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Abstract—Advancements in technology across the globe are
leading to the adoption of Artificial Intelligence (AI) and Ma-
chine Learning (ML) as essential components in contemporary
agricultural practices. However, the complex and opaque nature
of many ML models poses challenges in interpreting predictions
for end-users. To address this, Explainable AI (XAI) methods
are leveraged to identify the key features influencing model
predictions and their impact. This study evaluates eight ML
models, with Gradient Boosting and CatBoost emerging as the
top performers, achieving cross-validation scores of 133.20 and
134.78, respectively, and an R²-score of 0.99. To understand the
influence of individual features on yield predictions, Explain-
ability methods such as Shapley Additive Explanations (SHAP)
and Local Interpretable Model-Agnostic Explanations (LIME)
were utilized. The results emphasize the significant contribution
of Explainable AI (XAI) in improving the clarity, understand-
ing, and practical application of machine learning models within
agriculture, thereby promoting increased confidence and wider
acceptance of AI-based approaches in precision farming.

Index Terms—Machine learning, Crop yield prediction, Ar-
tificial Intelligence, Explainable AI (XAI)

I. INTRODUCTION

CROP yield forecasting plays a vital role in agricul-
tural predictive analytics, providing essential insights

to farmers, government bodies, and agricultural institutions.
Accurate predictions aid stakeholders in anticipating crop
yields for specific seasons, enabling informed decision-
making regarding planting and harvesting schedules to op-
timize output. Furthermore, precise yield forecasts support
improved pricing, profitability, and policy formulation. Ac-
curately forecasting crop yields is a complex task, largely
due to the intricate nature of agricultural systems and the
impact of unpredictable variables like pest infestations, plant
diseases, extreme weather events, soil properties, genetic
traits of crops, and diverse farming practices. To overcome
these issues, several machine learning (ML) methods such
as regression analysis, decision tree algorithms, and artificial
neural networks have been utilized. These methods utilize
extensive crop yield datasets encompassing crop specifics,
location, planting dates, soil characteristics, and weather con-
ditions. By analyzing these datasets, ML algorithms establish
relationships between inputs and outputs to generate accurate
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predictions. Despite their effectiveness, many ML models
are inherently complex and opaque, lacking transparency in
explaining their predictions, the underlying rationale, or the
data patterns they identify. This lack of interpretability can
undermine user confidence in their predictions, limiting the
practical utility of ML models in agriculture. To overcome
this challenge, Explainable Artificial Intelligence (XAI) has
gained prominence as an effective approach to increase
the clarity and interpretability of machine learning mod-
els. XAI methods enable the identification of key features
influencing predictions, thereby enhancing user confidence
and supporting well-informed decision-making. This study
applied XAI methods to ML models for predicting wild
blueberry yields, focusing on both model performance and
interpretability. Specifically, we utilized SHAP and LIME to
identify significant features and understand their influence on
yield predictions.

Explainable Artificial Intelligence (XAI) is an emerging
field dedicated to making machine learning models more
transparent and understandable. It aims to improve users’
trust and confidence in AI systems by offering clear insights
into how decisions are made, all while preserving the mod-
els’ accuracy and performance. In May 2017, the Defense
Advanced Research Projects Agency (DARPA) launched a
five-year initiative called the Explainable Artificial Intelli-
gence (XAI) program, aiming to improve the transparency
and interpretability of machine learning methods without
compromising their accuracy [1]. This initiative aims to
enhance transparency by offering clear interpretations of
model predictions, ultimately building confidence in their
dependability. XAI holds immense potential for agricultural
applications by offering actionable insights into crop cultiva-
tion and growth. For instance, XAI enables early detection of
issues, allowing farmers to take corrective measures promptly
and mitigate risks. Additionally, it supports efficient resource
management strategies for critical inputs such as water,
fertilizers, and pesticides, ensuring their sustainable use.

