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Abstract—Object detection has attracted significant attention
in the field of autonomous driving. It assists autonomous driving
systems in recognizing the surrounding roads, pedestrians, and
other vehicles, thereby enhancing path planning and automatic
navigation to improve the system’s safety and reliability. In road
condition images, the size of vehicle targets exhibits significant
variation, while pedestrian targets tend to be smaller and
more densely packed. Additionally, the complexity of road
information further complicates the scene. These small targets,
containing limited image information, pose a challenge for
recognition and are susceptible to being overlooked during net-
work training. Consequently, this study prioritizes the cascading
target detection model as its research baseline. To achieve
more accurate prediction boxes, multiple data preprocessing
operations were employed. Moreover, to adapt to the varied
shapes and sizes of vehicle targets, an attention mechanism
was integrated into the backbone network. Subsequently, the
study leveraged deformable convolution methods to enhance
the global context correlation of feature maps and conducted
vehicle target training and prediction across multiple-scale
feature maps. Experiments were conducted in public settings.
The available vehicle detection datasets include KITTI and
SODA10M. A series of ablation and comparative experiments
were completed. The results demonstrate that the algorithm
proposed in this study significantly improves accuracy and
mean precision in road target detection, exhibiting an over-
all effective detection performance. This method can provide
substantial support to autonomous vehicle systems, thereby
reducing the risk of traffic accidents.

Index Terms—Image processing, Deep learning, Object de-
tection, Deformable convolution.

I. INTRODUCTION

THE development of computers and the Internet has led
to an increased focus on using these technologies to

solve problems. One area of interest is the potential for
computers to replace human workers, thereby reducing the
need for human resources. This has led to the emergence
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of artificial intelligence technology, which is seen as an
extension of human ability. The goal is to create intelligent
machines that can respond similarly to human intelligence.
These machines can continuously acquire knowledge and
learn by simulating the information-processing processes of
human thinking and consciousness. Artificial intelligence is
currently being used in various fields, such as knowledge
representation and automatic reasoning, machine learning
and knowledge acquisition, natural language understanding,
and computer vision.

Object detection is a popular branch in the field of
computer vision, which is a technique used for the fast and
accurate identification of specified targets. The principle is
to use various image processing methods and algorithms to
simulate the human visual system to determine the location
and class of a given object. Object detection primarily uses
feature extraction and classification algorithms to identify
objects in an image. To identify objects in an image, feature
extraction algorithms collect features from the image, such
as edges, colors, textures, etc. Classification algorithms can
identify objects in an image based on the extracted features.
Object detection techniques are widely used and play an
important role in fields such as intelligent surveillance,
autonomous driving, virtual reality, and medical diagnosis.

Road object detection, as an important part of autonomous
driving environment awareness, provides basic support for
subsequent higher-level tasks such as decision planning and
behavioral control of the vehicle. The main purpose is to
detect element information such as vehicle and pedestrian
targets and their position in the picture from still pictures
or moving videos, and to classify vehicle types. It helps
autonomous driving systems to recognize and understand
their surroundings more accurately and quickly, and thus
to better realize autonomous driving. As the foundation and
core of intelligent mobility, vehicle detection is an important
part of the operation of driverless vehicles and is of great
relevance in higher-level vision tasks such as target tracking
and event detection.

The traditional road target detection method mainly uses
the artificial feature extraction methods. Feature extraction
is to make a transformation or encoding of the data, which
is mapped and transformed from a high-dimensional original
feature space to a low-dimensional space. Good features are
supposed to be undistorted and distinguishable. In 2005, Dala
et al. proposed a target detection algorithm based on feature
extraction (Histogram of oriented gradients, HOG) [1]. It
extracts features by calculating the histogram of the gradient
direction in the image to achieve target detection. For the
moving target, Lowe proposed the Scale Invariant Feature
Transform (SIFT) [2], whose idea is to use the gradient
information near the key points of the image for feature
representation.
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However, in the traditional road object detection algorithm,
since the relevant target feature information needs to be
obtained manually, the superiority of the features extracted
in the manual feature extraction stage will directly affect
the detection performance of the whole algorithm. Tradi-
tional detection algorithms have many limitations, which also
greatly limit their effectiveness in practical applications and
directly affect the accuracy of the algorithms. At the same
time, due to environmental changes, light intensity, object
shape changes and other factors, artificial construction fea-
tures lack of robustness and generalization. In addition, the
high complexity of the sliding window method, along with
a significant amount of redundant calculations, inevitably
makes it tough to enhance the operational speed.

Deep learning methods rely mainly on the design of net-
work structures and feature representation. The advantage of
road target detection algorithms based on deep learning over
traditional road target detection methods is that they do not
require manual feature design. In addition, the convolutional
neural network can automatically extract multi-level vehicle
features from the shallow position information of the original
image to the high-level semantic information, thus improving
the accuracy and stability of detection. The object detection
algorithm based on deep learning can be divided into a
two-stage method based on the candidate frame and a one-
stage method based on regression. The former requires the
extraction of candidate boxes before classification, while the
latter directly returns the detection results into the input
image. The two-stage method has the advantage of being
able to extract image detail features, so the algorithm has
good detection accuracy.

However, the model runs slowly due to the fact that the
algorithm is performed in two steps. Convolutional neural
network (CNN) [3] is a typical two-stage target detection
method. Region convolutional neural networks (R-CNNs) [4]
were further proposed by continuous optimization of neural
network algorithms. In addition, it is the first algorithm to
apply deep learning to target detection. The Fast R-CNN
algorithm was proposed by Girshick et al [5] in 2015,
which incorporates the idea of SPPNet by designing the
SPP layer of the network as a separate layer, i.e., the ROI
Pooling layer, which further solves the problem of updating
weights, improves the training performance and speeds up
the training. Azam et al [6] used the Faster R-CNN method,
a modified algorithm of Fast R-CNN, to detect the license
plate number and body color of a vehicle and compared their
accuracy from four perspectives of the vehicle.

In order to solve the slow detection problem of the two-
stage method, in 2013, Sermanet [7] et al. proposed the
well-known OverFeat algorithm, which can simultaneously
perform classification, location and detection tasks. It was the
first paper to propose a one-stage detection idea approach.
In 2015, J. Redmon [8]et al. proposed the first one-stage
detection method: the YOLO algorithm. This algorithm
applies the neural network directly to the image, which
greatly improves the detection speed, thus making real-
time video detection a reality. However, it is ineffective
in small target detection tasks, generating the problem of
poor generalization ability caused by anomalous aspect ratios
between similar objects.YOLOv2 [9], based on the YOLO
algorithm, utilizes the Darknet-19 network structure, multi-

scale feature fusion, and anchor frames to enhance detection
performance and speed. However, it still faces challenges
in detecting small targets effectively. Therefore, Redmon
et al. proposed a new target detection method, namely the
YOLOv3 [10] algorithm, which combines the advantages of
YOLOv2 and residual networks, effectively addressing issues
such as the challenge of detecting small targets. However,
there are still problems, such as missing information resulting
from the multilayer feature extraction process.

