequently, the method's flexibility and adaptability 

become constrained, making it more difficult to promptly 

respond to evolving requirements or integrate new insights. 
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 In this study, a novel pipeline utilizes a combination of 

You Only Look Once Version 8 Mini (YOLOv8m) and 

MediaPipe to solve the weaknesses of previous methods, 

particularly in the computational cost and data collection 

speed. This pipeline will now be referred to as the proposed 

method. YOLOv8m will be used as the object detector 

mechanism to detect the students in the classroom, as it is a 

version of the most advanced real-time object detectors 

available today [14]. MediaPipe will detect key points from 

each student’s body and infer the action in poses as it can 

only detect one body. The object detector is used to detect 

multiple bodies. To compare the effectiveness and 

improvements of the proposed method, a similar method by 

[9] using YOLOv4 and OpenPose is chosen as the baseline. 

They used macro-average precision, macro-average recall, 

and accuracy as their evaluation metrics. Therefore, these 

evaluation metrics will also be used in this study, and the 

metrics results will be compared with the proposed method. 

A paired t-test is performed on the cross-entropy loss of the 

test set to assess the statistical significance of the results 

compared to the baseline. Cross-entropy loss is chosen for 

the paired t-test because it reflects better how accurately the 

method classifies specific actions when compared to the 

ground truth [15], [16], [17]. 

II. RELATED WORKS 

 Several studies have identified student behavior in a 

classroom learning setting by detecting students' poses. A 

study suggested in research utilizing person detection and 

skeleton position estimation will be used as the baseline [9]. 

Their method uses a deep neural network to classify 

behaviors and outperforms previous skeleton-based 

approaches. While OpenPose detection and manual 

annotation were used in another study, body pose 

classification used mathematical formulas derived from joint 

angles. Using this technique, they could identify individual 

and group student behavior and assess how it affected 

classroom participation [2]. 

 Other methods use a multi-object pose estimation model 

that incorporates spatiotemporal semantics for various sizes 

and poses of video multi-objects. It uses temporal clues 

between video frames to improve the location of important 

human body parts. It creates modular parts to enhance the 

pose data, improving the pose estimation process using 

YOLOv3 and Lite-HRNet to infer poses [10]. A similar 

technique for identifying and locating student behaviors 

from CCTV images in computer labs of a smart campus was 

proposed in the study. The system uses YOLOv3 for object 

detection and deep neural network-based methods for 

recognizing human activity [11].  

 Furthermore, a technique utilizing the upgraded Faster R-

CNN model was shown for recognizing student postures. 

Due to the low-resolution imaging settings and students' 

concentrated attention in the classroom, tiny, low-quality 

targets are difficult to see. The suggested technique uses 

locality-preserving loss functions to enhance the classifier's 

performance using low-level convolution features, which are 

frequent in high-resolution data [12]. 

 Several studies identify the students' stances using 

transfer learning techniques like VGG-19. Images from 

high-density recordings taken in the classroom using fixed-

angle cameras were gathered into a dataset. Nine hundred 

forty-two files total from eight classes—interest 

(engagement) and non-interest—are included in the 

collection (disengagement) [18]. A single-stage object 

identification technique was also investigated to address 

pose detection issues such as object size fluctuations, 

imbalanced categories, and similarity between categories. 

To enhance the detection performance, the method 

incorporates an adaptive fusion mechanism and a multi-

scale feature detection branch [5]. Another similar method 

uses a deep learning methodology based on spatiotemporal 

representation learning to identify abnormal behavior in the 

classrooms of college students. The study finds that the 

algorithm performs 5% better than the benchmark three-

dimensional CNN, making it an invaluable tool for ensuring 

efficient classroom education. (C3D) [19]. 

 The strategy for covertly analyzing student participation 

in a classroom setting utilizing non-verbal signs, including 

body language, hand gestures, and facial expressions, is 

suggested in this study. The proposed technique classifies 

student involvement levels with 71% accuracy and uses 

convolutional neural network architecture [20]. The 

Squeeze-and-Excitation Networks (SENet) attention 

detection mechanism recommends a YOLOv5s network 

structure based on the YOLO algorithm to recognize and 

evaluate students' classroom behavior, and such a method 

makes scenarios with complicated backgrounds have more 

accurate predictions [13]. For assessing the emotional states 

of students in a classroom setting, it is suggested that a 

unique hybrid convolutional neural network (CNN) design. 

The proposed architecture consists of two models: CNN-1, 

which examines a single student's emotional states in a 

single picture frame, and CNN-2, which employs a few 

students in a single image frame to forecast the overall 

affective state of the class [21]. Studies reviewed showed 

multiple students' pose prediction methods using base CNN 

architecture. However, it is not included in Fig. 1 as most 

base CNN methods are combined with other methods. 