Utilizing Explainable AI (XAI) techniques in predict-
ing wild blueberry yields brings considerable advantages
in terms of transparency and model understanding. This
study evaluated eight different ML models to predict wild
blueberry yields, leveraging a spatially explicit simulation
computing model to construct the dataset [2]. The dataset
comprises 17 features, including spatial plant characteristics,
bee species composition, weather variations, and resulting
yields. Pollination simulation models were employed to study
pollen dispersal patterns, the scheduling of pollination events,
and the effectiveness of different pollination strategies. These
analyses provided valuable insights for enhancing crop yields
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and maximizing agricultural productivity. This research uti-
lized both LIME and SHAP techniques to improve the pre-
dictive accuracy of machine learning models and identify the
crucial factors influencing yield predictions. We incorporated
Explainable AI (XAI) techniques to improve the clarity and
transparency of machine learning model outputs, thereby
fostering greater trust and understanding among end-users.
This method enhanced insight into the elements affecting
blueberry production while also aligning with the larger goal
of promoting sustainable and efficient farming techniques.

The structure of this paper is as follows: Section II presents
an in-depth overview of current approaches to agricultural
yield prediction, emphasizing machine learning methods and
the difficulties they face in modeling intricate, non-linear data
relationships. Section III delves into the Dataset, Data Pre-
processing, Feature Selection, and Model Training, offering
a detailed explanation of the dataset utilized, preprocessing
procedures, feature selection strategies, and the training
workflow for different machine learning models.Section IV
details the Results and Discussion, highlighting model per-
formance evaluation using cross-validation metrics, scatter
plot illustrations, and significant interpretations derived from
the findings. Finally, Section V explores explainability meth-
ods, such as SHAP and LIME to assess feature importance,
offering insights into the key factors that most influence yield
prediction outcomes.

II. LITERATURE REVIEW
The growing importance of crop yield prediction has led

to a comprehensive exploration of machine learning (ML)
algorithms in agricultural science. Numerous studies have
focused on various crops, each emphasizing different aspects
of ML applications in agriculture, as shown in Table I.

M. Rashid et al. focused on predicting palm oil yield,
providing a comprehensive review of the global status of
palm oil yield prediction [3]. The study examined widely
adopted features and prediction methods, offering a critical
analysis of advanced machine learning approaches for crop
yield forecasting. It emphasized their implementation in the
palm oil sector and provided a comparative review with
existing research in the field. Rashid et al. also examined the
benefits and challenges of using ML for crop yield prediction,
addressing both current and future challenges in agriculture.
They proposed potential solutions to existing issues in crop
yield prediction and explored future perspectives for ML-
based palm oil yield prediction. They explored various do-
mains including remote sensing, plant development and dis-
ease detection, mapping, tree enumeration, and the selection
of suitable features and algorithms. Concluding their analysis
of prior research, they proposed a potential architecture for
machine learning-based prediction of palm oil yield.

Nigam et al. conducted a crop yield estimation study using
data on rainfall, temperature, area, and season obtained from
various Indian government departments [4]. They utilized
various machine learning models, including Random Forest,
XGBoost, K-Nearest Neighbors, and Logistic Regression,
for their analysis. Additionally, they employed a hybrid
model, Multiple Linear Regression - Artificial Neural Net-
work (MLR-ANN), to predict paddy crop yield [5]. In this
hybrid approach, Multiple Linear Regression was utilized
to initialize the input weights and biases of the ANN’s

input layer, leading to enhanced prediction accuracy when
compared to conventional machine learning techniques. In
the East Godavari region of India, a study utilized Multiple
Linear Regression and a density-based clustering technique
to forecast rice yield [6]. The dataset consisted of eight
features, including year, rainfall, sowing area, fertilizers,
production, and yield. Multiple Linear Regression was em-
ployed to predict rice yield, highlighting the importance of
incorporating various agricultural and environmental factors
to enhance prediction accuracy.