In December 2016, Liu et al [11] proposed the SSD algo-
rithm, which utilizes VGG-16 as the backbone network and
integrates the concept of multiscale feature map prediction
to address the issue of subpar performance of the YOLO
algorithm in small target detection. Therefore, the algorithm
significantly improves the detection accuracy of the one-stage
method.

Although the one-stage detection method is faster, its
accuracy is lower, and its localization is less effective com-
pared to the two-stage algorithm. The speed and accuracy of
road target detection affect the driving safety of autonomous
vehicles. The complexity of actual traffic conditions and the
presence of light sources, obstacles, and other interference
factors make vehicles face great challenges in detection.
Accurate road target detection is the primary challenge that
autonomous vehicles need to address. Therefore, this paper
adopts a two-stage detection method to improve the detection
accuracy of road targets.

To enhance the accuracy of road target detection, this
paper proposes an advanced algorithm based on Cascade R-
CNN to boost the performance of the road object detector.
Firstly, data preprocessing and data augmentation operations
are introduced to generate more accurate prediction frames to
tackle the issue of challenging data collection and inadequate
sample size, which leads to unsatisfactory training results.
Secondly, by adding an attention mechanism to the back-
bone network, merging SENet and ResNet to enhance the
algorithm’s feature extraction and classification ability. This
solves the problems of low precision, potential overfitting,
and high memory consumption in the original network.
Finally, by using deformable convolution to handle vehicle
targets with different shapes and variable sizes, and by
training and predicting vehicle targets on multi-scale feature
maps, the problem of poor target detection and localization
due to the inability to visually identify and fine-locate targets
is solved. To demonstrate the validity of our experiments, a
series of ablation experiments and comparison experiments
are designed and validated on the KITTI dataset and the
SODA10M public dataset, and the generalization capability
of the algorithm is demonstrated in this paper.

II. RELATED WORK

Whether the unmanned vehicle can accurately detect road
objects has become the research focus. The two-stage target
detection method based on deep learning is relatively supe-
rior in both detection accuracy and localization precision,
so this paper takes the two-stage target detection method
as the primary research direction. The two-stage target de-
tection algorithm first selects the suggestion frames for the
input image and then conducts classification and position
regression on the suggestion frames, which leads to the final
detection outcomes. In this chapter, some classical two-stage
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objective methods are further detailed. It also discusses the
fundamentals and working principles to provide theoretical
support for the research in this paper.

A. CNN

The development of convolutional neural networks can be
traced back to the 1960s when Hubel [12] and others intro-
duced the concept of receptive fields through their studies of
cat visual cortex cells. Subsequently, Marvin Minsky [13], a
master of artificial intelligence, identified the shortcomings
of perceptual machines. Since it is unable to handle heteroge-
neous networks, its computational power is not sufficient to
handle large neural networks. By the 1980s, Fukushima [14]
proposed the concept of a neurocognitive machine based on
the concept of perceptual field and the idea of convolution
and pooling. It can be considered as the first implementation
network of a convolutional neural network. In 1986, Hinton
[15] proposed the BP backpropagation algorithm, which is an
ingenious application of the chain rule mainly to find a set of
weights with minimum error. On the base of that, Yann Lecun
[16] identified handwritten character features and compared
them with standard handwritten digit recognition, and the
result was that convolutional neural networks significantly
outperformed other techniques. Therefore the LeNet-5 al-
gorithm was proposed and the prototype of a convolutional
neural network was generated by applying the BP algorithm
to the training of this neural network structure. Until 2012, in
the ImageNet image recognition competition, Hinton’s [17]
group proposed a new Alexnet algorithm, introducing deep
structure and the dropout method, which subverted the image
recognition field and made CNN start to dominate gradually
in the computer vision field.

CNN (Convolutional Neural Network) is a feed-forward
neural network composed of numerous artificial neurons and
structured in different connection patterns. CNN consists of
one or more convolution layers, pooling layers and a fully
connected layer on top, which is mainly used to extract
local features of convolution objects. It is a mathematical
or computational model used to mimic the structure and
function of biological neural networks. It mainly solves the
problem that the amount of image data to be processed,
the original features during the digitization process, and the
accuracy of image processing is not high.

CNN consists of three main parts: convolutional layer,
pooling layer, and fully connected layer. The main role of
the convolutional layer is to extract features. The pooling
layer mainly serves to downsample without corrupting the
recognition results. The main role of the fully-connected
layer is to classify. Convolutional neural networks can be
analogous to human brain thinking. For instance, if you
observe the image of a car in the picture below, how does
the human brain extract the information from the picture and
identify it as a car? Firstly, it needs to be judged that the
car has a regular shaped shell. Secondly, it was found by
observation that it has a series of tires, tail lights, mirrors,
license plates, and other accessories of a car. Finally, these
are linked and combined with previous knowledge and expe-
rience to determine that it is a car. The principles of CNN are
also different. The schematic diagram is shown in Fig.1. The
convolutional layer is used to find the vehicle features. The

pooling layer reduces training with fewer parameters while
keeping the sample unchanged, ignoring some interference
or useless information. Finally, the fully connected layer is
used to classify to determine that this is a car.

Fig. 1: Schematic diagram of CNN algorithm

B. R-CNN

The image classification task with CNN as the lead-
ing algorithm is one of the most fundamental tasks in
computer vision. Image classification usually requires only
the prediction of object classes. However, based on image
classification, we need not only to classify the objects in the
image but also to locate the position of the objects. In this
way, another important task of computer vision is proposed:
target detection. In the target detection task, a picture may
contain multiple objects or even multiple objects of different
categories in a single image. In this case, it is necessary to
mark the position and size of each object and distinguish its
category, and the exact location of the target is given, because
the number and type of target in the image are variable.
Obviously, the object detection task is more complex than
the image classification task.