III. RESEARCH METHODOLOGY 

 In most past research, the methods required hundreds to 

thousands of manually annotated data to be accurate, and if 

the data were small, then the accuracy would be terrible [2]. 

These weaknesses are then addressed by proposing a novel 

method of student engagement detection, using a 

combination of YOLOv8m and MediaPipe as state-of-the-

art alternatives.  

 
Fig. 1.  Utilized methods found in previous studies 
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This methodology allows for more efficient data collection, 

reduces the reliance on manual annotation, and improves 

scalability. The overall pipeline is depicted in Fig. 2 to 

better illustrate the research workflow. 

A. Data collection 

 The initial data collection phase involves capturing poses, 

which will be recorded in video format. These poses will be 

captured using a laptop webcam, with keypoint coordinates 

and pose classifications determined using MediaPipe. The 

poses to be classified include "on_the_phone," "raise_hand," 

"bored," "sleeping," and "engaged," as illustrated in Fig. 3.  

This process involves filtering to identify keypoints that 

significantly impact detection accuracy. The figure 

illustrates the poses with color-coded keypoints numbered as 

follows: “1” for nose, “2” for shoulder, “3” for elbow, and 

“4” for wrist. For instance, in Fig. 3a, five keypoints are 

captured: the nose, shoulders, the elbow, and the wrist. This 

result is captured in coordinates, with an example in Table I. 

Each pose detection includes 14 features, comprising seven 

keypoints' x-axis- and y-axis coordinates. Dataset is 

available at: https://github.com/Zayphen/pose_coordinate.  

 

Fig. 2.  Conceptual framework 
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(a) Raise hand 

  

(b) Engaged 

  

(c) On the phone 

  

(d) Bored 

Fig. 3.  Samples of captured pose keypoints 
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The data collection process comprises six sessions, each 

gathering an average of 500 frames. The "raise_hand" and 

"bored" poses were collected twice, accounting for 

variations in right—and left-hand dominant movements. 

Fig. 4 provides examples of each pose and its key points, 

with each key point color-coded for clarity. 

B. Pre-processing 

 Data pre-processing is done to ensure the optimal 

performance of the created dataset. Afterward, shuffling is 

done on the dataset, given that dataset shuffles are known to 

enhance the learning’s statistical performance [24]. The 

dataset was split to train and validation split, as it had a 

more substantial influence, notably on modeling at larger 

dataset sizes, and the overall performance of the models rose 

with the size of the dataset [25]. Therefore, the obtained data 

was divided into training and validation sets in an 80:20 

ratio, with 80% used for training and 20% for validation. 

C. Classifier Model 

 The pre-processed data was trained, the purpose of which 

was to classify the poses from the coordinates collected. The 

model layers can be seen in Fig. 5. The model uses a simple, 

fully connected layer with the input layer having the same 

amount of number as the feature, which is 14, and then put 

To eight and four dense layers, respectively, until the output 

layer of four dense layers, as there are four classes, is 

present. 

D. Inference 

 To better see the pose detection driven by the proposed 

method, it encapsulates the diverse conditions and situations 

curated and examined as part of the experimental 

framework. YOLOv8m is used for the first stage of 

inference to detect students sitting in a classroom setting and 

separate each student into bounding boxes. Afterward, 

MediaPipe inferred each pose of the detected students and 

collected them for evaluation. There are 3049 data for the 

test set. The various pose scenarios used to test the model 

are shown in Fig 6. The first pose scenario is single-person 

pose detection, followed by two-person pose detection, and 

afterward, four-person detection to see the proposed 

method’s capability to determine the poses when depth is 

involved. Apart from that, a scenario of two people with 

different poses was also carried out to test the robustness of 

the model. The scenario conditions were similar in terms of 

the classroom environment. All the test scenarios used were 

in 480p. 

E. Evaluation Schema 

 The baseline method based on [9] research that uses the 

combination of OpenPose and YOLOv4 and the proposed 

method were compared on the test set to produce 

comparable evaluation metrics on macro-average precision 

(Equation 1), macro-average recall (Equation 2), accuracy 

(Equation 3), softmax probabilities (Equation 4), and cross-

entropy loss (Equation 5). Finally, the paired t-test was 

performed to establish the result's significance and to 

confirm that the result was not acquired by chance. The 

paired t-test is a widely used statistical hypothesis test in 

pain studies, evaluating the probability of a difference 

between two groups without relying on an absolute 

standard; therefore, it will be used as the inferential statistic 

metric to see the magnitude of significance [16]. The paired 

t-test formula is represented by Equation 6. 

