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Abstract—The limited number of labeled samples can
significantly affect the accuracy of speech lie detection systems.
However, semi-supervised algorithms have been shown to
effectively improve detection performance under such
constraints. To address this challenge, this paper proposes a
semi-supervised speech lie detection algorithm that utilizes
multiple features and adaptive thresholds. First, through
comparative analysis, this paper identifies 312-dimensional
acoustic features and 768-dimensional self-supervised features
as the key elements of lie detection. Then, these acoustic
features are processed using a bidirectional long short-term
memory network (Bi-LSTM), which obtains comprehensive
information by analyzing acoustic statistical features in both
forward and backward directions. Subsequently, this paper
develops a semi-supervised feature fusion module (BSFM) to
extract deeper insights from basic features and achieves
adaptive feature fusion through targeted training. In addition,
based on a detailed analysis of the distribution characteristics
of lie detection samples, this paper proposes an improved
Freematch algorithm to better utilize unlabeled data.
Experimental results show that the proposed algorithm
outperforms most existing methods on the self-built H-Wolf
dataset and the Columbia/SRI/Colorado Corpus (CSC).

Index Terms—Semi-supervised, BSFM, adaptive threshold,
machine learning.

I. INTRODUCTION

L IE detection is a crucial research area in fields such
as computational linguistics, psychology, and military

science [1], [2]. The psychological phenomenon of lying is
complex, influenced by a combination of emotions,
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cognition, and willpower. Traditional deception detection
techniques primarily analyze physiological responses,
which—though informative—require extended procedures
and remain susceptible to intentional control by subjects.
Recently, speech-based deception detection methods have
emerged as a promising alternative, overcoming the
limitations of traditional approaches by analyzing speech
data and demonstrating significant research potential.

With continuous advancements in speech signal
processing technology, a variety of acoustic features (e.g.,
MFCCs, energy, frequency) have been developed to extract
key information from speech. These features effectively
capture the low-level and localized characteristics of speech
signals and have been widely applied in numerous speech
analysis tasks. For instance, M. Graciarena et al. [3]
improved system accuracy by combining prosodic and
lexical features with mixed model scores based on acoustic
features. Similarly, researchers at Columbia University [4]
integrated multiple feature types for lie detection, achieving
high accuracy on the CSC corpus. Kirchhuebel et al. [5]
studied how different dialogue patterns influence deception
detection by analyzing acoustic and temporal features, with a
focus on emotional arousal, cognitive load, and self-control.

In recent years, the rise of deep learning has shifted the
focus toward deep features, which capture higher-order and
abstract characteristics of speech through deep neural
networks. These features are highly sensitive to subtle
changes in deceptive speech. Xie et al. [6] combined
spectral features, leveraging the orthogonality and translation
invariance of Hu matrices, with deep learning methods,
achieving excellent classification results using deep belief
networks. Liang et al. [7] employed convolutional long
short-term memory (LSTM) networks to extract deep
frame-level features, achieving promising recognition results
on a self-constructed lie detection database. However,
despite the advantages of deep features in representing data,
their reliance on large labeled datasets and susceptibility to
data distribution biases limit their generalizability,
particularly in small-sample or unevenly distributed datasets.
Insufficient labeled data remains a key challenge in
advancing speech-based lie detection [8]. Semi-supervised
learning has shown promise in addressing this issue. For
instance, Fernandes et al. [9] achieved high-precision
deception detection by analyzing three conversation
recordings. They extracted cepstral/spectral energy features
and then applied a hybrid approach combining the
Levenberg-Marquardt optimization algorithm with an
LSTM-based classification algorithm for nine different
combinations of training-testing configurations. Su et al. [10]
separately trained BiLSTM networks and SVM models, then
fused their classification results through a decision-level
scoring scheme. Fang et al. [11] proposed a hybrid model
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combining semi-supervised denoising autoencoders (DAEs)
with fully supervised LSTM networks, significantly
improving the accuracy of semi-supervised speech lie
detection. Building on these advancements, this paper
enhances the Freematch algorithm [12] by introducing an
adaptive thresholding mechanism. An initial global threshold
is established based on sample distribution and iteratively
optimized using batch confidence. Local thresholds are
generated using the exponential moving average method, and
the final adaptive threshold is formed by normalizing and
combining both the global and local thresholds. This
iterative adjustment process enhances model performance
and data utilization.