Girshick et al[18] first applied convolutional neural net-
works to the target detection task by combining candidate
regions and CNNs in 2014. He proposed to use of deep
convolutional networks as the backbone network for feature
extraction. Combined with region selection methods to gen-
erate candidate regions and form an R-CNN architecture.
This model becomes the basis of object detection algorithm
based on deep learning, and has achieved great success in the
field of object detection, laying the foundation for a series
of subsequent detection algorithms. The R-CNN (Region-
based Convolutional Neural Networks) algorithm consists of
four main components, as illustrated in Figure 2. Firstly, the
detected images are acquired through the network; secondly,
the input images are extracted with approximately 2000
candidate regions using the Selective Search (SS) algorithm
[19]. The candidate regions of various sizes are resized to
a fixed size and sent to a CNN for feature extraction to
acquire the features of the candidate regions. After obtaining
the feature vectors, the class and location information of the
target is obtained using Support Vector Machines (SVM)
with multiple SVM classifiers and regressors. Finally, the
bounding box is fine-tuned by discarding the regions with
a high overlap ratio using non-maximum value suppression,
and then the results are accurately detected using bounding
box regression.

1) Selective search algorithm: The Selective Search algo-
rithm first uses a segmentation tool that divides the image
into one thousand to two thousand small regions. The simi-
larity between the merged and adjacent regions is calculated
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Fig. 2: Schematic diagram of R-CNN algorithm

by computing the similarity (e.g., color, texture, scale, etc.)
between all neighboring regions and merging the regions
with higher similarity together. Keep repeating the previous
step until the whole image becomes one region.

2) SVM Classifier: When using SVM for classification,
since SVM is limited to binary classification of data, and
the majority of datasets are multi-category tasks. An SVM
classifier is trained for each category (e.g., there are 20
categories in the Pascal VOC dataset, so 20 classifiers need to
be used). In the SVM classification process, the Intersection
over Union ratio (IOU) of the intersection of two bounding
boxes is considered a negative case when IOU<0.3. When
IOU>0.7, it is considered a positive case known as ground
truth, indicating that the object is fully enclosed. All cases
other than positive ones are discarded. Meanwhile, the SVM
classifier also outputs a label that it predicts. The self-trained
label is compared with the real label to calculate the training
loss, and then the SVM continues to be trained. Since the
number of candidate frames generated is far greater than
the count of actual targets in the image, a large amount of
candidate regions are overlapping, and therefore redundant
candidate frames that need to be removed. The authors use
the non-maximal suppression (NMS) method here to remove
redundant bounding boxes so that some proposal regions with
the highest scores in each category are obtained.

Since SVM is trained with small samples, it can be the
case that there are far more negative samples than positive
samples. For this scenario, the authors employ the hard
negative mining method. The method initially utilizes all
samples for training. After one round of training, the negative
sample with the highest score, that is, the negative sample
most likely to be misclassified, is added to the new sample
training set for further training. The above steps are repeated
until the stopping condition is reached such that the classifier
performance no longer improves. It makes SVM suitable for
small sample training without overfitting when the samples
are unbalanced. Compared with traditional sliding window
based target detection algorithms, R-CNN algorithm has
improved its accuracy and achieved better results on major
standard data sets. However, due to the cropping deformation
of the proposed region, some feature information in the
image will be lost, and the position information of the target
will be distorted, so the detection accuracy will be indirectly
affected. At the same time, each image requires convolu-
tion operations on approximately 2000 proposal regions,
which increases the amount of computational redundancy and
makes the target detection slow.

C. Cascade R-CNN

Typically, the object detection task is performed within a
network where the image features are extracted using a deep
neural network and subsequently identified based on feature

utilization. The one-stage technique is less robust because
it is more vulnerable to feature fluctuations, which leads
to unsatisfactory regression findings. Cascade RCNN [20]
provides a multi-detector model with a cascade structure to
solve the lack of detection performance in the first stage and
achieves substantial improvement, particularly in detection at
high thresholds.

The Cascade R-CNN network improves upon the Faster R-
CNN [21] network by including three major components: the
ResNet feature extraction network [22], the Feature Pyramid
Networks (FPN) [23], and the cascade detector. ResNet is
utilized in this scenario to extract features and perform a
multi-scale fusion of feature maps from deep to shallow
layers. The fused feature maps are then sent to the RPN,
which generates potential target areas.

Fig. 3: Cascade R-CNN structure schematic

The Cascade R-CNN structure is shown schematically
in Fig.3. Where conv stands for the convolutional neural
network and B0 denotes the proposal region selected from
the region recommendation network. The RoI Pooling layer
utilizes the proposed regions and feature maps from the
convolutional neural network to extract the characteristics of
the region of interest. The fully connected layer Hi is then
given the features. The classifier Ci and the border regression
function Bi for precise localization, respectively, receive the
characteristics generated by the fully connected layer.

Each bounding box in the general regression tasks has
b = (bx, by, bw, bh). The process of regression is the pro-
gression of the proposed frame’s coordinate data b towards
the ideal potential frame g. The formula for this step is
f(x, b). This regression’s distance may be represented as
∆ = (δx, δy, δw, δh). The regression process is defined as
Eq.(1).

f(x, b) = fT ◦ fT−1 ◦ · · · ◦ f1(x, b) (1)

Where T represents the number of cascades, x denotes the
input image, and b indicates the bounding box corresponding
to the image corresponds. The coordinates are normalized
by the same technique, as illustrated in Eq.(2), to eliminate
the influence of the regression scale caused by the bounding
box’s size and location. as Eq.(1).

δx = (gx − bx)/bw, δy =
(
gy − by

)
/bh

δw = log
(
gw/bw

)
, δh = log

(
gh/bh

) (2)

A cascade detector is a model composed of a series of models
that process the output of one another in succession. Three
cascaded detectors make up the cascade model in Cascade
R-CNN. Objects that are easiest to recognize are found by
the first detector. To make sure that the identified objective
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is a real goal and not a false alarm, it often employs a high
threshold value. Targets that are missed by the first detector
must be found by the second detector. To produce results
for detection that are more precise, the output of the first
cascade head is further refined and filtered. In order to allow
for the detection of more objectives, it often employs a lower
threshold value. The third detector’s role is to find targets
that the second detector is unable to find. To ensure that the
most challenging targets are found and the desired outcome
is generated, it uses the lowest threshold value.

F ∈ RC×H×W (3)

P 1
c = {p1c | r} (4)

T 1
x , T

1
y , T

1
W , T 1

h = {t1x, t1y, t1W , t1h | r} (5)

The original image and the suggested frame serve as detector
inputs. Where r is the input proposal frame, C,H, and W
are the number of channels, height, and width, respectively,
and F is the feature map extracted from the original image.
Each proposal’s category score and coordinate offset, or
classification and regression, are the outputs. The relevant
equation is shown in Eq.(3)-(5). Where P 1

c is the category
score of the predicted proposal, T 1

x , T
1
y , T

1
w, and T 1

h are the
offsets of the coordinates of the predicted proposal. The
second and third cascade detectors are similar to the first
detector and will not be described here. The overfitting and
mismatching issues caused by merely increasing the IOU
threshold in a convolutional neural network are resolved
using this pattern of cascading detectors.