 
(1) 

 
(2) 

 

(3) 

 
(4) 

 
(a) One person poses a 

classification 

 
(b) Two-person pose classification 

 
(c) Four-person pose classification 

 
(d) Two-person pose classification 

with different poses per person 

Fig. 6.  Scenarios of test set 

 

 
Fig. 4.  Keypoints used for pose detection 

 

 
Fig. 5.  Fully-connected network classifier model 

TABLE  I 

POSE DATA REPRESENTATION 

class x11 y11 x12 … y16 

on_phone 0.4687 0.478 -0.688 … 0.999 

on_phone 0.471 0.467 -0.715 … 0.999 

on_phone 0.469 0.466 -0.748 … 0.999 

on_phone 0.458 0.466 -0.800 … 0.999 

… … … … … … 
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(6) 

To visualize the results gathered better, illustrations of the 

misclassification rate of the models by confusion matrix are 

also used. The y-axis shows the actual label (ground truth), 

and the x-axis shows the predicted label. Therefore, only the 

diagonal line of the matrix indicates its correct prediction or 

true positive (TP). 

IV. RESULT AND DISCUSSION 

A. Pose Extraction Time 

 The proposed method extracts pose much faster than the 

baseline, lasting about 2 minutes and 30 seconds every 

session. The proposed approach took 15 minutes in total. In 

contrast, the baseline method took 255 minutes (4 hours and 

15 minutes). Therefore, the proposed method's data 

gathering is 17 times faster than the baseline, as shown in 

Fig. 7. Efficiency in data gathering is crucial for assessing 

model robustness across multiple settings or populations, 

underlining the need for wide-ranging data collecting [26]. 

Moreover, model performances are increased with the 

database size scaling, and the power law in the context of 

more data equates to better results [27]. 

B. Exploratory Data Analysis 

 A total of 7351 keypoints data were collected for training, 

and 3049 frames of video data were collected for testing. In 

Fig. 8, a representation of the data distribution is shown; the 

collected data consists of 1350 "engaged" class keypoints, 

which represent 18.36 % of the data, 2700 "bored," which 

represents 36.72 % of the data, 2700 "raise hand," which 

represents 36.72 % of the data, and 600 "on_the_phone," 

which represents 8.16% of the data. The color coding 

reveals the coordinates of each keypoint according to the 

classes. It is also clear that "raise hand" and "bored" have 

substantially more keypoints collected, accounting for 72% 

of the information because both classes are differentiated by 

the right or left hand. 

 Focusing on hands and upper body joints is critical for 

observing student behavior in the classroom. Hand 

movement changes significance as a feature increases the 

model's categorization abilities using XGBoost's gain-based 

feature significance score [28]. As shown in Fig. 9, the 

baseline's (Fig. 9a) most important keypoints are , , , 

, and are related to the general arm area, with a decline 

from the neck ( ) to the left elbow ( ). The proposed 

method (Fig. 9b) identifies. , , , , and  

The most critical key points correspond to the general arm 

area.  

 To conclude, the proposed method significantly improves 

the efficiency of pose extraction, reducing the session time 

to 2 minutes and 30 seconds per session, totaling 15 minutes 

overall. In contrast, the baseline method required 255 

minutes (4 hours and 15 minutes), making the proposed 

method 17 times faster, as demonstrated in Fig. 7. This 

enhanced efficiency is vital for evaluating model robustness 

across diverse populations and settings, supporting 

comprehensive data collection. Additionally, model 

performance improves with larger datasets, following the 

power-law relationship where more data yields better 

results. 

7,351 key points were gathered for training, with 3,048 

frames used for testing. The dataset distribution, shown in 

Fig. 8, includes 1,350 key points for the "engaged" class 

(18.36%), 2,700 for both "bored" (36.72%) and "raise hand" 

(36.72%), and 600 for "on_the_phone" (8.16%). The 

majority of key points belong to the "bored" and "raise 

hand" classes (72%), which are distinguished by hand 

movements. 

To conclude, hand movements (shoulders to palm area) 

enhance the model's classification ability using XGBoost's 

gain-based feature significance score. Fig. 9 highlights the 

most important keypoints for the baseline (Fig. 9a) and 

proposed (Fig. 9b) methods. While both models prioritize 

keypoints in the general arm area, the baseline shows a 

decline from the neck to the elbow, while the proposed 

method identifies keypoints in the lower arm and hand 

regions as more critical. 

 

 
Fig. 7.  Comparison of total data collection rate per second 

 

 
Fig. 8.  Distribution of classes in the dataset 
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Both methods recognize elbow and wrist keypoints as 

essential but differ in the neck as they are absent from the 

proposed method. Both methods also exhibit satisfactory 

training validation results, indicating effective model 

generalization. However, a good fit is indicated by stable 

points in both training and validation losses, minimizing the 

generalization gap [29], where smoother learning curves are 

generally preferred for better generalization [30]. The 

proposed method displays a smoother curve compared to the 

baseline, as shown in Fig. 10, which helps to identify 

overfitting, where training loss decreases continuously while 

validation loss starts to increase. The result of this process is 

shown in Table II. 