Kamath et al. developed a comprehensive framework to
support rapid agricultural production forecasting, consisting
of four modules: Crop, Soil, Weather, and Predict [7].
This framework utilized the Random Forest technique and
historical data from official government websites to iden-
tify significant crops. By integrating multiple data sources
and leveraging advanced ML techniques, the framework
demonstrated significant potential for accurate and timely
agricultural forecasting. Abbas et al. focused on predicting
future potato tuber yields using datasets from six fields in
Atlantic Canada [8]. Four machine learning models—Linear
Regression (LR), Elastic Net (EN), k-Nearest Neighbors (k-
NN), and Support Vector Regression (SVR)—were utilized
in the study. The input dataset comprised variables including
horizontal and vertical soil electrical conductivity, moisture
content of the soil, field slope, soil pH, soil organic matter
(SOM), normalized difference vegetation index (NDVI), and
the yield of potato tubers. Among these models, SVR exhib-
ited superior performance across all datasets, underscoring
the effectiveness of Support Vector Regression in agricultural
yield prediction.

In another significant study, Andrew Crane-Droesch in-
vestigated the impact of climate change on agriculture by
applying a semiparametric variation of a deep neural network
to a corn yield dataset [9]. The dataset used in this research
was sourced from the QuickStats database provided by the
USDA’s National Agricultural Statistics Service (NASS). It
incorporated historical climate information from the MET-
DATA meteorological dataset and projected weather patterns
derived from the MACA (Multivariate Adaptive Climate
Analogues) dataset. The study demonstrated the effectiveness
of deep learning models in capturing intricate relationships
between climatic factors and crop yield outcomes, offering
valuable perspectives on the potential consequences of cli-
mate change for agricultural output. Pant et al. compiled
a comprehensive dataset from the Food and Agriculture
Organization of the United Nations (FAOSTAT) and the
World Data Bank repository to forecast crop yields [10]. This
dataset included attributes such as country, year, yield values,
average rainfall, pesticide usage, and average temperature.
They employed four machine learning models—Support Vec-
tor Machine (SVM), Gradient Boosting Regressor, Random
Forest Regressor, and Decision Tree—to predict the yields
of maize, potatoes, paddy, and wheat crops. Notably, the
Decision Tree model achieved the highest accuracy of 96%
for crop yield prediction, demonstrating the potential of de-
cision trees in agricultural forecastingThe dataset comprised
various attributes, including the country, year, crop yield
figures, average rainfall, pesticide consumption, and mean
temperature. To estimate the yields of crops such as maize,
potatoes, paddy, and wheat, four machine learning algorithms
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TABLE I
SURVEY OF CROP YIELD PREDICTION METHODS

Author Objective Dataset Feature Prediction Algorithm Performance
Nigam et
al. [4]

Crop Yield
Prediction

Indian Government
Dataset

Temperature, Rainfall, Area,
Season

Random Forest Classifier,
XGBoost Classifier, KNN
Classifier and Logistic Re-
gressor

Random Forest Classifier
predicted the crop yield
with better accuracy 67.80%
based on rainfall, tempera-
ture, area and season.

Maya et
al. [5]

Paddy Crop
Prediction

Dataset collected from
Statistical, Meteorolog-
ical and Agricultural
Departments of Tamil-
nadu, India

Area,maximum temperature,
number of openwells, canals
length and number of tanks

Multiple Linear Regression
and Artificial Neural Net-
work (MLR-ANN)

MLR-ANN has achieved
better crop yield prediction
accuracy.

D.
Ramesh et
al. [6]

Region
specific
crop yield
analysis

Dataset collected from
East Godavari district
of Andhra Pradesh

Year, Rainfal, Area of Sow-
ing, Yield, Fertilizers (Nitro-
gen, Phosphorous and Potas-
sium) and Production

Multiple Linear Regression
and Density-based cluster-
ing technique

The Density-based cluster-
ing technique showed supe-
rior performance in predict-
ing rice yield compared to
Multiple Linear Regression.

Pallavi
Kamath et
al. [7]

Crop Yield
Prediction

Dataset collected from
Official Government
Websites

District, crop, soil type and
area

Random Forest Algorithm The Random Forest model
attained a 98% accuracy
rate in forecasting the most
suitable crop for future cul-
tivation.

