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Abstract—Cyberattacks and malware detection software are
in a perpetual race. Researchers have developed antimalware
systems that can detect and classify malicious software auto-
matically rather than manually analyzing malware files, which
is time-consuming and ineffective. On the other hand, cyber-
attackers have developed approaches to avoid signature-based
detectors used by antivirus software. In order to improve these
detectors, deep learning has been applied by automating feature
extraction and malicious pattern identification. Convolutional
Neural Networks (CNNs) as a deep learning architecture have
proved their effectiveness in malware classification. However,
these networks require a large dataset for training, and cannot
handle spatial relationships among features effectively; they
lose position information on the exact location of a feature,
which is critical for a malware file that contains a series
of sections. In this paper, we exploit the concept of image
classification in the field of computer vision to detect and classify
malware images using the ELU Residual Capsule Network (ER-
Caps), which goes beyond CNNs’ shortcomings and shows a
high performance on a highly imbalanced malware dataset
without any enhanced training strategies. The malware files
are converted into grayscale images and then processed by
an advanced residual subnet to extract the complex features.
The resulting feature maps are grouped into capsules and then
processed by the dynamic routing algorithm to classify malware.
The experimental results indicate that ER-Caps achieves an F1-
score of 91.97%, 94.02%, and 98.43% on classifying VIRUS-
MNIST, MMCC, and Malimg datasets, respectively, and a
malware detection rate of 99.24%, outperforming other deep
learning models proposed for malware analysis.

Index Terms—Cyber Security, Deep learning, Malware Vi-
sualization, Malware Detection, Malware Classification, Cap-
sule Network, Residual Blocks, Dynamic Routing, Imbalanced
Dataset.

I. INTRODUCTION

GROWING exponentially, Internet access became an im-
portant infrastructure for universities, financial institu-

tions, business establishments, governments, and many more
other sectors. This expansion is endangered by cybercrimi-
nals with malware and cyber threats. Over the last few years,
the amount of malware in circulation has expanded signif-
icantly. Malicious software has hacked computer systems
all around the world [1]. Thousands of malicious programs
are being developed; Figure 1 shows annual statistics of
malicious software attacks during the previous ten years [2].
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Fig. 1. Malicious software attacks for the last 10 years.

It displays that the overall quantity of active malware had
escalated to surpass 1000 million in 2023, a 900% growth
over the course of the last ten years. Each malware attack can
cost millions of dollars to small and medium sized enterprises
[3].

The process of analyzing malware attacks is continually
evolving. Malware research has been conducted since the
1990s, ranging from static, dynamic, and hybrid analysis to
machine learning and deep learning models [3]. The analysis
of malware involves both the detection and classification
of malware. Benign and malicious software can be differ-
entiated through detection, whereas, classification involves
identifying the specific malware class.

Static analysis is the process of extracting feature malware
from the code of a program in order to study the attitude and
configuration of a malware sample without executing it. It
includes analyzing the malware’s binary code and identifying
its components, detecting suspicious patterns, and looking
for potential malicious behavior [4]. In contrast, dynamic
analysis requires a controlled environment (such as Sandbox
[5], an open source, available on GitHub) in order to run the
code and track its behavior. It includes monitoring network
traffic, system calls, file system changes, and other actions
to understand the malware behavior [4], [3]. The hybrid
approaches integrate both static and dynamic features to
increase the ability of malware detection [6].

This progression from static to dynamic to hybrid detec-
tion exemplifies the industry’s response to malware’s increas-
ing sophistication [7]. Nevertheless, the anti-detection tech-
nique is constantly being improved. Malware employs obfus-
cation, polymorphism, virtual machine protection, and other
methods to evade anti-killing measures. Exploiting machine
learning provides adaptive pattern identification, integrating
dynamic and static features for robust and scalable malware
detection, minimizing evasion, and enhancing accuracy by
learning patterns from enormous datasets. Several traditional
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machine learning techniques, such as K-Nearest Neighbors
[8], [9], Support Vector Machine [10], Naive Bayes [11],
[12], [13], Decision Tree [14], [15], [16], and Random Forest
[17], [18], [19] have been applied to the detection and catego-
rization of known malware. However, these approaches come
with shortcomings in effectively managing the increasing
variety and complexity of contemporary malware. Traditional
machine learning algorithms often encounter trouble with
feature engineering, depending largely on handcrafted fea-
tures that may not be able to capture complex relationships
to effectively counteract new threats. Traditional approaches
are not flexible enough to keep up with the rapid changes
in malware, which is continually evolving with sophisticated
evasion techniques.

The traditional techniques of malware detection were
largely superseded by the evolution of deep learning. Extract-
ing the features of malicious code from raw malware samples
and clustering these characteristics to obtain a malware clas-
sifier is what the deep learning models are based on, with the
obvious benefits of high automation and minimal resource
consumption [1]. The authors in [20], have introduced the
byte plot method for malware visualization, where malware
binaries are represented as pixels in an image, arguing
that the visualization of the malware file into an image
allows analysts to visually inspect the structure and patterns
within files more intuitively and comprehensively compared
to traditional text-based methods. Nataraj et al.[21] presented
an approach for malware visualization and classification
through image processing methods that convert malicious
software binaries to grayscale images. They discovered visual
similarities in layout and texture between malware images
that belong to the same malware class. This visual similarity
could be attributed to the popular practice of code reuse to
develop new virus strains. By visualizing malware binaries as
images, the visual features can be used to properly classify
the malware samples without the need for disassembly or
code execution. They revealed that even after the harmful
program is loaded by the attackers for obfuscation, the
packed malware still retains visual similarities. Researchers
have adopted this technique to classify malware using CNN.
However, CNN struggles with capturing positional relation-
ships between features, due to the pooling layer, which
reduces the size of the image by extracting the average or
maximum value of a feature region and may lose some of
the spatial hierarchy representation.