  

 
The proposed method's smoother learning curve (Fig. 10b), 

compared to the baseline method (Fig. 10a), suggests it may 

achieve better generalization performance on unseen data. A 

smoother curve indicates that the model is effectively 

learning the underlying patterns of the data without 

overfitting. 

TABLE  II 

TRAINING VALIDATION RESULT 

Metric Baseline Proposed 

Training 
Accuracy 0.9942 0.9951 

Loss 0.1705 0.2469 

Validation 
Accuracy 0.9993 0.9946 

Loss 0.1525 0.2566 

 

 
(a) Baseline method 

 
(b) Proposed method 

Fig. 9.  Feature importance of each method 
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(a) Baseline method 

 
(b) Proposed method 

Fig.  10.  Feature importance of each method 
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C. Scenarios (Test Sets) Result  

This sub-chapter details the results achieved by 

integrating object detection with pose estimation techniques 

of the baseline method, YOLOv4, and OpenPose, with the 

proposed YOLOv8 and MediaPipe based on given 

scenarios, by highlighting key differences in performance, 

accuracy, and clarity between the two approaches. The 

comparative analysis emphasizes the proposed method’s 

faster inference and superior detection capabilities, 

demonstrating its potential advantages in real-world 

applications and improving multi-modal human pose 

analysis. To better visualize the expected outcomes from the 

methods, an illustrative example of the proposed method’s 

results is presented in Fig. 11. This figure compares the 

outputs inferred by the baseline method above the 

illustration inferred by the proposed method, which will also 

be the case for the subsequent comparisons. 

In addition to the visual comparison of inferences between 

the proposed and baseline methods, a detailed analysis uses 

quantitative  

metrics such as correct prediction rates, cross-entropy loss, 

macro-average precision, recall, and accuracy. A spider 

chart will highlight each model's strengths and weaknesses, 

with axes representing each class. The further the 

performance extends along an axis, the stronger the model 

for that class, offering a clear and intuitive comparison. To 

complement this, confusion matrices will also be color-

coded: the baseline method in blue and the proposed method 

in green, with lighter shades indicating fewer predictions 

and darker shades indicating higher predictions, making it 

easy to distinguish the performance differences between the 

two methods. 

1) One-person Pose Recognition 

 The first illustrated inference comparison focuses on one-

person detection. The data for this scenario consists of 501 

frames, distributed across four distinct poses: 78 frames for 

"raise_hand," 121 for "engaged," 241 for "bored," and 61 for 

"on_the_phone." This distribution reflects the likelihood of 

these actions occurring in real-life situations, allowing for a 

comprehensive evaluation of the model's performance in a 

realistic context. Fig. 12 provides an example of the 

"on_the_phone" pose demonstrated by a volunteer. 

In this scenario, the baseline method shows 

misclassification, particularly for the "on_the_phone" class, 

which is often confused with "engaged" and "bored." The 

baseline method failed to correctly predict any 

"on_the_phone" instances, misclassifying all 62 frames as 

"bored." The "raise_hand" class was sometimes 

misclassified as "bored." The confusion matrix highlights 

these issues, with the baseline achieving an overall accuracy 

of 0.80, while the macro-average precision, recall, and F1-

score were 0.66, 0.63, and 0.62, respectively. 

In comparison, the proposed method performed better, 

though the "on_the_phone" class still faced some 

misclassification as "engaged" and "bored." Despite this, the 

proposed method achieved more correct predictions overall, 

with occasional misclassifying of "raise_hand" as "bored." 

The proposed method's overall accuracy was 0.90,  

 
Fig. 11.  Illustration of the expected result 

 

 

 

 
Fig. 12.  One-person pose recognition 
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And its macro-average precision, recall, and F1-scores were 

0.87, 0.93, and 0.89, respectively.  

Table III presents a detailed comparison between the two 

methods. While the baseline method showed a lower cross-

entropy loss (0.23 vs. 0.28), the proposed method 

outperformed other metrics. Macro-average precision was 

higher for the proposed method (0.87 vs. 0.66), as was 

macro-average recall (0.93 vs. 0.90). Finally, the proposed 

method achieved greater accuracy (0.90 vs. 0.80). 

2) Two-people Pose Recognition 

 The second inference comparison focuses on the two-

person detection scenario to see each model’s capability in 

detecting multiple people in the frame; the data for this 

scenario has a total of 822 frames. These frames are 

categorized into four actions: 210 for "raise_hand," 212 for 

"engaged," 214 for "bored," and 186 for "on_the_phone." 

This diverse set evaluates the model's ability to detect 

interactions between two subjects performing different 

actions. Fig. 13 presents an example where both volunteers 

perform the "engaged" pose, illustrating the model's 

capacity to accurately recognize simultaneous actions within 

the same frame. 