Farhat
Abbas et
al., [8]

Potato tuber
yield predic-
tion

The datasets PE-2018,
NB-2017, and NB-
2018 were collected
from three agricultural
fields in Prince Edward
Island and three fields
in New Brunswick,
Canada

Volumetric moisture content,
soil electrical conductivity,
slope, NDVI, along with HCP
and PRP parameters

Linear Regression (LR),
Elastic Net (EN), K-Nearest
Neighbor (K-NN), and
Support Vector Regression
(SVR)

The SVR models outper-
formed all others, achieving
the lowest RMSE values of
5.97, 4.62, 6.60, and 6.17
t/ha, respectively.

Andrew
Crane-
Droesch
[9]

Corn yield
prediction

Dataset collected from
NASS, METDATA and
MACA

Precipitation, Relative
humidity, Wind speed,
Air temperature, Shortwave
radiation,Total precipitation,
Latitude/longitude, Growing
degree-days, Time, Soil,
Proportion irrigated, County

Parametric and semi-
parametric deep neural
network

The use of bagging signif-
icantly enhanced the accu-
racy of both the paramet-
ric model and the SNN.
However, the bagged SNN
demonstrated the best per-
formance.

Pant et al.
[10]

Crop Yield
Prediction-
Maize,
Potatoes,
Rice (Paddy)
and wheat

FAO data and world
data bank repository

Country, year, crop yield,
mean precipitation, pesticide
usage, and mean temperature

Support Vector Machine
(SVM), Gradient Boosting
Regressor, Random Forest
Regressor, and Decision
Tree

The decision tree achieved
highest accuracy 96% to
predict crop yield.

Khaki et
al. [11]

Corn and
soybean
yield
prediction

Yield performance,
management, weather,
and soil Dataset

Features describing details
about Weather , Soil and
Management Practices

A hybrid CNN-RNN model,
Random Forest (RF), deep
fully connected neural net-
work (DFNN), and the least
absolute shrinkage and se-
lection operator (LASSO).

Hybrid CNN-RNN Model
outperfomred other models
with RMSE 9% and 8% for
corn and soybean yield pre-
diction.

Morales et
al. [12]

Sunflower
and wheat
crop yield
prediction

Synthetic dataset col-
lected from DSSAT 4.8

Sowing date, N applied , irri-
gation applied, anthesis date,
rainfall, mean maximum and
minimum temperature, mean
solar radiation , average soil
depth , year and cultivar

Linear model, Random for-
est and ANN

The Random Forest al-
gorithm outperformed the
other models with a Root
Mean Square Error of 35-
38%.

S. Hazra
et al.[13]

Crop yield
prediction

Dataset collected from
US field data collection

Crop type, soil type, pesticide
type and usage, season and
crop damage

XGBoost, MLP, LightGBM,
SVM, ANN, RF and K-NN

XGBoost Classifier
achieved 84.79% average
accuracy better than other
models.

S Iniyan
et al. [14]

Crop yield
prediction

District-wise data col-
lected from the Indian
agricultural website

Precipitation, humidity, tem-
perature, area, soil type, crop
type, season

Multiple LR, DT, Gradi-
ent Boosting, Elastic Net,
Lasso, Ridge, LSTM

LSTM has achieved best ac-
curacy 86.3% and outper-
formed other models.

were utilized: Support Vector Machine (SVM), Gradient
Boosting Regressor, Random Forest Regressor, and Decision
Tree. Among these, the Decision Tree model delivered the
best performance, attaining an accuracy of 96% in crop yield
prediction. This highlights the effectiveness of decision trees
in agricultural yield forecasting.