In summary, this paper proposes a semi-supervised speech
lie detection algorithm that integrates multiple features and
adaptive thresholds. Through a comprehensive comparative
analysis of speech features, 312-dimensional acoustic
features and 768-dimensional self-supervised features are
selected as the basis for lie detection to ensure the
comprehensive presentation of multi-dimensional speech
information. This paper constructs a semi-supervised feature
fusion model (BSFM) and uses the bidirectional sequence
modeling capability of the Bi-LSTM network to effectively
fuse and extract deep information from acoustic features and
self-supervised features. In order to further improve the
utilization of unlabeled data, this paper introduces an
improved Freematch algorithm, which significantly improves
the robustness, efficiency, and generalization ability of the
model.

II. MODELS AND METHODS

The algorithm framework proposed in this paper is
illustrated in Fig. 1. The model consists of modules for
feature extraction, feature processing and fusion, a
semi-supervised adaptive threshold algorithm, and other
components. It aims to fully leverage the complementary
information between acoustic statistical features and
pre-trained features by introducing a semi-supervised
adaptive threshold strategy. This strategy is designed to
improve the quality of pseudo-labels and enhance the
model’s classification performance. The specific details are
described as follows:

A. Feature extraction module

1) Acoustic feature extraction: Selecting the appropriate
set of acoustic features associated with deception is crucial
for improving the recognition performance of lie detection
models. Therefore, this paper selects commonly used features
in speech-based lie detection from both the time and frequency
domains and analyzes their roles.

Time-Domain Characteristics: In the time domain, features
such as root mean square energy (RMSE) and short-time
average zero-crossing rate (zero crossing rate) are selected.
Both RMSE and the zero-crossing rate are highly sensitive
to energy fluctuations and emotional variations in speech,
effectively reflecting the unnatural behaviors associated with
lying.

Frequency-Domain Characteristics: In the frequency
domain, the selected features include Mel-frequency cepstral
coefficients (MFCC), Mel spectrum, fundamental frequency

(F0), spectral centroid (spectral centroid), spectral flatness
(spectral flatness), chroma frequency (chroma stft), spectral
contrast (spectral contrast), and magnitudes. These features,
when combined with variations in frequency, pitch, noise
level, and energy distribution, can effectively capture
potential deceptive behavior.

The specific characteristics of these features are detailed
in Table I.

TABLE I
FEATURE COMBINATION

Feature name RMSE

F0 4
spectral centroid 3
spectral flatness 1

MFCC 150
chroma stft 12

melspectrogram 128
spectral contrast 7

zero crossing rate 1
Magnitudes 3

Rmse 3

2) Depth feature extraction: Relying solely on acoustic
features may not fully capture the complex patterns of
deceptive behavior. To more effectively explore the intricate
patterns and subtle changes in speech during lie detection,
this study incorporates higher-level deep features alongside
traditional acoustic features. Specifically, the WavLM Base+
model [13] is used to extract pre-trained features. This
model consists of 12 Transformer encoder layers,
768-dimensional hidden states, and 8 attention heads, which
enhance its generalization capabilities. As a result, the
model successfully extracts 768-dimensional pre-trained
features, denoted as X768.

B. Feature processing and fusion module
The acoustic and deep features reside in different feature

spaces. To enhance the fusion performance of these diverse
feature types, a Feature Fusion Processing Module (BSFM)
is constructed. This module aims to more accurately capture
signs of deception in speech by leveraging both types of
features. First, due to the significant temporal dependencies
of acoustic features in expressing lies, a bidirectional Long
Short-Term Memory network (BiLSTM) is employed to
capture temporal changes in deceptive speech. The Gaussian
Error Linear Unit (GELU) activation function is used to
effectively activate the output features through a smooth
probabilistic transformation. Additionally, dropout is applied
after the GELU activation function to prevent overfitting.
Second, the tensor stitching method is used to integrate
information from different feature spaces along the feature
dimension, resulting in a fused feature vector
X = [XBiLSTM , X768]. This comprehensive approach
ensures that the model effectively combines temporal
acoustic information with deep pre-trained features, thereby
enhancing the accuracy and robustness of lie detection.