Cascade R-CNN improves the R-CNN detection network
in Faster R-CNN to a cascade detection network that im-
proves the IoU threshold of the candidate box layer by layer,
which improves the sample quality, and then improves the
detection accuracy compared with Faster R-CNN, but there
are still vehicles missed detection, which cannot meet the
demand for high quality detection accuracy of vehicle targets.
Therefore, how to further improve the accuracy of vehicle
recognition is a worthwhile research direction.

III. IMPROVED SED-CRCNN METHOD

Although deep learning-based road objective methods have
gained a lot of interest from academics, the present algo-
rithms have certain limitations. For example, it may result
in overfitting, where accuracy may become insufficient after
numerous upgrades, and the deployment of deeper networks
may result in increased memory utilization, among other
things. This research offers a deep learning cascade network
(SED-CRCNN) based on an enhanced Cascade R-CNN to
overcome these concerns. To get better detection results,
the algorithm first executes several preprocessing actions
on the data. Meanwhile, the backbone network ResNet is
upgraded by introducing the SENet module, which allows
the network to modify channel weights adaptively, thereby
boosting model performance. Furthermore, the deformable
convolution approach is used with Cascade RCNN to add
an offset variable to the position of each sample point in
the convolution kernel, thereby overcoming the limitations
of classical convolution.

A. Data preprocessing

1) Data enhancement: By making minor adjustments to
an existing dataset or generating artificially generated data
from existing data, data augmentation techniques expand
the quantity of data available. The technique is commonly
utilized in deep learning, particularly for migration learning
and small sample learning tasks. The main purpose of the
method:

• Increasing training data: In object detection tasks, there
is a lack of training data because it is difficult to gather
the data or there aren’t enough samples, which leads
to subpar training outcomes. This is where using data
augmentation can produce extra data and enhance the
model’s training effect.

• Enhance model generalization: Overfitting is a common
problem in deep learning, and data augmentation can be
used to better understand the distribution of the data and
enhance model generalization.

• Improving data distribution: Data improvement can
broaden the sample’s variety and improve the dis-
tribution of the dataset’s data, which are frequently
distributed inequitably.

Fig. 4: Different data enhancement methods

In this study, the dataset is augmented by mirror flipping,
modifying the hue, saturation, and brightness of the image,
changing the color and brightness attributes of the image,
and other gain acquisitions. A training set and validation
set are created from the data-enhanced photos in a 7:3
ratio. The outcomes of utilizing various approaches for data
augmentation to raise the caliber and diversity of the data
are shown in Fig.4. The Resize procedure in (a) increases the
image size from 1242×375 to 1333×800, bringing attention
to minute target details and making the target item obvious.
By flipping the image randomly up, down, and left to right,
the RandomFlip operation in (b) enhances the training data.
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By altering factors like the hue, saturation, and brightness
of the image, RandomColorJitter and HueSaturationValue in
(c) and (d) are employed to increase the generalizability of
the model.

2) Create more accurate prediction boxes: Three aspect
ratios, 1:1, 1:2, and 2:1, are frequently utilized to create
anchor frames in the Cascade R-CNN model. However, due
to the different attributes of images in different datasets,
using the same aspect ratio leads to a large number of an-
chored frames that are formally mismatched, which reduces
the accuracy of boundary regression. As a result, anchor
frames with the appropriate aspect ratio dimensions were
found through additional analysis of the experimental data
collected in this article.

This study first examines the image data of all datasets
to understand the dimensions of the images. Then, statistical
analysis of the aspect ratio was performed by calculating the
aspect ratio of each image. The data are finally represented
graphically as seen in Fig.5. The statistical aspect ratio’s size
is plotted along the horizontal axis, and the number of visible
images is plotted along the vertical axis. It can be seen that
this dataset has a concentration of image aspect ratio sizes, so
the results were modified accordingly. Without altering the
network structure or the amount of parameters, this technique
can increase the model’s detection.

Fig. 5: Histogram of aspect ratios

B. SE-ResNet
Based on the concept described in the section before, a

cascaded R-CNN detection module was proposed for object
detection tasks, with the backbone module typically using
the ResNet method. ResNet is a deep convolutional neural
network model that introduces the residual connection to
address the degradation issue with deep convolutional neural
networks. Road object detection approaches that combine
Cascade R-CNN and ResNet algorithms can detect people
and vehicles more rapidly and precisely, but there are still
some drawbacks. In the beginning, training on tiny datasets
may lead to overfitting. Secondly, although cascaded detec-
tors and residual networks have improved accuracy, it is still
not very high. Finally, as the residual join necessitates the
saving of additional intermediate feature maps, it could have
a high memory footprint.

To address the drawbacks of combining the Cascade R-
CNN and ResNet algorithms, we improve the backbone
network of the Cascade R-CNN algorithm by introducing
the SENet [24] method. SENet mainly consists of two mod-
ules, Squeeze and Excitation. Squeeze is a global average
pooling layer, which extracts statistical information of each
channel by feature map to perform global average pooling
to extract statistical information about the channel. This
generates a feature vector where each element represents
the global information associated with that channel. The
Excitation operation, on the other hand, is a neural network
consisting of multiple fully connected layers. It generates
a channel-specific importance weight vector by receiving
the vector output from the Squeeze operation. This weight
vector is scaled and normalized by an activation function and
multiplied with the original feature map into elements. This
will allow the SENet module to selectively enhance useful
feature channels and suppress unnecessary ones.

The SENet method was combined with the ResNet method
to obtain the SE-ResNet method for better detection results.
SENet (Squeeze-and-Excitation Network) is a deep neural
network model based on the development and research of
ResNet, which further improves the performance of the
model by introducing the attention mechanism. Its overall
architecture embeds Squeeze and Excitation operations into
a deep convolutional neural network, which enables the
network to adaptively adjust the weights of the channels
to improve the performance of the model. SENet uses
the Squeeze-and-Excitation module to adaptively adjust the
importance of each channel to better capture the correla-
tion between different channels and improve the model’s
performance. The correlation between them improves the
classification accuracy of the model. Combining SENet with
ResNet can further enhance the feature extraction and clas-
sification capabilities of ResNet, thus further improving the
classification accuracy.

To understand how the SENet functions in its totality, let’s
first suppose that there is a feature map X with the dimen-
sions H×W×C. Where C denotes the number of channels,
and H and W , respectively, denote height and breadth. With
the Squeeze operation, the global average pooling of the
ResNet-processed feature maps is accomplished to produce
a feature tensor Z of size 1× 1× C. As shown in Eq.(6).