Sabour et al.[22] proposed Capsule Network (CapsNet)
to address the CNN shortcomings. This kind of network
uses the concept of “capsules” instead of neurons, which
can save the relative position of features, the viewpoint,
and other spatial information that can be crucial for image
classification. Therefore, it optimizes the accuracy of image
classification and recognition.

He et al. [23], proposed Residual Network (ResNet) to
overcome the vanishing gradient problem caused by training
very deep CNNs using skip connections among layers, which
allows the network to learn residual functions rather than
direct learning of entire mappings. Based on the above-
mentioned networks, Alaoui-Elfels and Gadi [24] developed
a deep learning network for image classification called ELU
Residual Capsule Network (ER-Caps). It has shown its
potential for classifying complex images. In this work, we

adapt ER-Caps for malware detection and classification using
malware images as input. We evaluate its performance in
the different benchmark datasets with different data distri-
butions to analyze the impact of class imbalance on model
performance. We compare its performance with the current
deep learning networks. We borrow concepts and methods
from malware image visualization technology to generate
images directly from unprocessed malware executable files
[21], [25]. Such images facilitate malware analysis by ex-
tracting visual features. We first resize and normalize the
malware images. Next, we process the inputs by ER-Caps
to extract complex features, then identify whether the input
is benign or malicious software for the detection task, and
classify the malware into the appropriate family for the
classification task. ER-Caps shows a high performance in
malware detection and classification. The experiments were
conducted on the Malimg dataset [21], MaleVis dataset
[26], Blended dataset [27], VIRUS-MNIST dataset [79], and
MMCC dataset [28] for malware classification, whereas for
malware detection, we create a dataset for malware detection
by combining benign executable files from [29] and [30] and
malware files of Malimg dataset. The main contributions of
this work include:

• We adapt ER-Caps to malware detection and classifica-
tion and study its performance in benchmark malware
datasets.

• We analyze the performance of ER-Caps on the Malimg,
MaleVis, and Blended datasets to gain insights into
the impact of class imbalance on the classification of
malware images.

• We created a malware detection dataset that includes nu-
merous benign samples and malware from 25 families,
providing a diverse training set that reflects real-world
environments.

• We compare the performance of ER-Caps with the
baseline CapsNet [22] and several CNN-based models
on malware detection and classification that illustrate its
effectiveness in malware analysis. ER-Caps showed its
high performance on image-based malware classifica-
tion.

The rest of the paper is organized as follows: In Section 2,
we review the related work in malware analysis. In Section
3, we describe our approach to malicious software detection
and classification based on ER-Caps. In Section 4, we detail
our experiments and discuss the results. Finally, in Section
5, we conclude and present future work suggestions.

II. RELATED WORK

Caviglione et al. [31] reviewed in detail the evolution of
malware analysis approaches. From the literature, we identify
prior works from two perspectives, illustrated in Figure
2: traditional approaches and machine learning approaches.
The traditional approaches include static-based, dynamic,
and hybrid methods. The machine learning approaches are
categorized into classical machine learning algorithms and
deep learning algorithms.

A. Traditional approaches
1) Static analysis: static analysis was first proposed to

determine whether the program is malware or not by iden-
tifying its structure, start-up mode, possible execution path,
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Fig. 2. Malware Analysis Taxonomy.

malicious behavior, and other binary code features [31], [32].
This approach analyzes the Portable Executable Files (PE
files); first, it examines the headers of the PE files to validate
their format and collect basic information such as the file’s
structure, and signature, including sections, imports, exports,
and an optional header. Then, it decompiles the executable
file using a disassembler tool such as OllyDbg and IDA
Pro to obtain assembly language instructions. This provides
details about the malware and enables an in-depth exami-
nation by scrutinizing: Application Programming Interface
calls (API calls) [33], [34], [35], Control Flow Graph (CFG)
[36], byte sequence n-grams [37], string signatures [38],
and operation codes (opcodes) [39], [40] to identify anoma-
lies and suspicious behavior that might point to malicious
intent. Obfuscation techniques are constantly evolving and
becoming more complex. They can circumvent static analysis
approaches [41] by obscuring the actual functionality of the
code and making it more difficult for analysis tools to spot
particular elements or patterns in the code.

2) Dynamic analysis: dynamic analysis is carried out
when static analysis has run out of options because of either
packing or obfuscation. The dynamic analysis approaches
allow monitoring the behavior and the actual actions executed
by the executable program in a virtual environment [35].
Function call monitoring is a common malware dynamic
analysis approach that involves analyzing the behavior of
the program by observing and recording the sequence of
functions that are invoked during the execution of code.
The information flow tracking technique examines how an
executable processes data and the data propagation mecha-
nisms through the system [42]. While the function parameter
analysis method entails tracking the parameter values and
function return values [43], although polymorphic malware
and code obfuscation strategies fail at dynamic analysis,
each executable program needs to be executed in a virtual
environment for a specific time to monitor its behavior, which
requires high computational resources and is a very time-
consuming process. Furthermore, the real runtime environ-
ment could differ significantly from the virtual environment,
and malware may act differently in different environments.
In certain conditions, malware actions may not be triggered
and hence not logged [44].