A hybrid Convolutional Neural Network-Recurrent Neural
Network (CNN-RNN) model based on deep learning was
utilized to predict corn and soybean yields [11]. The dataset

comprised details related to crop yield outcomes, agricultural
management techniques, climatic variables, and soil proper-
ties. The hybrid model’s predictive capability was evaluated
against a deep fully connected neural network (DFNN)
and the Least Absolute Shrinkage and Selection Operator
(LASSO). The hybrid CNN-RNN approach demonstrated
superior accuracy, yielding a reduced Root Mean Square
Error (RMSE) of 9% for predicting corn yield and 8%
for soybean yield. This highlights the model’s effectiveness
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Fig. 1. System Architecture

in leveraging the strengths of CNN and RNN to interpret
intricate patterns within agricultural datasets. Morales et al.
employed a synthetic dataset from the Decision Support
System for Agrotechnology Transfer (DSSAT) to predict sun-
flower and wheat crop yields [12]. This dataset comprised 11
features related to weather, soil, and management practices.
Multiple modeling approaches such as linear regression,
Random Forest, and artificial neural networks (ANN) have
been utilized to forecast crop yields. The Random Forest al-
gorithm demonstrated superior performance, with an RMSE
ranging from 35% to 38%, highlighting its effectiveness
in handling diverse agricultural datasets. S. Hazra et al.
conducted a comprehensive study on crop yield prediction
using seven machine learning models, including XGBoost,
SVM, ANN, LightGBM, Multi-Layer Perceptron (MLP), k-
nearest neighbor (KNN), and Random Forest (RF) [13]. They
utilized field observation data from the United States, which
included details on crop types, soil types, pesticide usage,
seasons, and crop damage. The XGBoost Classifier achieved
an average accuracy of 84.79%, outperforming other models.
In addition, the study evaluated five Convolutional Neural
Network (CNN) architectures—VGG-19, VGG-16, Inception
v3, ResNet-50, and EfficientNet-B0—for predicting crop
types. Among these, VGG-19 demonstrated the highest ac-
curacy in recognizing crop images.

S. Iniyan conducted a crop yield prediction study using a
dataset from an Indian agricultural website, organized by dis-
trict [14]. The dataset comprised variables like precipitation,
humidity, temperature, geographical area, soil classification,
crop variety, and seasonal data. The research investigated
eight machine learning techniques, such as Multiple Lin-
ear Regression, Decision Trees, Gradient Boosting, Elastic
Net, Lasso, Ridge, and Long Short-Term Memory (LSTM)
networks. Among these, the LSTM model delivered the
best performance with an accuracy of 86.3%, highlighting
the effectiveness of recurrent neural networks in modeling
temporal patterns in agricultural datasets.

Elavarasan et al. introduced a deep reinforcement learning
model, Deep Recurrent Q-Network (DRQN), to predict the
yield of paddy crops in the Vellore district of southern India,
achieving an accuracy of 93.7% [15]. The dataset used in this
study included detailed information on climate, soil, ground-

water properties, and fertilizer consumption specific to the
study area. Important factors including evapotranspiration,
frequency of ground frost, nutrient levels in groundwater,
occurrence of wet days, and properties of aquifers were
taken into account. The research highlights the capability
of reinforcement learning methods in managing intricate
agricultural datasets and enhancing the precision of crop
yield predictions. H. S. Midtiby presented an innovative
method for estimating pumpkin yield using drone-acquired
images [16]. The methodology included creating an ortho-
mosaic, extracting color models from a randomly selected
portion of the dataset, applying color-based segmentation,
and identifying pumpkin clusters to estimate the count of
pumpkins within each cluster. This method achieved high
precision and recall, with the lowest score being 0.959. The
use of drone technology combined with image processing
techniques illustrates the potential of remote sensing and
computer vision in agricultural yield estimation.

Collectively, these studies highlight the promising role of
machine learning in improving the accuracy of crop yield
predictions. They demonstrate the successful application of
a range of ML models across different agricultural settings,
reflecting the ongoing advancement of techniques and the
adoption of novel strategies like hybrid models. The insights
gained from this body of work form a strong basis for con-
tinued exploration and innovation in ML-driven agricultural
forecasting, including the use of Explainable AI (XAI) to
boost model interpretability and stakeholder confidence.