The baseline method’s correct prediction rate dropped 

significantly for two-person detection, especially in the 

"bored" and "engaged" classes. Out of 619 frames labeled 

"bored," only 183 were classified correctly, while "engaged" 

had only 26 correct classifications out of 164. The 

"raise_hand" class performed better, achieving a higher 

correct classification rate. The confusion matrix (Fig. 14) 

shows that most misclassifications were labeled as "bored," 

with 619 out of 821 predictions classified incorrectly, 

leaving only 202 correct. Additionally, the baseline method 

struggled again with "on_the_phone" classifications. As a 

result, the macro-average precision was 0.32, the macro-

average recall was 0.28, and the overall accuracy was 0.29. 

The proposed method, in contrast, showed flawless 

prediction accuracy for the "on_the_phone" class in this 

scenario, which previously faced issues. However, 

misclassifications were more frequent in the "engaged" 

class, with 93 out of 186 frames misclassified. The 

confusion matrix for the proposed method (Fig. 18) also 

highlighted that "bored" was often misclassified as 

"raise_hand," with 107 out of 214 frames misclassified. 

Despite these challenges, the proposed method delivered 

better performance, achieving a macro-average precision of 

0.83, a macro-average recall of 0.75, and an overall 

accuracy of 0.75. 

 

 

 

Table IV provides a summary of the two-person detection 

results. The baseline method exhibited a higher cross-

entropy loss (0.71 vs. 0.34), while the proposed method 

outperformed all other metrics. The macro-average precision 

was significantly higher for the proposed method (0.83 vs. 

0.32), as was the macro-average recall (0.83 vs. 0.28). 

Overall accuracy for the test set was also higher for the 

proposed method (0.75 vs. 0.29). 

3) Four-people Pose Recognition 

 The four-person detection scenario includes a total of 

1298 frames, divided into 488 for "raise_hand," 262 for 

"engaged," 503 for "bored," and 45 for "on_the_phone." 

This dataset comprehensively tests the model’s ability to 

track and differentiate between multiple subjects performing 

various actions simultaneously. An example from the test set 

is shown in Fig. 14, where all volunteers perform the 

"bored" pose with their right hand. This example highlights 

the model's capability to detect even more complex 

coordinated actions across multiple individuals within the 

same frame. 

The baseline method’s correct prediction rate dropped 

even more than the one-person and two-person detections. 

Although the baseline method detected "on_the_phone" 

poses, every classification for this class was incorrect. The 

highest correct classification rate was for the "bored" pose, 

frequently misclassified as "raise_hand," with 253 out of 

597 instances being wrongly labeled. 

TABLE  III 

ONE-PERSON RECOGNITION RESULT 

Evaluation Metric Baseline Proposed 

Total data 501 

Cross-entropy Loss 0.23 0.28 

Macro-Average Precision 0.66 0.87 

Macro-Average Recall 0.63 0.93 

Accuracy 0.80 0.90 

 

 

 
Fig. 13.  Two-people pose recognition 

 
TABLE  IV 

TWO-PEOPLE RECOGNITION RESULT 

Evaluation Metric Baseline Proposed 

Total data 822 

Average Cross-entropy Loss 0.71 0.34 

Macro-average Precision 0.32 0.83 

Macro-average Recall 0.28 0.75 

Accuracy 0.29 0.75 
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While the proposed method improved overall 

performance, it also struggled with misclassifications, 

especially for the "on_the_phone" and "engaged" poses. 

Misclassifications were similar to the one-person and two-

person scenarios. The "on_the_phone" class had the highest 

rate of error, with 200 out of 393 misclassified as "bored," 

while the "engaged" class saw 54 misclassifications as 

"bored" and 65 as "on_the_phone," resulting in 119 

incorrect labels from 262 frames. 

Regarding metrics, the baseline method had a higher 

cross-entropy loss (0.61 vs. 0.53). In contrast, the proposed 

method showed superior macro-average precision (0.56 vs. 

0.27), macro-average recall (0.50 vs. 0.29), and overall 

accuracy (0.53 vs. 0.41). These comparisons demonstrate 

that while both methods struggled with certain classes, the 

proposed method consistently outperformed the baseline 

across all the evaluation metrics.  

The four-people pose recognition result summary can be 

seen in Table V. The four-people pose detection is the final 

identical pose recognition trial. It can be assumed that the 

cause for both methods, especially the baseline struggle to 

classify "on_the_phone" and misclassifications, are mainly 

classified as the "bored" class. The dataset imbalance most 

likely causes this, as the "on_the_phone" class only 

represents the lowest class, representing 8.17% of the total 

dataset. Also, its keypoint locations are similar to other 

poses, specifically, "raise_hand" and "bored." 