3) Hybrid analysis: hybrid analysis gains the benefits of
static and dynamic analyses, collecting information about
malware through both analyses to increase the ability to
detect malware correctly [45], [46]. Shijo and Salim [47] de-
veloped an integrated technique for detecting and classifying
unfamiliar files. They extracted printable string information
patterns using static analysis, and they extracted API calls
using dynamic analysis. Islam et al. [48] used static analysis
to extract function length, frequency, and printable string in-
formation features and used dynamic analysis to identify API
calls and parameters. Ma et al. [49] proposed an approach
that blended static and dynamic classifiers into one model
to decrease false-positives in malware classification. Santos
et al. [50] combined operations, system calls, exceptions
acquired during dynamic analysis, and opcode frequency
acquired during static analysis to develop a tool to detect
unknown malware files. Damodaran et al. [6] carried out a
comparative study of static, dynamic, and hybrid analysis
techniques based on opcode and API call sequences using
hidden Markov models. The findings indicate that a straight-
forward hybrid analysis is unlikely to be more effective than
a fully static or fully dynamic analysis; it did not show
consistent improvement.

B. Machine learning approaches

1) Classical: in order to deal with the issue of malware
detection and classification, machine learning algorithms
suggested a different approach [51]. They generally consist
of four steps, starting with data construction, followed by
feature engineering, then training and evaluating the model.
The model can use static features, dynamic features, or both
to achieve higher performance [50]. Many classical machine
learning models were used for training, including logistic
regression [52], k-Nearest Neighbor (kNN) [53], Support
Vector Machine (SVM) [48], [54], [55], [56], Decision Tree
[57], and Random Forest [58], [59]. Besides static features or
dynamic features, image-based representation features have
been proposed for malware analysis. The malware file is
converted into an image, which preserves the malicious
features. Therefore, benign samples can be distinct from
malicious samples. Conti et al. [20] developed Byteplot,
a visualization approach for displaying binary data items
as images, proving that visual examination of binary data
allows for the separation of structurally diverse data fields.
Nataraj et al. [21] suggested that image structure analysis is
more suitable for malware classification as opposed to other
malware analysis approaches. They convert the content of the
malware file to a binary string of zeros and ones. Then, they
reshaped the binary vector into a matrix, and therefore the
malicious software file is presented as a grayscale image.
This technique classifies malicious software based on the
image texture, which can withstand obfuscation methods.
Malware from the same family represents a similar texture,
which can be easily detected using malware images. Using
Gabor filters, the authors collected features from malware
images; afterward, they used the kNN for classification,
where they achieved a classification accuracy of 98% for the
dataset consisting of 25 malware classes and 9339 images.
Later, Kancherla et al. [54], [55] converted the PE malware
file into the image and extracted malicious features to feed
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SVM and kNN. They reached an accuracy of 95% on
their malware detection dataset. However, classical machine
learning algorithms heavily rely on feature engineering as
well as complicated or expert features to fulfill the learning
process and classify malware with high performance. The
final result is tied to the selected features, which can be
highly subjective since it relies on the expertise and insight of
the experts. These algorithms necessitate manual effort and
cannot be conducive to efficient real-time malicious software
analysis.

2) Deep learning: CNNs have had impactful success in
computer vision [60]. CNNs, as a deep learning algorithm,
have the ability to classify images directly from raw pixel val-
ues without using complex feature engineering approaches.
Many researchers used different CNN models to categorize
malware images, using the visualization of malware files
as images [3], [44], [51], [61]. Kiger et al. [62] proved
the viability of classifying malware represented as grayscale
images by evaluating and analyzing the performance of
several CNN architectures in classifying malware images.
Jayasudha et al. [27] studied the performance of Xception-
Net, ResNet50, EfficientNetB0, DenseNet169, InceptionRes-
NetV2, and VGG16 on imbalanced datasets. They observed
that XceptionNet and VGG16 were sensitive to imbalanced
data, while ResNet50, DenseNet169, and EfficientNetB0
could handle imbalanced data. Chaganti et al. [63] proposed
the EfficientNetB1 network to perform malware classification
using a pre-trained CNN.

Rezende et al. [64] used pre-trained VGG16 layers for
bottleneck feature extraction and then used these features
to train an SVM to classify malware. In another work, these
authors presented a deep learning approach based on the pre-
trained ResNet50 to classify the Malimg dataset [65]. Li et
al. [66] combined ResNet50 with a self-attention mechanism
and data augmentation to detect malware. Maryam et al. [67]
merged the extracted features from pre-trained Inception-v3
and AlexNet with features extracted from malware images
using segmentation-based fractal texture analysis to classify
the Malimg dataset.

Other works used ensemble models to boost malware
classification. Vasan et al. [61] proposed an ensemble CNN
that contains VGG16, ResNet50, and SVM to detect packed
and unpacked malware. Roberts et al. [68] introduced an
ensemble learning-based methodology for malware detection.
They stacked an ensemble of dense neural networks and
CNN and used the Extra Trees algorithm as a meta-learner
to perform classification.