III. METHODOLOGY

The system architecture in the figure 1 depicts a process
for predicting blueberry yield using machine learning tech-
niques. The wild blueberry dataset underwent a preprocess-
ing stage to address noisy and missing values. This step
ensured the dataset’s quality and prepared it for effective
modeling, thereby mitigating potential adverse impacts on
predictive accuracy. A feature selection process based on
the Pearson correlation coefficient was employed to identify
features most relevant to the target variable, wild blueberry
yield. The approach emphasized features that exhibited the
highest correlation with the yield variable, thereby refining
the dataset for machine learning applications. Subsequently,
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TABLE II
DESCRIPTION OF WILD BLUEBERRY DATASET

Feature Unit Description Min Max Median Std Deviation
clonesize m2 Average blueberry clone size 10.00 40.00 18.76 6.99
honeybee bees/m2/min Density of Honeybee in the field 0.00 18.43 0.41 0.97
bumbles bees/m2/min Density of Bumblebee in the field 0.00 0.59 0.28 0.06
andrena bees/m2/min Density of Andrena bee in the field 0.00 0.75 0.46 0.16
osmia bees/m2/min Density of Osmia bee density in the

field
0.00 0.75 0.56 0.16

MaxOfUpperTRange Fahrenheit Highest record of the upper band daily
air temperature during the bloom sea-
son

69.70 94.60 82.27 9.19

MinOfUpperTRange Fahrenheit Lowest record of the upper band daily
air temperature

39.00 57.20 49.70 5.59

AverageOfUpperTRange Fahrenheit Average of the upper band daily air
temperature

58.20 79.00 68.72 7.67

MaxOfLowerTRange Fahrenheit Highest record of the lower band daily
air temperature

50.20 68.20 59.30 6.64

MinOfLowerTRange Fahrenheit Lowest record of the lower band daily
air temperature

24.30 33.00 28.69 3.20

AverageOfLowerTRange Fahrenheit Average of the lower band daily air
temperature

41.20 55.90 48.61 5.41

RainingDays Inches Total number of days during the bloom
season

1.00 34.00 18.30 12.12

AverageRainingDays Inches Day The average of raining days of the
entire bloom season

0.06 0.56 0.32 0.17

fruitset Time Transitioning time of fruit set 0.19 0.65 0.50 0.07
fruitmass Weight Mass of the fruit set 0.31 0.54 0.44 0.04
seeds Number Number of seeds in fruitset 22.08 46.59 36.12 4.37
yield kg/ha Yield of blue berry 1945.53 8969.40 6012.84 1356.95

the refined dataset was divided into 80% for training and
20% for testing purposes. This partitioning was essential
for model development and evaluation, ensuring the trained
models were adequately validated on unseen data. To forecast
wild blueberry yield, eight distinct machine learning models
were implemented. This ensemble approach improved both
the precision and resilience of the predictive system. To
interpret the outcomes and gain insight into the decision-
making process, two explainable AI (XAI) techniques were
applied. LIME (Local Interpretable Model-Agnostic Expla-
nations) provided localized interpretations for individual pre-
dictions, offering a clearer view of specific model decisions.
In contrast, SHAP (Shapley Additive Explanations) offered
a global perspective by highlighting the most influential
features across the entire dataset. The final output of the
system included the predicted yield along with comprehen-
sive insights that merged both local and global explanation
frameworks.