Z = GlobalAvgPool(X) (6)

The output vector F and a Bottleneck structure, which
models the correlation between channels, are created by pass-
ing the input feature tensor Z through two tiers of completely
linked layers. To create the vector S, the components in F are
normalized using the Softmax activation function. To create a
weight vector V (as illustrated in Eq.(7)–(9)), multiply each
element in S by a weighting factor W .

F = FC(Z) (7)

S = Softmax(F ) (8)

V = S ⊙W (9)

The final step is to multiply the initial feature map X by
the weight vector V that is produced in order to create an
updated feature map Y . Each channel’s characteristics are

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2039-2053

 
______________________________________________________________________________________ 



weighted according to the normalized weights. As shown in
Eq.(10).

Y = V ⊙X (10)

A comparison of the ResNet and SE-ResNet structures
is shown in Fig. 6. SE-ResNet automatically obtains the
importance of each channel mainly by modeling the channel
relationships. According to this degree of relevance, the
network’s performance is subsequently enhanced by im-
proved beneficial qualities and suppressing those that are
insignificant to the job at hand. By balancing and improving
the feature dimension using a specially developed feature
compression activation module, SE-ResNet enhances the
model’s capacity for learning new features. It enhances the
network’s categorization precision and enables a better grasp
of the relationships between various channels.

Fig. 6: Comparison of ResNet and SE-ResNet structures

C. Deformable convolution

The modeling of significant unknown changes is the nat-
ural limitation of neural networks. The CNN module’s fixed
geometric structure and the absence of internal methods to
manage geometric alterations are the causes of this constraint
[25]. As a result, the receptive field size is the same for all ac-
tivation units in the same CNN layer. It renders it impossible
to visually recognize things that need precise positioning and
leads to inaccurate target localization. Due to the diversity
of vehicles and pedestrians, as well as the wide range of
geometries, determining the size and shape of each vehicle
in tasks involving road object detection is more challenging.
Since it is difficult to adjust the vehicle target recognition
task by using the fixed size convolution kernel directly,
deformable convolution is proposed to adapt to the changing
target vehicle geometry. It can enhance spatial transformation
invariance, collect more semantic information, and enhance
feature extraction capabilities to better handle features of
various sizes and forms.

The DCN (Deformable Convolutional Networks) algo-
rithm is a crucial technique for resolving target identification
object deformation issues. By using Deformable Convolu-
tion, the convolution kernel can change the position and size
of its samples to fit the shape and size of various target

objects, which solves the ”object deformation” problem in
target detection. As a result, detection accuracy is effectively
improved, and the network is better able to adapt to the form
and position of objects in a range of challenging settings.

A schematic representation of the sampling sites for both
traditional and deformable convolution is shown in Fig.7.
Figure (a) demonstrates that the traditional convolution only
has one sample network with a set rectangular form. Figure
(b) demonstrates how the convolution kernel adds an offset
variable to the location of each sampling point so that the
kernel may accomplish random sampling around the present
position and overcome the constraints of conventional con-
volution. Eq.(11) demonstrates how to determine the offset

Fig. 7: Conventional and Deformable Convolution

∆pi,j for each feature point (i, j) of the input feature map.

∆pi,j =

[
∆pxi,j
∆pyi,j

]
= f∆ (Xi,j) (11)

Each place on the feature map y should be denoted by
y(p0), where R represents the nine positions of the sampled
points of the convolution kernel concerning x(p0) in the
input. The convolution result of standard convolution is a
”weighted sum” operation between the convolution kernel
and the input features, as shown in Eq.(12). The deformable
convolution introduces a learning displacement ∆pn, the
implementation process chooses the sampling position using
bilinear interpolation, and the convolution process becomes
Eq.(13). This allows for the extraction of features that
more closely fit the shape of the target. Where p0 is the
feature sampling location, ∆pn denotes the offset, pn is an
enumeration of the convolution sampling location R, w is
the feature weight and x is the eigenvalue expression.

y(p0) =
∑
pn∈R

w(pn) · x(p0 + pn) (12)

y(p0) =
∑
pn∈R

w(pn) · x(p0 + pn +∆pn) (13)

The structure of the cascaded R-CNN and deformable
convolution combination used in the deformable convolution
algorithm of this paper is shown in Fig.8. To create feature
maps for the C3, C4, and C5 levels of the Feature Pyramid
Network (FPN), the input images are routed through the
backbone network. Where C3, C4, and C5 stand for the
output feature maps of SE-ResNet network stages 3, 4, and
5, respectively. A cascade head network is given each feature
map to process. A standard convolutional layer is first applied
to each proposal region in order to extract features and
create a feature map. The Deformable Convolution module
uses the feature map as an input and performs a deformable
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convolution operation. Following the deformable convolution
procedure, ROI Align maps the ROI region and its contextual
data into identically sized rectangular rectangles. After that,
by enlarging the ROI region, the fusion is carried out via an
additive process to gather contextual information.

D. Algorithm Overall Structure

1) Structure: As stated above, this study proposes an
enhanced SED-CRCNN technique based on cascaded R-
CNN, where the inputs are preprocessed, added to a ResNet
backbone network, and deformed convolution operations are
performed. The main flow chart of the algorithm is shown
in Fig.9.

The following phases make up the algorithm’s main pro-
cess: The image dataset is initially built once the raw picture
data has been pre-processed. Second, a certain ratio is used to
partition the picture collection into training, validation, and
test sets. The training and validation sets were run through
the SE-ResNet component of the modified SED-CRCNN
algorithm. The ResNet technique is enhanced with a SENet
module to perform more precise feature extraction. After the
SE-ResNet output, deformable convolution procedures were
employed in layers 3 to 5 to enhance the model’s perceptual
field, producing three feature maps. Following that, Top-
down Path and FPN procedures combine the three feature
maps into a high-resolution feature pyramid. Then, using
RPN, bounding boxes are extracted, those with boundaries
are subjected to ROI Align procedures, and they are fi-
nally transformed into fixed-size feature maps. Subsequently,
classification and regression operations are applied to each
candidate bounding box to obtain the detection box. Finally,
it is determined whether the accuracy of the trained model
satisfies the requirements based on the outcomes of the
training set, validation set, and test set following model
training. If it is satisfied, the model is output, the target road
traffic is detected, and the detection result is produced. If it is
not satisfied, the model is sent back to the training section for
training. The algorithm structure of SED-CRCNN is shown
in Algorithm 1.

2) Loss function: The RPN network loss function, the ROI
network loss function, and the cascade network loss function
make up the three primary parts of the upgraded network’s
loss function.

(1) RPN network loss function: The loss function of the
RPN network is a linear combination of the classification and
regression components, as shown in Eq.(14). Lcls and Lreg

denote the loss functions for the dichotomous classification
task and the bounding box regression task, respectively.