Despite the significant results of the above-mentioned
works, any CNN requires a substantial amount of training
data that is not easily accessible in the realm of malware
detection. Moreover, the pooling layer that most CNN ar-
chitectures rely on may cause feature position details to
be lost, which may be critical to malware classification
[69]. Attempting to overcome the shortcomings of CNN,
Sabour et al. [22] proposed the capsule network, which uses
capsules to represent low-level and high-level features. These
capsules are related through the dynamic routing algorithm.
This network is considered an important deep-learning model
for the next generation. It demonstrated its high ability
for feature extraction compared with the classical neural
network, and it showed its potential in various fields [70],

[71], and [72].
some researchers proposed to use the Capsule Network for

the cybersecurity domain. Zhang et al. [73] applied CapsNet
for the malware classification task, compared its performance
with CNN, and demonstrated its effectiveness in malware
detection. Wang et al. [74] introduced an analysis method
based on malware color image visualization techniques and
CapsNet. Çayır et al. [75] proposed a random CapsNet for
imbalanced malware using bootstrap aggregating methods.
Wang et al. [76] introduced an approach to extracting the
operation code information by combining static and dynamic
analysis, then constructing and visualizing the n-gram se-
quence, generating malware images, and lastly employing
CapsNet for classification. Zou et al. [77] built a malware
classification model that used dynamic features and CapsNet
to classify malware. In this paper, we discusse the effec-
tiveness of ER-Caps for malware analysis and the role and
relevance of this network.

III. METHODOLOGY

A. Malware datasets
In this work, we used five publicly available malware

datasets to evaluate the ER-Caps model for the malware
classification task:

• The Malware Images (Malimg) dataset [21] includes
9342 malware PNG images categorized into 25 distinct
malware classes (Table 1). It is a highly imbalanced
dataset, as it is displayed in Figure 3. The images
have been created from PE files, which are malware
binary files. The PE files were transformed into an 8-
bit vectors, and then the resulting array was organized
into a 2D array where each byte was interpreted as one
pixel to create grayscale images having different sizes
and a color depth of three (Figure 4).

• The Malware Evaluation with Vision (MaleVis) dataset
[78] includes 14226 RGB images belonging to 26
malware families, which consist of 25 malware and 1
benign, as shown in Table II. For the malware clas-
sification, we use only the images of the 25 malware
classes. The distribution of MaleVis samples among the
different malware classes is shown in Figure 5, and it
is observed that the dataset is perfectly balanced.

• The Blended dataset [27] was created by blending five
principal classes of the Malimg dataset with all MaleVis
dataset classes to obtain a new dataset exhibiting a
moderate class imbalance compared to the Malimg and
MaleVis datasets (Figure 6).

• The Microsoft Malware Classification Challenge
(MMCC) dataset [28] consists of 21741 samples,
representing 9 malware classes. Each sample has a
corresponding PE file and assembly file, which store
metadata information like function calls, strings, and
memory allocation. Table III and Figure 7 display the
distribution of various MMCC classes present in the
training dataset.

• VIRUS-MNIST dataset [79] consists of 51880 malware
image samples from nine malware families and one
benign software. Malware images are generated through
formatting the first 1024 bytes into a 32x32 resolution
image. Table IV and Figure 8 display each malware
class distribution in VIRUS-MNIST dataset.
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Fig. 3. Malimg data distribution.

Fig. 4. Visualizing malware file as an image.

For the malware detection task, we created a dataset of
27371 samples divided into two classes: malware and safe
software (benign). For the malware class, we aggregated all
the malware images of the Malimg datasets into a malware
class. For the benign class, we combine 1000 non-malware
executable files from [29] and 14355 non-malware executable
files from [30] that were collected from various resources.
We transform each benign file to a grayscale image using the
method of Nataraj et al [21], where the image dimensions
are determined based on the file size. The binary data from
the executable files are converted into a vector of unsigned
8-bit integers, each representing a pixel value. The vector is
reshaped into a 2D matrix, then converted into a PNG image.
Our dataset contains many benign samples, making it close
to practical application in a real environment.

B. Sample Visualization and pre-processing

The Malimg, the MaleVis, the Blended, and the VIRUS-
MNIST datasets consist of malware images. For the MMCC
dataset, we transform the hexadecimal data of the PE files
into 2D arrays. Every pair of hexadecimal format represents
one byte, which represents values between 0 and 255 in

decimal. Therefore, in a 2D array, each byte is interpreted
as a grayscale pixel intensity value.

Image pre-processing is a preparatory step that fixes image
resolution and normalizes data before feeding it into a train-
ing model. The MaleVis and the VIRUS-MNIST datasets
contain RGB images, while the Malimg and MMCC datasets
contain grayscale images. Consequently, the Blended dataset
and the malware detection dataset comprise both grayscale
and RGB images. Furthermore, the images of the MMCC
and the Malimg datasets have different sizes and must be
transformed into a single image size. We converted the
images of all datasets to RGB and resized them to 32 by
32 (Figure 9).

C. Overview of Architectures used

Figure 10 displays the data flow architecture diagram for
malware detection and classification for different malware
datasets. All the images in the datasets are resized, normal-
ized, and split into a train set and a test set.

Following this, the data is fed to the ER-Caps (Figure 11),
the details of the network architecture are shown in Table
V. ER-Caps process the input image using a convolutional
layer followed by a set of three residual blocks to extract the
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Fig. 5. MaleVis data distribution.