C. Semi-supervised adaptive threshold algorithm
The Freematch algorithm [12] has performed well in

various semi-supervised benchmarks. In this paper, we
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Fig. 1. Algorithm Model Framework

enhance the algorithm by introducing an adaptive threshold
method (LD-SAT) specifically for speech lie detection. The
improved algorithm first sets an initial global threshold
based on the distribution of training set samples, which
allows the model to filter out feature data with higher
confidence. At the same time, the global threshold is
calculated using the average maximum prediction confidence
of each batch of samples. This direct and effective method
helps to mitigate the impact of noise on threshold
calculation. Subsequently, the threshold is gradually
optimized by combining the global threshold of the previous
batch of samples. This iterative process continuously
improves the quality of pseudo labels. The overall algorithm
flow is shown in Fig. 2. In summary, the proposed adaptive
threshold method (LD-SAT) effectively improves the quality
of pseudo labels and improves the robustness and accuracy
of speech lie detection models.

III. EXPERIMENT AND RESULT ANALYSIS

A. Dataset
To verify the effectiveness of the proposed algorithm, this

study used the professional CSC database, recorded by
Columbia University for speech lie detection research, as
well as the self-constructed H-Wolf corpus [14]. From the
CSC corpus, 5,411 speech samples were selected,
comprising 3,202 genuine speech samples and 2,209
deceptive speech samples. The data were split in a 9:1 ratio,
resulting in 4,869 training samples and 542 testing samples.
Among the training data, 600, 800, and 1,000 samples were
randomly selected as labeled data, while the remaining
samples were treated as unlabeled data. Additionally, 1,103
speech samples were selected from the H-Wolf corpus,
which were also divided into training and testing sets in a
9:1 ratio. Within the training set, 100 and 600 samples were
randomly chosen as labeled data, with the remaining
samples designated as unlabeled data. These experimental
setups on both the CSC and H-Wolf datasets demonstrate
the robustness and applicability of the proposed algorithm in
various lie detection scenarios.

B. Experimental settings and evaluation criteria

All experiments in this paper were conducted on a
Windows 11 operating system using an NVIDIA RTX 3080
graphics card. The programming language used was Python,
and the deep learning framework employed was PyTorch. To
mitigate overfitting, the dropout rate was set to 0.9. During
training, the Adam optimization algorithm was applied for
up to 100 epochs, with an initial threshold of 0.7 and a
learning rate of 0.00003. The number of iterations was fixed
at 500. Each experiment was repeated 10 times, and the
mean value was calculated to eliminate the influence of
random errors. Weighted Accuracy (WA) and Unweighted
Accuracy (UA) are the main evaluation metrics for
recognition performance in speech lie detection, and their
formulas are given in (1) and (2):

WA =
Thenumberofsamplescorrectlydetected

Totalsamplesize
(1)

UA =
TP

TP + FN
(2)

Where TP represents the number of positive samples
predicted correctly and FN represents the number of
negative samples predicted incorrectly.