Lrpn = Lcls + λLreg (14)

The quantity and placement of bounding boxes are man-
aged by the classification section, and it also determines
whether a candidate box includes a target item. This section
makes use of the CrossEntropy Loss function, which employs
a sigmoid function to transform the network’s output into
a probability. The classification loss function is represented
in Eq.(15), where Ncls is the total number of positive and
negative samples in the training samples and yi is a binary
variable indicating whether the ith sample is the target. If
yi = 1, it falls within this classification; if yi = 0, it does

Algorithm 1 SED-CRCNN method

Input: Image data
Output: List of final detected objects
1: Feature Extraction using SEResNet
2: Region Proposal Network (RPN) for candidate bounding

boxes
3: Region of Interest (ROI) Alignment
4: Classification and Bounding Box Regression Heads
5: Stage1:Classify and regress over candidate bounding

boxes
6: Apply Non-Maximum Suppression (NMS) for Stage 1

detections
7: Stage2:Downsampling of Stage 1 detections
8: Feature Extraction using SEResNet
9: ROI Alignment

10: Classification and Bounding Box Regression Heads for
Stage 2

11: Classify and regress over downsampled detections
12: Apply NMS for final detections
13: Repeat the above until the number of layers is complete
14: Output the final result

not. The probability that the ith sample will be the target is
shown by the symbol pi.

Lcls = − 1

Ncls

n∑
i

[yilogpi + (1− yi)log(1− pi)] (15)

The other part is the regression loss function, which
measures the matching degree between the candidate box and
the ground-truth box by calculating their intersection-over-
union (IoU) ratio. Eq.(16) demonstrates the formula, where
Nreg is the number of positive samples in the training sample
and ti and t∗i stand for the predicted bounding box and the
matching genuine bounding box, respectively, in terms of
coordinate values. Here,a loss function called SmoothL1 is
adopted, which has a lower outlier penalty and is therefore
more suitable for object detection regression work. The
model becomes more stable as a result of the smoothing,
which also stops significant errors from having a negative
impact on training. The equation is shown in Eq.(17), where
x represents the difference between the predicted and true
boxes.

Lreg =
1

Nreg

n∑
i

yismoothL1(ti − t∗i ) (16)

smoothL1(x) =

{
0.5x2 if | x |< 1

| x | −0.5 otherwise (17)

(2) ROI network loss function: Similar to the RPN net-
work, the ROI network’s loss function is divided into two
main parts: the objective classification loss function and the
bbox regression loss function. CrossEntropy Loss function is
utilized by the target classification loss function to determine
the likelihood that a candidate frame contains a target item.
A SmoothL1Loss function is utilized in the bbox regression
loss function to determine how to modify bounding boxes to
resemble the target item more closely.

(3) Cascade network loss function: The upgraded al-
gorithm’s cascade detector employs many sub-detectors to
increase detection precision. The cascade detector’s loss
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Fig. 8: Cascade R-CNN and deformable convolution combined schematic

Fig. 9: Overall project flowchart

function is divided into many sub-detector loss functions,
each of which includes a target classification loss function
and a bbox regression loss function for figuring out how to
modify bounding boxes to resemble the target object more
closely.

IV. EXPERIMENT

This research proposes a Cascade R-CNN based cascade
network (SED-CRCNN) model to enhance the accuracy of
road target recognition, particularly based on small objects
and targets with irregular sizes and shapes. In this section,
thorough comparison and ablation experiments are carried
out on the road target open datasets KITTI and SODA10M
to verify the efficacy of the SED-CRCNN model suggested

in this study. The paper will go into further detail on the
experimental evaluation metrics, the experimental data set,
the experimental environment and parameter settings, the
comparative experimental outcomes, the experimental tech-
nique, and the analysis of the results in the next subsections.

A. Evaluation metrics

Evaluation metrics are an important basis for evaluating
how well an object detection algorithm approach works. The
object detection task requires not only the identification of
the object class but also the prediction of its location, so the
selection of suitable evaluation criteria is essential to measure
the performance of the model.

The sample, which is frequently classified as a positive
sample and a negative sample, is a crucial notion in object
detection evaluation. Objects to be detected are represented
by positive samples, whereas targets not to be detected
are represented by negative samples. For example, car or
pedestrian targets are positive samples for detecting roadway
targets, while other elements are negative samples. The con-
fusion matrix is shown in Table 1. Where TP (True Positive)
is the probability of detecting a positive sample, FP (False
Positive) is the probability of detecting an incorrect sample,
FN (False Negative) is the probability of not detecting a
correct sample and TN (True Negative) is the probability
of detecting a negative sample.

TABLE I: Confusion matrix

Confusion matrix Ground truth

Positive Negative

Predicted value Positive TP FP

Negative TP FP

In this paper, AP (single class average precision), mAP
values, and AP50 values will be used as metrics for the
evaluation of vehicle target detection methods, and Recall-
Precision curves will be plotted to evaluate the performance
of the detection methods. The magnitude of the AP value
is determined by the region enclosed by the RP curve; the
greater the area, the higher the AP value and the more
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accurate the detection. Eq.(18)-(21) illustrate this. Where c
represents the total number of identified target classes and
APi is the typical accuracy of the ith target class’s detection.

AP =
TP + TN

TP + TN + FP + FN
(18)

Recall =
TP

TP + FN
(19)

Precision =
TP

TP + FP
(20)

mAP =

∑ε
i=1 APi

c
× 100% (21)

The steps to calculate the AP metric are:
(1) Compare the IoU values of each prediction box in the

test set with all of the true boxes to determine which true
box has the highest IoU value.

(2) Determine the Precision and Recall for each prediction
box individually, ranking them in order of highest to lowest
confidence scores, and note the appropriate Precision and
confidence score thresholds.

(3) The AP50 was determined using the above-ranked
Precision-Recall curve, taking into account only predictor
frames with IoU values larger than or equal to 0.5.

B. Dataset

1) KITTI: The KITTI dataset [26] is a joint venture
between the Karlsruhe Institute of Technology in Germany
and the Toyota Institute of Technology USA for algorithm
evaluation datasets in autonomous driving scenarios. It is a
publicly available dataset for vehicle object detection and
consists of nine categories Car, Van, Truck, Pedestrian,
Person sitting, Cyclist, Tram, Misc, and DontCare for studies
such as deep learning model computation. DontCare indi-
cates that certain areas are targeted, but for some reason,
such as being too far away from LiDAR. It contains mainly
real image data collected from urban, rural, and motorway
scenes. With varied degrees of occlusion and truncation, each
image may contain up to 15 automobiles and 30 pedestrians.
The center point coordinates, detection frame coordinates,
navigation angles, and occlusion truncation information make
up the annotation information.