Fig. 6. Blended dataset distribution.

malware image features. Each residual block processes the
input through two convolutional layers (Conv1 and Conv2)
and then adds or multiplies the input back to the output via
a shortcut connection. This connection enables the network
to learn the residual between the input and output, making
it easier to train and improve gradient flow through it. The
first and second residual blocks use the addition operator
to inject the residual output of the previous layer or block
into their output, while the third residual block uses element-
wise multiplication to combine the residual identity with its

output. The element-wise gate shows its potential to improve
the model’s performance and select meaningful features from
complex images [24], [80], [81].

The Conv1 and Conv2 are activated, respectively, using
the RELU and the ELU activation units. RELU guarantees
a lower run time, and the ELU mitigates the vanishing
gradient problem. The convolutional layers are created using
256 kernels of 3 by 3 size and a stride of 1. The Batch
Normalization (BN) was performed after the convolutional
layers to stabilize and accelerate the training process by
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Fig. 7. MMCC data distribution.

Fig. 8. VIRUS-MNIST data distribution.
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Fig. 9. Malware samples from the Malimg dataset after pre-processing.

smoothing variations of input distribution in the network.
BN acts as a regularizer by introducing slight noise during
training, as it uses the statistics of mini-batches, which vary
slightly from batch to batch, helping to bring down overfitting
and benefit model generalization. A dropout layer of 5% rate
is used after the residual blocks to help the model generalize
better to unseen data.

The resulting feature maps of the residual subnet are then
mapped to primary capsules in the PrimCaps layer. This
capsule layer applies small convolutional kernels of 4x4
size and 32 channels, then encapsulates the output feature
maps into vectors of 8 scalars called primary capsules. These
capsules serve to detect and represent low-level patterns
or features within an input image. Then, the primary cap-
sules pass their activation information to class capsules in
the ClassCaps layer through the Dynamic Routing (DR)
algorithm to determine whether the input is malicious or
benign in case of malware detection and to determine the
malware class in case of malware classification. The class
capsules encode high-level representations of object classes
into vectors of length 16; they can detect the presence or
absence of their respective classes within the input.

The DR algorithm routes low-level features represented by
the primary capsules to high-level features represented by the
class capsules based on the likelihood of the presence of a
particular object within the input. The general DR process is
as follows:

1) ui ∈ Rk×1, i = 1, 2, ..., n, represents the output of the

primary capsule, where n is the number of capsules
and k is the vector length (the number of neurons
within each capsule). This output is multiplied by
the transformation matrix Wij ∈ Rp×k to compute
the prediction vector ûj|i. p represents the length of
the class capsule, and j represents a class capsule.
Wij provides significant spatial information between
different entities, and it is learned during the back-
propagation algorithm.

2) Calculating the weighted sum of all the resulted pre-
diction vectors:

Sj =
∑
i

Cj|iûj|i (1)

Cj|i is called the coupling coefficient; the Cj|i for
a parent capsule j is equal to 1. It represents the
likelihood distribution of capsule i to activate capsule
j.

3) Applying a squash function to the Sj to calculate the
Vj that represents the probability of existence, which
takes values between 0 and 1.

Vj =
∥Sj∥2

1 + ∥Sj∥2
Sj

∥Sj∥
(2)

The coupling coefficient is refined iteratively as fol-
lows:

Cj|i =
ebij∑
k e

bik
(3)
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Fig. 10. Architecture Diagram.

Fig. 11. ER-Caps for malware analysis.

Where bij represents the matching degree between the
class capsules and the primary capsules.

bij = bij + ûj|iVj (4)

This DR mechanism enables the network to iteratively update
its predictions, hence improving its capacity to localize and
recognize objects.

The ClassCaps layer is connected to a decoder subnet to
reconstruct the input data, which consists of three layers
of neurons that are fully connected. Where the last layer
is reshaped into a matrix to represent the reconstructed
image. In this case, the loss is calculated by summing the
classification loss and the reconstruction loss, as described

in [82].

In this work, we compare the performance of the ER-
caps with baseline CapsNet [82] in malware analysis. This
network has a shallow architecture, which treats the input
data as a convolutional layer (256 filters, 9x9 size, and
stride of 1, activated by the RELU function). Followed by
the PrimCaps layer with eight convolution operations of 32
channels, 9x9 kernels, and a stride of 2. Next, the results are
routed to the ClassCapss layer using the DR algorithm to
carry out the classification.
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TABLE I
MALIMG CLASSES AND THEIR RESPECTIVE NUMBER OF INSTANCES.

Class Name Samples Number Malware Category
Adailer.C 122 Dialer

Allaple.A 2949 Worm

Agent.FYI 116 Backdoor

Allaple.L 1591 Worm

Autorun.K 106 Worm:AutoIT

Alueron.gen!J 198 Worm

C2LOP.P 146 Trojan

C2LOP.gen!g 200 Trojan

Dontovo.A 162 Trojan Downloader

Dialplatform.B 177 Dialer

Fakerean 381 Rogue

Lolyda.AA1 213 Password Stealer

Instantaccess 431 Dialer

Lolyda.AA2 184 Password Stealer

Lolyda.AT 159 Password Stealer

Lolyda.AA3 123 Password Stealer

Malex.gen!J 136 Trojan

Rbot!gen 158 Backdoor

Obfuscator.AD 142 Trojan Downloader

Skintrim.N 80 Trojan

Swizzor.gen!I 132 Trojan Downloader

Swizzor.gen!E 128 Trojan Downloader

VB.AT 408 Worm

Yuner.A 800 Worm

Wintrim.BX 97 Trojan Downloader

D. Evaluation Metrics

According to the literature review, the majority of articles
utilize an accuracy metric for an imbalanced multiclass
dataset, which is inappropriate because it is biased toward
the majority classes. Furthermore, for malware detection,
false positives are more expensive than false negatives, so the
weighted precision metric is the most appropriate metric for
this task because it evaluates the model’s ability to correctly
identify the minority class, and can be supported by weighted
recall and weighted F1-score, as shown in the formulae
below:

Weighted Precision =

∑
i PrecisionClassi × SupportClassi

Total Samples
(5)

Weighted Recall =

∑
i RecallClassi × SupportClassi

Total Samples
(6)

Weighted F1-score =

∑
i F1-scoreClassi × SupportClassi

Total Samples
(7)

Knowing that:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1− score =
2× Precision×Recall

Precision+Recall
(10)

Where:
• TP: True positives;

TABLE II
MALEVIS CLASSES AND THEIR RESPECTIVE NUMBER OF TRAINING

INSTANCES.

Class Name Samples Number Malware Category
Adposhel 350 Adware

Agent 350 Trojan

Allaple 350 Worm

Amonetize 350 Adware

Androm 350 Backdoor

Autorun 350 Worm

BrowseFox 350 Adware

Dinwod 350 Trojan

Elex 350 Trojan

Expiro 350 Virus

Fasong 350 Trojan

HackKMS 350 Riskware

Hlux 350 Worm

Injector 350 Trojan

InstallCore 350 Adware

MultiPlug 350 Adware

Neoreklami 350 Adware

Neshta 350 Virus

Benign 350 -

Regrun 350 Trojan

Sality 350 Virus

Snarasite 350 Trojan

Stantinko 350 Trojan

VBA 350 Macro Malwares

VBKrypt 350 Trojan

Vilsel 350 Trojan

TABLE III
MMCC CLASSES AND THEIR RESPECTIVE NUMBER OF TRAINING

INSTANCES.

Class Name Samples Number Malware Category
Kelihos verl 398 Backdoor

Kelihos ver3 2942 Backdoor

Gatak 1013 Backdoor

Lollipop 2478 Adware

Ramnit 1541 Worm

Obfuscator.ACY 1228
Any kind of

obfuscated malware

Simda 42 Backdoor

Vundo 475 Trojan

Tracur 751 TrojanDownloader

• TN: True negatives ;
• FP: False positives;
• FN: False negatives.

IV. EXPERIMENTS AND RESULTS

The models were trained on a single computer with 16 GB
of RAM, NVIDIA GeForce RTX 3070 GPU, and an 8-core
CPU. The software environment is Windows 11, Python 3,
and Pytorch.

A. Malware classification

We downsample the Malimg images to a fixed size of
32x32x3 to train the network. In order to keep the model
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TABLE IV
VIRUS-MNIST CLASSES AND THEIR RESPECTIVE NUMBER OF

SAMPLES.

Class Name Samples Number
Good 2516

Adware 7684

Trojan-I 3037

Trojan-II 2404

Installer 796

Backdoor-I 6662

Crypto 15377

Backdoor-II 7494

Downloader 2571

Heuristic 3339

TABLE V
ER-CAPS STRUCTURE.

Layers Kernels Strides Padding
Conv+BN+RELU [256, 3, 3] [1, 1] –

1st and 2nd residual block :
Conv1+BN+RELU [256, 3, 3] [1, 1] –
Conv2+BN+ELU [256, 3, 3] [1, 1] –
Dropout – – –

3rd residual block :
Conv1+BN+RELU [256, 3, 3] [1, 1] –
Conv2+BN+ELU [256, 3, 3] [1, 1] [1, 1]
Dropout – – –

PrimaryCaps :
8 conv [32, 4, 4] [2, 2] –

ClassCaps – – –

simple and reduce the training parameters, we use the ER-
caps network with 32 primary capsules and without the
decoder part since we do not need malware reconstruction to
identify or classify malware. Table VI supports our choice; it
shows that using the decoder part and doubling the number
of primary capsules makes the model more complex and does
not improve its performance in malware classification.

1) The effect of class imbalance: we compare the perfor-
mance of ER-Caps on the MaleVis dataset, Malimg dataset,
and Blended dataset to evaluate the robustness of the model
on data imbalances. Table VII displays the evaluation metrics
of ER-Caps across three datasets. It has been observed that
the model is capable of handling different data distributions.
The values of precision and recall are more than 92% for
all three datasets, indicating that the model is accurate and
generalizes well. Moreover, the results suggest that the ER-
Caps performs well on a highly imbalanced dataset (Mal-
img); it achieved 98% precision and recall; and it is capable
of minimizing FP (precision) and capturing the majority of
positive occurrences (recall).

2) Resistance to obfuscation: to evade anti-killing tech-
niques by security tools, malicious software incorporates a
polymorphic engine into their malicious code, generating
code variants with different byte sequences but maintaining
the same functionality. In our experiments, the Obfusca-
tor.AD and Obfuscator.ACY classes, as well as the worm
category (in which the code section is polymorphically
encrypted using dynamic encryption keys), represent this
kind of obfuscation. Nonetheless, our proposed classifier is

Fig. 12. Convergence epochs.

capable of classifying these samples with high precision,
achieving a precision of over 99% (see Figure 14). The
image textures applied for classification supply more feature
resistance concerning obfuscation techniques.