A. Dataset
Blueberries, part of the Vaccinium genus in the Cyanococ-

cus section, are perennial plants known for producing blue
or purple berries. This genus also encompasses cranberries,
bilberries, huckleberries, and Madeira blueberries. North
America is home to both wild (lowbush) and cultivated
(highbush) blueberries, which range in height from 10 cm (4
inches) to 4 m (13 feet). The dataset used for predictive mod-
eling, known as the Wild Blueberry Pollination Simulation
Model, was created using an open-source, spatially explicit
computer simulation program [2]. The dataset captures a
range of influential variables, including plant layout, polli-
nation patterns, diversity of bee species, and environmental
conditions such as weather. These factors play a significant
role—both independently and in combination—in shaping

pollination effectiveness and the productivity of wild blue-
berry agroecosystems. It includes six categories for clone
size, seven for honeybee density, ten for bumblebee density,
and twelve categories each for Andrena and Osmia bee
densities. Moreover, air temperature and precipitation are
represented across three distinct levels. These variables were
systematically varied to generate unique conditions for sim-
ulations. The dataset comprises 777 records, each containing
17 attributes associated with plant spatial patterns, pollina-
tion mechanisms (including outcrossing and self-pollination),
bee species diversity, climatic variables, and wild blueberry
yield, as detailed in Table II. The simulation model has
been substantiated through three decades of field studies
and experimental data from Maine, USA, and the Canadian
Maritimes, establishing its utility for testing hypotheses and
advancing theoretical research in wild blueberry pollination.

• Pollinator Density: The density of pollinators such as
honeybees, bumbles, and other bees varies significantly
across the field, with honeybee density ranging from 0
to 18.43 bees/m²/min, while bumblebee density shows
a narrower range (0 to 0.59 bees/m²/min).

• Temperature Variations: During the bloom season, the
daily upper band of air temperature varies between
69.70°F and 94.60°F, with a median temperature of
82.27°F. In contrast, the lower band temperatures fall
within the range of 24.30°F to 33.00°F.

• Rainfall Patterns: The count of rainy days throughout
the bloom season varies significantly, ranging between 1
and 34 days. On average, there are approximately 13.80
rainy days, with a standard deviation of 12.12 days.

• Fruitset and Yield: Fruitset, indicating the transition
time for fruit set, ranges from 0.19 to 0.65, while the
mass of the fruit set (fruitmass) has a median value
of 0.54. The blueberry yield ranges significantly, from
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Fig. 2. Feature Distribution of wild blueberry dataset
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1945.53 kg/ha to 8969.40 kg/ha, with a median yield of
6012.84 kg/ha.

• Clone Size: The size of individual blueberry clones
typically varies between 10.00 m² and 40.00 m². The
median clone size is approximately 18.76 m², with a
standard deviation of 6.99 m².

B. Data Prepossessing

Real-world datasets often exhibit issues such as incom-
pleteness, inconsistency, and inaccuracy, which can signifi-
cantly impact the effectiveness of machine learning models.
These problems can lead to models learning faulty patterns,
ultimately affecting their accuracy and performance. Training
machine learning models with such noisy data is likely to
yield suboptimal results, as the models may struggle to
identify meaningful patterns. The distribution of 16 features,
along with the target variable ’yield,’ is shown in Figure
2. The temperature and precipitation columns exhibit four
distinct levels, corresponding to the conditions: Warm and
Dry, Warm and Wet, Cool and Dry, and Cool and Wet.
The use of these discrete numerical variables in various
combinations within the simulation model is illustrated in
the plots.

Data preprocessing constitutes a critical preliminary phase
in the machine learning workflow, aimed at enhancing data
quality, consistency, and suitability for subsequent analytical
and modeling tasks. For instance, the wild blueberry dataset
contained null values and outliers, causing an imbalance in
its features. To mitigate this, a series of preprocessing steps
was implemented:

1) Handling Missing Values: Missing entries within the
dataset were detected and addressed using suitable imputa-
tion strategies. For columns containing numerical data, the
median of each respective column was used to replace the
missing values.

2) Outlier Detection and Removal: To prevent distortion
in model performance caused by outliers, statistical tech-
niques such as Z-score analysis and the Interquartile Range
(IQR) method were employed to identify and eliminate
anomalous data points from the dataset.

3) Min-Max Scaling: A Min-Max scaling technique was
applied to specific columns within the dataset. This scaling
method is particularly useful when the features have varying
ranges, as it helps to standardize their impact on the model.
By normalizing the values, this scaling process contributes
to a more balanced and reliable dataset.