The KITTI dataset is divided as shown in Table 2 and
images of parts of the dataset are shown in Fig.10. The
road target detection algorithm used in this paper uses the
KITTI dataset to train the model, and the results are only
retained for seven categories related to road target detection,
namely Car, Van, Truck, Pedestrian, Person sitting, Cyclist
and Tram, without going into the results of other categories.

TABLE II: KITTI dataset partitioning

Dataset KITTI

Year built 2009

Number of images 7481

Image size 1242× 375

Image type 7

Training set 5984

Test set 1497

Fig. 10: Images in the KITTI dataset

2) SODA10M: SODA10M (Scenes, Objects, Depth and
Annotations) [27] is a new generation of self-supervised 2D
benchmark datasets published by Huawei Noah’s Ark Lab in
collaboration with Sun Yat-sen University. It includes 20,000
tagged photographs gathered from 32 cities and 10 million
unlabeled images of various traffic scenarios. It is used to
advance the study of autonomous driving researchers in
relevant fields involving semi-supervised and self-supervised
driving, as well as to jointly support the development of
an ecosystem for autonomous driving. It is a high-quality
driving scenario dataset that has attracted a lot of interest
and recognition in the field of road object detection.

For the study, this report primarily employs 20,000 labeled
photos. The SODA10M dataset includes the six primary
types of pedestrian, cyclist, car, truck, tram, and tricycle,
which are briefly summarized in Fig.11.

Fig. 11: Images in the SODA10M dataset

C. Experimental environment and parameter settings

1) Experimental environment: The experimental environ-
ment has an RTX 3090 (24GB) GPU and an Intel(R)
Xeon(R) Platinum 8255C CPU @ 2.50GHz. The experiments
are run on the Ubuntu 18.04.5 operating system with Python
3.9 as the coding language version. The deep learning frame-
work uses Pytorch, which also uses OpenCV, Matplotlib,
Numpy, and other toolkits for graphical analysis and pro-
cessing, visualization, and presentation of the experimental
data.

2) Training parameter: The momentum is set to 0.9 and
the decay coefficient is set to 0.0001 during the training.
The initial learning rate is set to 0.02, and the learning rate
is adjusted to 0.002 and 0.0002 when the epoch is 9,12
respectively.
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D. Experimental results

1) Ablation experiment: We will explore the effectiveness
of each of the introduced modules through experimental
results in this subsection. Using the KITTI dataset as an ex-
ample, the corresponding modules are added to the previous
improved algorithm separately. The experimental results of
the AP values for each category are used to verify whether
they are effective in a practical sense and whether they can
achieve the theoretical results.

On the KITTI dataset, tests were performed using the
original SE-ResNet and ResNet methods. The findings of
the comparison are depicted in Fig.12 using the AP values
for each category in the experiments that were recorded and
analyzed. The AP values for the Car, Van, Truck, and Tram
barely changed. Person sitting, Cyclist, and Pedestrian all
saw a discernible rise in AP values. This is because by
incorporating SENet into ResNet, the network can better
understand changes in the shape and size of targets. At the
same time, the network was able to adjust the weights of
the various functional channels to focus more on feature-
related targets and fewer features. The introduction of the
SENet post-attention mechanism can aid the network in bet-
ter understanding the significance and relationship between
various features and provide a more glaring improvement
to the algorithm. Pedestrian, Person sitting, and Cyclist are
three types of target objects, and their forms and sizes vary
greatly.

Fig. 12: ResNet and SE-ResNet AP values for each category

By comparing the original photos to the data-enhanced
images, the trials were evaluated using the KITTI dataset.
The findings of the comparison are depicted in Fig.13, using
the AP values for each category in the experiment that were
recorded and analyzed. All other classes have similarly better
outcomes, with the exception of the Person sitting class. Due
to the limited training data in the KITTI dataset and the fact
that the targets in these tasks can vary greatly in location,
size, and shape. Therefore the use of data augmentation
techniques allows the network to adapt to various target
transformations more efficiently, improving the performance
and robustness of the model.

On the KITTI dataset, the experiments compare the im-
proved SED-CRCNN method with the cascaded R-CNN
method. For comparison, the AP values for each category
in the experiments are noted and assessed. As you can see
from Figure 14, each class displays results to a similar
degree. This is because deformable convolution methods can
be used to handle objects with unusual shapes or sizes very

Fig. 13: Original data and data enhancement AP values for
each category

well when performing object recognition tasks. To better
accommodate various target forms and size changes, it may
dynamically modify the convolution kernel’s size and shape.
The accuracy and robustness of detection can be increased
by better capturing the features and detailed information of
the target.

Fig. 14: Cascade R-CNN and our method’s AP values for
each category

The Cascade R-CNN with ResNet as the backbone net-
work was used as the experimental benchmark for ablation
experiments to verify the effectiveness of each module. The
results of the relevant ablation experiments are shown in
Table 3. With a 1.4% rise in its mAP value, the gains in
the first and second rows of the chart demonstrate how
successfully converting the ResNet to a SE-ResNet backbone
network may boost detection performance. Secondly, the
experimental outcomes in the third row of the table, which
contains a new data augmentation module over the second
row, have gone up somewhat, by 0.8 percentage points. The
findings eventually achieved their maximal value once the
DCN module was reintroduced, at which point the matching
three modules were fully introduced. The approach described
in this research is 3.7% better overall than the original
Cascade R-CNN method, producing superior experimental
results.

2) Experimental results on the KITTI dataset: With more
training sessions and lower losses, the SED-CRCNN algo-
rithm eventually converges on the KITTI dataset. The loss
value stabilizes around 0.3 after 8000 iterations of the loss
function curve for the KITTI dataset. The model has now
reached its ideal condition. Fig.15 displays the curve for
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TABLE III: Ablation experiment

Proposed Method

Cascade R-CNN +SE-ResNet +Data enhancement +DCN mAP(%)

✓ 79.6

✓ ✓ 81.0

✓ ✓ ✓ 81.8

✓ ✓ ✓ ✓ 83.3

the loss function, where loss rpn bbox is the regression loss
function of RPN, and loss rpn cls is the classification loss
function of RPN. s0, s1 and s2 represent the loss functions of
the three cascade detectors respectively. s0.loss cls denotes
the classification loss function of the first cascade detector,
s0.loss bbox denotes the regression loss function of the first
cascade detector and so on.