3) ER-caps Vs CapsNet: for performance comparison,
we first compare the performance of the ER-caps with the
baseline CapsNet in the malware classification images on
the imbalanced dataset: Malimg and MMCC. As the focus
of this paper is malware detection and classification, we
only consider the classification part of the baseline CapsNet
without the decoder part. Table VIII shows the F1-score
for each model. This metric balances precision and recall,
taking into account both false positives and false negatives.
According to the experimental results, ER-Caps outperforms
the baseline CapsNet by 15% and 5.6%, respectively, on
the Malimg and MMCC datasets in terms of the F1-score.
Moreover, from the convergence plot represented by Figure
12, it is observed that ER-Caps requires a smaller number of
epochs for convergence, 21 epochs compared with 36 epochs
for the baseline CapsNet.

Figure 13 displays the confusion matrix of baseline Cap-
sNet classification on the Malimg dataset. There is a lot
of confusion between C2LOP.P and C2LOP.gen!g. Similar
trends can be observed between Swizzor.gen!E and Swiz-
zor.gen!I classes, as well as between Allaple.A and Allaple.L
classes and between Allaple.A and Malex.gen!J classes, be-
sides total confusion between Autorun.k and Yuner.A classes.
The model classes all Autorun.k samples as Yuner.A classes,
and it is incapable of making a distinction between these
two classes. Figure 14 presents the confusion matrix of the
ER-Caps. This model alleviates the class-confusion issue; it
shows a very low confusion rate on the classification of the
Malimg dataset, and it is capable of classifying most malware
classes correctly with a precision of more than 97% for 20
classes compared with 11 classes for the baseline CapsNet.

4) Generalization analysis: throughout the training pro-
cess of the Malimg dataset, we monitored test loss. As shown
in Figure 15, the test loss consistently decreased over epochs.
This trend indicates that the model generalizes well, learning
patterns from the training data without overfitting. We also
tracked precision metrics (Figure 16), the training precision
reached 99%, while the test precision stabilized at 98% after
convergence. The small gap of approximately 1% between
training and validation precision suggests that the model
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Fig. 13. Confusion matrix of baseline CapsNet classification results on Malimg dataset.
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Fig. 14. Confusion matrix of ER-Caps classification results on Malimg dataset.
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TABLE VI
COMPARISON OF ER-CAPS ARCHITECTURES.

Decoder No. primary capsules Parameters (M) Precision % Recall % F1-score%
yes 64 9.4 95.54 95.36 95.30

yes 32 8.4 95.57 95.48 95.25

No 32 4.5 98.62 98.61 98.43

TABLE VII
EVALUATION METRICS FOR ER-CAPS IN DIFFERENT MALWARE

DATASETS.

Dataset Precision % Recall %
Malimg 98.62 98.61

MaleVis 93.46 92.82

Blended 93.69 93.38

TABLE VIII
F1-SCORE OF THE ER-CAPS AND THE BASELINE CAPSNET ON THE

MALIMG AND THE MMCC DATASETS.

Malimg MMCC
ER-Caps 98,61% 94.20%

Baseline CapsNet 83.36% 88.40%

TABLE IX
CROSS VALIDATION.

Fold 1 98.88%

Fold 2 98.84%

Fold 3 98.7%

Fold 4 98.73%

Fold 5 97.7%

Average Precision 98.61%

Precision Variance 0,13

Precision Standard Deviation 0,36

generalizes well to the test data.
To further assess generalization, we employed 5-fold

cross-validation. By splitting the Malimg dataset into 5 sub-
sets, we trained and validated the model 5 times, each time
using a different subset as the test set while the remaining
4 subsets were used for training. As shown in Table IX, the
cross-validation results consistently showed similar perfor-
mance across different folds. The average precision across
folds is 98.61%, with a low variance and standard deviation
across the 5 folds, indicating that the model’s performance
is stable and consistent, reinforcing the robustness of the
model’s generalization capabilities. Moreover, we evaluated
the model’s ability to generalize to completely unseen data
using a separate split of data that was not used during
training. The model achieved a precision of 97.56% on the
unseen data and 98.61% on the test set. This consistent
performance across both the unseen data and test set further
confirms that the model generalizes well, effectively applying
learned patterns to new, unseen data.

5) Comparison of ER-Caps Results with Deep Learning
Networks on Malware Classification: there are several deep
learning architectures applied to malware classification. To
further assess the effectiveness of ER-Caps, we benchmarked
it against cutting-edge networks from the literature that have
been tested on the Malimg, the MMCC, and the VIRUS-
MNIST datasets. The results are shown in Table X, Table
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Fig. 16. Learning curves.

TABLE X
COMPARISONS OF ER-CAPS WITH THE EXISTING DEEP LEARNING

NETWORKS ON THE MMCC DATASET.

Model
Enhanced Training

Strategies
F1-score %

DenseNet201 [63] Transfer Learning 94.0

InceptionV3 [63] Transfer Learning 88.0

ResNet50 [63] Transfer Learning 83.0

VGG16 [63] Transfer Learning 95.0

CNN [83] Data Augmentation 94.5

MalCaps [73]
Data Augmentation

+ Class Weight
94.43

CNN [44] – 94.0

FACILE [84] – 92.62

Baseline CapsNet – 88.40

ER-Caps – 94.02

XI, and XII for MMCC, Malimg, and VIRUS-MNIS datasets
respectively.