 
4) Different Poses Recognition 

 The differing poses detection scenario includes a total of 

428 frames, divided into 213 for "raise_hand," 91 for 

"engaged," 63 for "bored," and 61 for "on_the_phone." 

Using two volunteers, this dataset evaluates the model’s 

ability to detect different actions performed by multiple 

subjects within the same frame. Fig. 15 provides an example 

where one volunteer is shown in the "bored" pose with their, 

while the other performs the with their left hand 

"raise_hand" pose, demonstrating the model's effectiveness 

in recognizing varied actions simultaneously. 

 The results of the different poses detection test set, 

summarized in Table VI, reveal a clear contrast in 

performance between the baseline and proposed methods. 

One key difference is the cross-entropy loss, where the 

baseline method showed a significantly higher value (0.77 

vs. 0.27), indicating that the proposed method was far more 

effective in minimizing prediction errors and aligning the 

predictions closer to the actual labels. 

Regarding macro-average precision, the proposed method 

outperformed the baseline by a large margin (0.88 vs. 0.22). 

This metric highlights how the proposed method is more 

precise in its predictions and better at accurately classifying 

positive samples across the various pose categories. The 

same pattern is evident in macro-average recall, where the 

proposed method achieved a considerably higher score (0.55 

vs. 0.23). This improvement in recall shows that the 

proposed method was more capable of identifying true 

positive cases, effectively minimizing the misclassifications 

for each pose. 

 

 

 
Fig. 15.  Two-people pose recognition 

TABLE VI 

DIFFERING POSES RECOGNITION RESULT 

Evaluation Metric Baseline Proposed 

Total data 428 

Average Cross-entropy Loss 0.77 0.27 

Macro-average Precision 0.22 0.88 

Macro-average Recall 0.23 0.55 

Accuracy 0.19 0.89 

 

 

 
Fig. 14.  Four-people pose recognition 

TABLE V 

FOUR-PEOPLE RECOGNITION RESULT 

Evaluation Metric Baseline Proposed 

Total data 1298 

Average Cross-entropy Loss 0.61 0.53 

Macro-average Precision 0.27 0.57 

Macro-average Recall 0.29 0.55 

Accuracy 0.41 0.53 
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Finally, the overall accuracy of the models provides a 

clear indication of their performance, with the proposed 

method demonstrating a significantly better accuracy 

(0.89 vs. 0.19). This stark difference shows that the 

proposed method could correctly classify most frames in 

the test set, whereas the baseline struggled to achieve 

reliable predictions.  

D. Overall result 

From all the comparisons that have been made to 

measure the performance of the baseline and proposed. 

Starting from the data extraction time. The proposed pose 

extraction approach outperforms the baseline, with an 

average processing time of 2 minutes and 30 seconds each 

round, against the 42 minutes and 30 seconds for the 

baseline. The proposed method takes around 15 minutes, 

but the baseline method takes roughly 255 

minutes, comparable to 4 hours and 15 minutes. This 

implies that the proposed method's data-collecting 

procedure is 17 times quicker than the baseline. Regarding 

scalability, when new data collection is necessary or a 

continuation of currently collected data must be done, the 

proposed method will require much less time than the 

baseline. Determining how robust a model is to change in 

setting or population is a crucial part of this, and it 

typically requires applying the model to several 

independent datasets. The proposed method outperforms 

the baseline across all key metrics, demonstrating 

improved accuracy, precision, recall, and a lower cross-

entropy loss, as shown in Table VII. 

The spider charts shown in Fig. 16 illustrate the 

prediction performance of different pose recognition 

models. The legend in Fig. 16 represents the color-coded 

classifications used in the spider chart to distinguish 

performance across different pose recognition scenarios: 

"One-Person Pose Recognition" (blue), "Two-People Pose 

Recognition" (orange), "Four-People Pose Recognition" 

(green), and "Differing Poses" (red). Each color aligns 

with its respective model's performance line, clearly 

comparing strengths and weaknesses across these 

classifications. Both models, particularly for the class 

"on_the_phone," demonstrate weaknesses in prediction 

accuracy. This class is consistently predicted with lower 

correctness across the charts. Moreover, the models face 

further challenges as the number of objects increases, such 

as moving from one-person to four-people pose recognition. 

This decrease in performance can be seen across the radar 

chart, where the overlap between the different models 

becomes more significant, indicating reduced precision in 

recognizing specific poses as complexity increases. 

The confusion matrix results in Fig. 17 help identify the 

classification result holistically based on the 3049 data on 

the test set. The baseline (Fig. 17a) misclassified all the 

“on_the_phone” classifications. Only the “raise_hand” 

classification resulted in a higher correct classification rate, 

although very slightly. The proposed method’s correct 

classification result (Fig. 17b) shows that it only struggled 

on “on_the_phone” classifications, showing a higher 

incorrect classification rate. All the other classes, however, 

have a higher correct classification rate. It is worth 

investigating the challenges both methods faced in 

classifying "on_the_phone" instances as further 

improvements for similar scenarios, as the observed 

disparity in classification performance between the two 

methods underlines the importance of identifying and 

addressing the specific challenges encountered by both 

methods in other similar scenarios. 