C. Ablation experiment

The detailed settings for each group of ablation experiments
are as follows:

1) Base: Only 312-dimensional acoustic statistical features
are used and no semi-supervised features are used;

2) BSFM: pre-training features are added on the basis of
Base and a semi-supervised learning algorithm is not
adopted;

3) Base + SAT: a semi-supervised adaptive threshold
algorithm is added on the basis of Base;

4) BSFM + SAT: The proposed algorithm.
Table II presents the ablation experimental results of the

proposed algorithm on the CSC corpus. It is evident from
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Algorithm 1 The training process of the adaptive optimization algorithm

Input: p model, label hist, time p, probs x ulb
Output: p model, label hist, time p
1: Get maximum probabilities and indices:
2: max probs,max idx← max(probs x ulb,dim = −1, keepdim=True)
3: if use quantile then
4: time p← time p ·m+ (1−m) · quantile(max probs, 0.8)
5: else
6: time p← time p+ (1−m) ·mean(max probs)
7: end if
8: if clip thresh then
9: time p← clip(time p, 0, 0.95)

10: end if
11: Update p model:
12: p model← p model ·m+ (1−m) ·mean(probs x ulb,dim = 0)
13: Calculate histogram:
14: hist ← bincount(max idx.reshape(−1),minlength =

p model.shape[0]).to(p model.dtype)
15: Update label hist:

16: label hist← label hist ·m+ (1−m) ·
(

hist∑
(hist)

)

17: return p model, label hist, time p

1

Fig. 2. Flow chart of semi-supervised adaptive threshold algorithm

the table that the Base model achieves accuracies of 63.03%,
64.01%, and 63.75% when the number of labeled samples is
600, 800, and 1,000, respectively. This indicates that the
312-dimensional acoustic statistical features possess strong
characterization capabilities. When the number of labeled
samples is 600, 800, and 1,000, the BSFM model achieves
accuracies of 63.03%, 65.00%, and 64.28%, respectively,
representing improvements of 0.00%, 0.99%, and 0.53%
over the Base model. This demonstrates that adding
pre-trained features effectively enhances the model’s feature
representation ability. The Base + SAT algorithm introduces
an adaptive thresholding mechanism to fully utilize the
characteristics and structural information of unsupervised
samples, thereby extracting high-quality pseudo-labels. With
600, 800, and 1,000 labeled samples, the model achieves
accuracies of 62.85%, 65.35%, and 66.07%, respectively,
which are increases of 0.18%, 1.34%, and 2.32% over the
Base model. The BSFM + SAT algorithm proposed in this
paper achieves accuracies of 63.93%, 65.71%, and 66.96%
for 600, 800, and 1,000 labeled samples, respectively,
outperforming all other configurations. Analysis of the
ablation experiment results reveals that the BSFM feature
fusion model not only retains important characterization
information from the acoustic statistical features but also
fully leverages the generic representations from the
pre-trained features. Additionally, the adaptive threshold
method enhances the utilization of unlabeled data, thereby
improving the accuracy of lie detection. Fig. 3 illustrates
that the proposed algorithm combines the advantages of
feature fusion and the adaptive threshold method, resulting
in improved classification accuracy and stability. Table III

displays the experimental results of the proposed algorithm
and each ablation task on the H-Wolf corpus. It is clear that
the WA and UA metrics of the proposed algorithm
outperform those of the other ablation tasks, further
validating the effectiveness of the proposed approach.

TABLE II
DETECTION ACCURACY (%) OF EACH GROUP OF ABLATION

EXPERIMENTS ON CSC CORPUS

Database Model Labels number
600 800 1000

Base 63.03 64.01 63.75
CSC BSFM 63.03 65.00 64.28

Base + SAT 62.85 65.35 66.07
BSFM + SAT 63.93 65.71 66.96

TABLE III
DETECTION ACCURACY (%) FOR EACH GROUP OF ABLATION

EXPERIMENTS ON THE H-WOLF CORPUS

Labels number
Database Model 100 100 600 600

WA UA WA UA
Base 59.77 56.98 64.39 66.78

CSC BSFM 61.43 60.78 65.75 66.78
Base + SAT 60 58.29 66.06 68.24

BSFM + SAT 62.57 63.60 68.26 69.78

D. Comparative experiment

To further verify the detection performance of the
proposed algorithm, it is compared with other feature sets,
semi-supervised algorithms, and speech lie detection
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Fig. 3. The change trend of accuracy and loss of each group of ablation tasks on the H-wolf corpus

algorithms. The specific settings for each group of
algorithms are as follows:

1) 384D + SAT: Combines 384-dimensional acoustic
statistical features [15] with a semi-supervised
adaptive thresholding algorithm. The 384-dimensional
acoustic statistical features are among the most
commonly used in lie detection.