The models chosen are based on deep learning CNN
algorithms that classify malware based on raw images as well
as ER-Caps. For the MMCC dataset, it is observed that ER-
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TABLE XI
COMPARISONS OF DIFFERENT NETWORKS ON THE MALIMG DATASET.

Model
Enhanced Training

Strategies
F1-score %

XceptionNet [85] Data Augmentation 85

EfficientNetB0 [85] Data Augmentation 96

ResNet50 [85] Data Augmentation 95

VGG16 [85] Data Augmentation 79

DenseNet169 [85] Data Augmentation 95

InceptionResNetV2 [85] Data Augmentation 91

BAT [61] Data Augmentation 94.3

IMCEC [61]
Transfer Learning

+ Ensemble Learning
99.4

CNN [62] Class Weight 94.0

CNN [44] - 94.04

FACILE [84] - 97.05

Baseline CapsNet - 83.36

ER-Caps - 98.43

TABLE XII
COMPARISONS OF DIFFERENT NETWORKS ON THE VIRUS-MNIST

DATASET.

Model F1-score %
CapsNet [84] 84.65

MalCaps [84] 74.48

Efficient-CapsNet [84] 86.62

DA-CapsNet [84] 88.15

MLCN [84] 83.58

ResNet152 [84] 86.47

EfficientNet [84] 87.20

MCFT-CNN [84] 88.42

VGG16 [84] 88.04

FACILE [84] 88.07

ER-Caps 91.97

Caps achieved comparable results to other CNN models with-
out any data augmentation, transfer learning, or ensemble
learning techniques. Unlike EfficientNetB0, DenseNet169,
ResNet50, VGG16, CNN [62], and CNN [44] that use max
pooling or average pooling, and InceptionResNetV2, BAT,
and IMCEC that use average pooling and max pooling to
reduce the image size, ER-Caps do not use any pooling
approach to preserve spatial relationships among features.

For the Malimg dataset, it was observed that ER-Caps
achieved a high malware classification rate. IMCEC [61]
exceeds ER-Caps by 1% in terms of F1-score; however,
IMCEC needs more than 159.94 million trainable parameters
since it is based on an ensemble of CNN architectures to
get this performance. The IMCEC model is too complex
compared with ER-Caps, which uses only 4.59 million train-
able parameters to classify the Malimg dataset. Overall, ER-
Caps outperforms most malware classification models that
use enhanced training strategies to boost their performance
and achieved a F1-score of 98.43% on classifying malware
in the Malimg dataset.

For the VIRUS-MNIST dataset, the model demonstrated
evident superiority over all capsule network models and
CNN-based models, achieving an F1-score of 91.97%, which
confirms the ER-Caps capability in accurately classifying
highly imbalanced malware dataset.

B. Malware Detection

In the malware detection experiment, we compare the ER-
Caps with the baseline CapsNet and with different CNN
models: DensNet121, ResNet50, and VGG16.

TABLE XIII
MODELS PERFORMANCES ON MALWARE DETECTION.

Model
Precision

%
Recall

%
F1-score

%
Parameters

(M)
VGG16 96.10 96.76 96.43 14.84

DensNet121 99.24 99.38 99.31 7.30

ResNet50 99.24 99.0 99.12 24.11

Baseline
CapsNet

98.86 98.75 98.81 5.37

ER-Caps 99.24 99.38 99.31 4.5

For malware detection, the last layer of DensNet121,
ResNet50 and VGG16 consists of two neurons representing
a binary classification (malicious or benign). The same trend
exists for the baseline CapsNet and the ER-Caps; the Class-
Caps layer contains two class capsules. It was observed
from Table XIII that ER-Caps showed competitive results
compared to the other models; it outperformed all other
models across all classification metrics, achieving a preci-
sion of 99.24%, which indicates that ER-Caps accurately
identifies positive predictions. It is conservative in classifying
samples as malware, reducing the probability of false alerts.
This is particularly crucial in applications related to security,
where reducing false positives is frequently a high con-
cern. DenseNet121 has a performance similar to ER-Caps;
however, ER-Caps is more efficient, has fewer parameters,
and needs 2.8 million fewer parameters compared with
DensNet121.

V. CONCLUSION & PERSPECTIVES

Detecting and classifying malware is a crucial task to pro-
tect the computer’s systems, digital assets, and data against
malicious attacks. Several modern antivirus solutions depend
on deep learning approaches, which have demonstrated good
performance in analyzing malware. In this paper, we study
the application of a deep learning architecture based on resid-
ual blocks and CapsNet to malware detection and classifica-
tion using byteplot malware images. The experimental results
confirm that ER-Caps has great performance when dealing
with imbalanced malware classification tasks, achieving an
average weighted F1-score of 91.97%, 94.02%, and 98.43%
on the VIRUS-MNIST, the MMCC, and the Malimg datasets
respectivelyly. Furthermore, the model shows comparable
performance on the MMCC dataset compared to other works
proposed in the literature without any enhanced training
strategies. Moreover, the ER-Caps proves its ability to detect
malware and can reach a 99.31% F1-score with a small
number of training parameters compared with the other deep
learning networks.

Future work will be focused on adapting the model to
process the input image of any size to improve our models
flexibility. In addition, model compression to enable deploy-
ment on edge devices would be a promising area for future
research.
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