 
(a) Baseline method 

 
(b)  Proposed method 

Fig. 16. Comparison of spidercharts 

 

TABLE VII 

EVALUATION RESULT 

Evaluation 

Metrics Baseline Proposed 

Average Test-set Cross-entropy Loss 0.60 0.40 

Macro-average Precision 0.22 0.88 

Macro-average Recall 0.23 0.55 

Accuracy 0.19 0.89 
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 Evaluation based on accuracy values, where higher values 

indicate superior performance, reveals that the proposed 

method consistently outperforms the baseline. Fig. 18 

illustrates the results gathered from the testing on each 

scenario, with green indicating the better result and red 

indicating the worst result. The baseline method achieved 

results of 0.60, 0.29, 0.41, and 0.19 across different 

scenarios, resulting in an overall accuracy of 0.40. In 

contrast, the proposed method achieved better results with 

higher accuracy values of 0.90, 0.75, 0.54, and 0.91, giving 

an overall accuracy of 0.78. 

 In terms of the cross-entropy loss on the test set, the 

baseline method records test-set cross-entropy losses of 

0.23, 0.70, 0.61, and 0.77, while the proposed method 

achieves better results with lower cross-entropy test-set 

losses of 0.28, 0.34, 0.52, and 0.27. The proposed model 

demonstrates superior performance with lower loss values in 

three scenarios. It is crucial to highlight that the baseline 

method's loss increases with more people in the frame, 

reaching its worst result in the scenario involving differing 

poses, where the proposed method excels. 

 

 
(a) Baseline method 

 
(b) Proposed method 

Fig. 17.  Comparison of each method’s confusion matrix 
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In summary, in both metrics regarding the accuracy of the 

method and the cross-entropy loss, the proposed method  

consistently outperforms the baseline method. This 

consistent higher result in accuracy and lower cross-entropy 

loss highlights the proposed method's efficacy and potential 

for improved performance in diverse environments, 

emphasizing its robustness and reliability in accurate 

classifications. The proposed model's demonstrably superior 

accuracy across various conditions. 

 The cause of differing inference speeds is how the 

baseline method handles keypoint detection. Baseline uses 

Part Affinity Fields, and it can capture the relationships 

between different body parts, helping the network 

understand how limbs connect and how bodies are 

structured which includes the ability to capture rich spatial 

information about key point locations, which facilitates 

better handling of complex poses and occlusion, as well as 

offering flexibility in post-processing, enabling techniques 

like non-maximum suppression for refining predictions [31]. 

However, it entails the limitation of accuracy by the 

resolution of the heatmaps, potentially resulting in imprecise 

localization, and peak detection on heatmaps might not 

always align with the actual keypoint position, thereby 

introducing errors, and the error rate of such can be shown 

in Fig. 19. 

 
(a) Baseline method 

 
(b) Proposed method 

Fig. 18.  Comparison of accuracy and test-set loss of the methods 
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The proposed method uses heatmap regression that can 

directly predict keypoint coordinates with higher accuracy 

than peak finding on heatmaps and less sensitivity to 

heatmap resolution, potentially maintaining accuracy even 

with smaller feature maps. When heatmap is combined with 

YOLOv4, the computational expenses make it much slower 

than the proposed method, and it introduces the problem of 

double detection when region-of-interest intersects on the 

same person, which only happens with the proposed 

method. A clearer side-by-side comparison is shown in Fig. 

20. 

 
(a) Baseline method 

 
(b) Proposed method 

Fig. 19.  Correct classification of each method 
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To summarize, most of the scenarios resulted in the lower 

cross-entropy loss of the proposed method, with the correct 

classification prediction rate shown in Fig. 20, where the 

baseline method shows a higher misclassification rate when 

compared to the proposed method. The baseline 

misclassified all the “on_the_phone” classifications, and 

only the “raise_hand” classification resulted in a higher 

correct classification rate, even though it was very slight. 

Although incorrect “on_the_phone” classification also 

happened in the proposed method, it showed that more data 

for the “on_the_phone” class was necessary as the pose was 

similar to “raise_hand.” 

Regarding data extraction time, the proposed pose 

extraction approach outperformed the baseline, with an 

average collection time of 2 minutes and 30 seconds each 

round, against the 42 minutes and 30 seconds for the 

baseline. The proposed method took around 15 minutes, but 

the baseline method took roughly 255 minutes, comparable 

to 4 hours and 15 minutes. This implies that the proposed 

method's data-collecting procedure is 17 times quicker than 

the baseline. Regarding scalability, when new data 

collection is necessary or a continuation of currently 

collected data must be done, the proposed method will 

require much less time than the baseline. Determining how 

robust a model is to change in setting or population was a 

crucial part of this, and it typically requires applying the 

model to several independent datasets.  