2) mixmatch: Combines 312-dimensional acoustic
statistical features with the classical MixMatch
algorithm [16];

3) 312D + SAT: Combines 312-dimensional acoustic
statistical features with the semi-supervised adaptive
thresholding algorithm;

4) AE+MT+CR: A hybrid network model based on a
self-encoding network and a mean-teacher network,
combined with a consistency regularization method;

5) fixmatch: Adds the classic FixMatch algorithm to the
feature fusion model BSFM [17].

Tables IV and V show that the recognition performance of
the 312-dimensional acoustic statistical features combined

with the SAT method (312D + SAT) surpasses that of the
384-dimensional acoustic statistical features with SAT (384D
+ SAT) and the MixMatch algorithm overall. This indicates
that the 312-dimensional acoustic statistical features are
better suited for lie detection tasks compared to the
384-dimensional features. Furthermore, compared to the
MixMatch algorithm, the adaptive threshold method (SAT)
demonstrates significant improvements in enhancing the
model’s classification performance. The proposed algorithm
also outperforms AE+MT+CR and fixMatch across all tests.
This underscores that integrating new acoustic statistical
features with pre-trained features allows the model to learn
more effective feature representations, thereby improving its
classification performance. Additionally, the adaptive
threshold algorithm effectively adjusts the threshold range
and filters out higher-quality pseudo-labels, further
enhancing the model’s classification accuracy. Overall, these
results highlight the advantages of combining advanced
acoustic statistical features with pre-trained features and
using an adaptive thresholding strategy to improve lie
detection performance.
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TABLE IV
DETECTION ACCURACY (%) OF EACH ALGORITHM ON CSC CORPUS

Database Model Labels number
600 800 1000

384D+ SAT 62.32 63.57 61.96
Mixmatch 63.14 64.44 65

CSC 312D+ SAT 62.85 65.35 66.07
AE+MT+CR 62.12 62.68 63.06

Fixmatch 62.67 65.89 65.71
Proposed 63.93 65.71 66.96

TABLE V
DETECTION ACCURACY (%) OF EACH ALGORITHM ON H-WOLF CORPUS

Labels number
Database Model 100 100 600 600

WA UA WA UA
384D+ SAT 62.27 63.56 63.25 68.02
Mixmatch 61.43 60.78 65.75 66.78

CSC 312D+ SAT 60 58.29 66.06 68.24
AE+MT+CR 59.61 52.53 66.34 64.82

Fixmatch 61.59 61.42 67.42 68.60
Proposed 62.57 63.60 68.26 69.78

E. Confusion Matrix

The model performance is systematically evaluated
through confusion matrix. In the experiment on CSC dataset
(Fig. 4), as the sample size increases, the recognition
performance of the model for real and deceptive sentences
shows different performance: when the number of labeled
samples increases from 600 to 800, the recognition accuracy
of real sentences increases from 64% to 67%, while the
recognition rate of deceptive sentences remains stable at
60%; when the sample size is expanded to 1000, the
recognition rate of real sentences remains at 67%, and the
recognition rate of deceptive sentences remains at 60%. It is
worth noting that under all experimental conditions of CSC
dataset, the recognition accuracy of the model for deceptive
sentences remains stable above the threshold of 60%.

IV. CONCLUSION

To further optimize the multi-feature semi-supervised
speech lie detection algorithm, this paper proposes a
semi-supervised lie detection algorithm based on multiple
features and adaptive thresholds. The aim is to explore new
features with strong representation ability that can be used
in speech lie detection research, enhancing the understanding
of speech signals. Meanwhile, an adaptive threshold
adjustment algorithm is introduced to better filter
high-quality features, thereby improving the model’s
classification performance. Experimental results on the CSC
dataset confirm the effectiveness of the proposed algorithm
for speech lie detection tasks.
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