Fig. 15: Loss function curves

Fig.16 depicts the mAP value variation curve with epoch,
where the vertical axis represents the mAP value for each
round and the horizontal axis represents the exact number
of epoch rounds. This figure makes it evident that the mAP
value trend during the model’s training process is progres-
sively growing. As a consequence, the model is deemed to be
well-trained, and the ideal model and outcomes are afterward
established. To verify the effectiveness of the SED-CRCNN
method proposed in this paper, the improved method was
compared with other methods. The corresponding AP values
for all categories, the total mAP values, and AP50 metrics
are also listed, as shown in Table 4. In order to be more
comparative, some representative methods are selected for
comparison experiments in this paper. These methods include
CornerNet, the classical algorithm for anchorless frames,
the CRPN, which uses a cascade approach, and FCOS,
the classical algorithm for one-stage detection. In addition,
an enhanced Cascade R-CNN approach based on the very
successful two-stage Faster R-CNN algorithm is included.
All techniques were evaluated on the KITTI validation set
after being trained on the KITTI training set.

A comparison of the experimental results shows that our
algorithm outperforms other methods in terms of average ac-
curacy performance when using an input image of 1333×600
size. Our study methodology offers a significant benefit in

Fig. 16: mAP curve

terms of improved performance. It performs well across
the board and obtains the best overall result of all the
techniques evaluated, even though it cannot attain the greatest
performance on every categorization.

Fig.17 displays as bar charts the detection results obtained
using our approach, the Faster R-CNN method, and the
Cascade R-CNN method that is based on the Faster R-CNN
improvement. Its visualization displays the varying numbers
of AP values for each category as they increase and decrease.
Our algorithm, which plainly performs better than the other
two approaches, is one of the grey bars.

Fig. 17: Comparison with two other methods on the
dataset(%)

Fig.18 shows the detection results of the Cascade R-
CNN algorithm before improvement and our SED-CRCNN
algorithm after improvement on the KITTI dataset. Where
(a) shows the original image in the dataset, (b) is the result
after Cascade R-CNN detection, and (c) is the result after
our improved algorithm detection.
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TABLE IV: Comparison with other methods on the KITTI dataset (%)

Method Car Van Truck Tram Cyclist Pedestrian Person sitting mAP
CornerNet 82.9 91.6 84.2 91.7 82.9 75.7 48.9 74.35

CRPN 95.7 96.9 99.1 93.7 89.5 83.3 55.8 82.10
FCOS 94.8 96.2 98.6 91.4 89.1 82.4 47.7 80.30

Faster R-CNN 94.8 96.0 98.5 91.1 89.3 83.2 50.5 80.61
Cascade R-CNN 94.5 96.5 99.0 89.0 87.5 79.8 48.2 79.56

Ours 94.9 96.4 99.0 95.2 89.0 83.4 67.7 83.35

On the KITTI dataset, Fig.18 compares the detection
performance of our SED-CRCNN method to that of the
Cascade R-CNN algorithm before improvement. Where (a)
represents the dataset’s original image, (b) Cascade R-CNN
detection results, and (c) results from our improved method
detection.

3) Experimental results on the SODA10M dataset: This
research plans experiments to migrate the dataset to the
SODA10M dataset for validation in order to test whether the
SED-CRCNN approach suggested in this paper has some
generalization capacity. The Cascade R-CNN methodology
and our enhanced method were tested on this dataset, and
Fig.19 illustrates the associated AP values for all classes
and the overall mAP values. It is evident that our algorithm
performs better than the original algorithm in the majority of
categories, and that our algorithm’s mAP values are superior
to those of the original algorithm.

We also contrasted the enhanced strategy with alternative
approaches. Table 5 lists the total mAP values as well as
the associated AP values for each category. Some example
methodologies are chosen for comparison experiments in
this paper to make them more comparable. These include
the two-stage classical algorithm Grid-RCNN, the one-stage
detection classical algorithm FCOS, the anchor-free method
FSAF which also uses FPN, and the baseline model Cascade
R-CNN method. Each method was tested on the SODA10M
validation set after training on the SODA10M training set.

A comparison of the trial results reveals that, even though
our algorithm cannot get the best results on every classifi-
cation, it produces the best results overall and does well in
all categories. In terms of average accuracy performance, it
performs better than alternative methods. This demonstrates
that our study methodology performs better.

On the SODA10M dataset, Fig.20 displays the detection
results for the pre-changed Cascade R-CNN algorithm and
our modified SED-CRCNN technique. Where (a) represents
the original image from the SODA10M dataset, (b) repre-
sents the Cascade R-CNN detection result, and (c) represents
the detection result from our enhanced technique.

For each category of target detection in this comparison,
Cascade R-CNN did not produce good results, and small
targets were not detected well. In contrast, as shown in
portion (c) of Fig.20, when our improved method detected,
it also discovered several targets that the pre-improvement
algorithm was unable to identify as well as somewhat de-
creased the duplicated frames, leading to superior detection
results.

V. CONCLUSION

Road object detection is a crucial step in autonomous driv-
ing environment perception and is crucial to the functioning
of driverless cars. It provides the foundation for following

higher-level activities like decision planning and behavioral
control of the car. The ability of autonomous driving systems
to identify and comprehend their surroundings more quickly
and accurately can be improved by improving the accuracy
of road object detection algorithms.

This paper investigates the Cascade R-CNN-based road
target detection algorithm and improves and optimizes the
algorithm to effectively improve its detection capability.
The main work of this paper is as follows: To address
these issues, this paper focuses on cascaded object detection
models as the baseline for research to address the overfitting
and mismatching problems in convolutional neural networks.
Firstly, a study on data enhancement and generation of more
accurate prediction boxes was used to pre-process the data
for the problem of difficult data collection or insufficient
sample size, resulting in unsatisfactory training results. The
backbone network is then given an attention mechanism to
alleviate the original network’s low accuracy, which could
lead to overfitting and high memory utilization. The attention
mechanism SENet algorithm and the backbone network
ResNet are coupled to create the SE-ResNet technique, which
enhances the algorithm’s feature extraction and classification
capabilities while also enhancing network performance. To
solve the problem that the original algorithm is unable to
visually identify finely localized items, resulting in poor
target identification and localization, deformable convolution
was finally added to the method. By adaptively adapting its
sampling position and size to different shapes and sizes of
target objects, the network can better adapt to different target
object shapes and poses, and effectively improve detection
accuracy.

Finally, lots of ablation comparison experiments were con-
ducted on KITTI and SODA10M public datasets to analyze
the evaluation indexes and the overall detection effect of each
category, confirm the effectiveness of each module, and prove
that the algorithm has a certain generalization ability. The
detection performance of our method has been established by
comparison experiments with the upgraded prior algorithm
and comparisons with other cutting-edge algorithms, and it
has some importance to unmanned research.
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