For this reason, the significance of data gathering cannot 

be overstated [26]. Furthermore, the power law in the setting 

of additional data yields better findings, and model 

performances grow as database size scales [27].  

 While both methods show satisfactory training validation 

results and the model can generalize well, smoother curves 

are usually considered good learning curve behavior in 

terms of better generalization [30]. The proposed method 

has a softer curve than the baseline, as shown in Fig. 9. 

When the validation loss lowers up to a particular point 

before climbing again. At the same time, the training loss 

keeps decreasing with experience. A plot of learning curves 

suggests overfitting. A "generalization gap" occurs when a 

model performs worse on the training dataset than on the 

validation dataset. When the training loss drops to a stable 

point, and the validation loss likewise reaches a stable point 

with a small gap relative to the training loss, a learning 

curve plot shows a successful match [29]. 

The proposed method resulted in a lower cross-entropy 

loss for most scenarios, with a higher correct classification 

rate than the baseline, which struggled more with 

misclassification. The baseline misclassified all 

"on_the_phone" instances, while the proposed method 

performed better, though both methods faced challenges 

with this class due to its similarity to "raise_hand." The 

confusion matrix shows that the baseline mostly 

misclassified "on_the_phone" as "bored," while the 

proposed method had higher correct classification rates 

across other classes but still struggled with "on_the_phone.". 

Descriptive and inferential statistics are shown in Table VIII 

and Table IX, respectively. 

 
Fig. 20.  Overall correct classification chart comparison 
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 The result’s statistical significance is proven with a paired 

t-test done on the cross-entropy loss, with α = 0.05; 

therefore, if the p-value < 0.05, the result is deemed 

statistically significant. In contrast, if the result is 

statistically significant, H(0) is rejected, and H(1) is 

accepted; otherwise, if the result is deemed statistically 

insignificant, H(0) is accepted. The proposed method's mean 

value is 0.402, with a standard deviation of 0.356 and a 

variance of 0.127. In contrast, the baseline method exhibits a 

higher mean of 0.597, accompanied by a standard deviation 

of 0.410 and a variance of 0.168. 

 The proposed method substantially improves efficiency, 

accuracy, and overall performance compared to the baseline 

approach. With a data extraction process that is 17 times 

faster, the proposed method significantly reduces processing 

time, making it more suitable for scalable applications. 

Moreover, the proposed model consistently outperforms the 

baseline regarding cross-entropy loss, accuracy, macro-

average precision, and recall, achieving superior results 

across multiple evaluation metrics. 

The proposed method exhibits a smoother learning curve, 

better generalization capabilities, and a lower 

misclassification rate, especially in challenging pose 

recognition scenarios. While both methods struggled with 

the "on_the_phone" classification, the proposed approach 

still showed a higher correct classification rate. The 

statistical analysis, reinforced by a paired t-test, reveals a 

significant difference between the two methods, with a p-

value < 0.05, confirming the robustness and reliability of the 

proposed method. These findings underline the method's 

potential for diverse real-world applications, offering both 

computational efficiency and improved classification 

accuracy. 

V. CONCLUSION 

 The proposed YOLOv8 and MediaPipe combination 

method is proven better in accuracy and test-set cross-

entropy loss. The baseline method, consisting of YOLOv4 

and OpenPose combination accuracy, achieved only 0.41 on 

average. The proposed method managed to outperform the 

baseline method by scoring 0.70. The same happens with the 

average cross-entropy loss, which also shows that the 

baseline is beaten by the proposed method, as the baseline 

method scored only 0.60, while the proposed method scored 

0.40. The paired t-test result is proven to be statistically 

significant. The comparison in terms of data collection rates 

for pose detection reveals a considerable difference, with the 

proposed method showing a remarkable advantage in speed, 

achieving a rate 17 times faster than the baseline method. 

The proposed method is not primarily intended for multiple 

pose detection. However, it can give the same number of 

person predictions, indicating that the proposed method can 

do multiple keypoint detection with the help of an object 

detector [32], [33].  

 This research suggests several directions for future 

exploration regarding engagement detection in a classroom 

environment. First, there is potential to optimize the 

accuracy of the proposed pose detection method while 

maintaining its impressive speed, especially in situations 

where blur and occlusion can be handled [34], [35]. 

Additionally, adapting the approach to detect multiple poses 

efficiently could broaden its applicability. The last is the 

development of hybrid methods that combine the strengths 

of different techniques that may offer a balanced solution, 

aiming for versatility and practicality in real-world scenarios 

[36]. 
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