C. Feature Selection

Feature selection was crucial in pinpointing the most
significant attributes influencing the target variable, yield.
By narrowing down the dataset to only the most relevant
features, this step effectively reduced dimensionality and
improved both the performance and clarity of the predictive
model. The steps undertaken for feature selection are detailed
below:

1) Correlation Analysis: A color-coded correlation
heatmap (Figure 3) was created to visually illustrate the
strength and direction of relationships among the variables
in the dataset. This analysis helped identify significant cor-
relations among the attributes and the target variable, yield.

2) Feature Selection Based on Correlation:
• Fruitset, Fruitmass, and Seeds: The heatmap revealed

significant correlations between the attributes fruitset,
fruitmass, seeds, and yield. To address multicollinear-
ity, only the variable most strongly correlated with
yield—fruitset—was included in the final set of features
(Figure 4).

• RainingDays and AverageRainingDays: Similarly, due
to a strong correlation between RainingDays and Aver-
ageRainingDays, only RainingDays was included in the
final feature set.

3) Refinement of Feature Set:
• Temperature-Related Attributes: Attributes such as Av-

erageOfUpperTRange, MinOfLowerTRange, Average-
OfLowerTRange, and AverageRainingDays exhibited
high correlations with MaxOfUpperTRange, MinOfUp-
perTRange, and MaxOfLowerTRange. Therefore, the
redundant attributes were removed.

• Final Feature Set: After refining the feature set based
on correlation analysis, the final subset comprised 10
attributes: clonesize, honeybee, bumbles, andrena, os-
mia, MaxOfUpperTRange, MinOfUpperTRange, Max-
OfLowerTRange, RainingDays, and fruitset.

D. Model Training

1) Data Partitioning: Before initiating the training pro-
cess for the machine learning models, the wild blueberry
dataset was split into two distinct subsets: 80% was allocated
for training purposes, while the remaining 20% was set aside
for testing. This approach allowed the models to learn from
a major share of the data, ensuring a fair evaluation using
the unseen portion.

2) Machine Learning Models: A total of eight machine
learning models were employed to predict wild blueberry
yields. The selected models included a combination of linear
and non-linear algorithms to capture diverse patterns within
the data.

• Linear Regression (LR): A linear regression model was
applied to identify and quantify the relationship between
the yield (target variable) and the ten chosen features
from the wild blueberry dataset.

• Decision Tree: A decision tree model was utilized to
effectively capture and manage non-linear interactions
between input features and the target variable.

• Random Forest: To enhance predictive accuracy and
ensure greater robustness, the Random Forest tech-
nique—an ensemble-based learning approach—was em-
ployed by aggregating the outputs of several decision
trees.

• AdaBoost: AdaBoost was utilized as an ensemble tech-
nique that integrates several weak classifiers, often deci-
sion trees, to form a more accurate and robust predictive
model. It iteratively adjusts weights for misclassified
samples to improve overall accuracy.

• Gradient Boosting Regressor: The model was employed
to construct an ensemble of individually weak predictive
models, commonly decision trees, in order to enhance
overall accuracy.

• LightGBM (LGBM): LightGBM, a gradient boosting
framework known for its speed and scalability, was
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Fig. 3. Correlation heatmap

Fig. 4. Feature Selection Based on Correlation for Fruitset, Fruitmass, and
Seeds

employed to efficiently process large datasets and de-
liver strong predictive performance. Its capability to
handle categorical variables and model complex data
relationships made it an ideal option for the task.

• XGBoost: XGBoost, a powerful gradient boosting algo-
rithm optimized for speed and performance, was used
for its regularization techniques and ability to prevent
overfitting. It effectively leverages parallel processing to
enhance predictive accuracy.

• CatBoost: CatBoost, a gradient boosting technique
known for effectively processing categorical variables,
was selected due to its computational efficiency and
strong predictive capabilities.

E. Results and Discussion

Several machine learning regression models were analyzed
to predict wild blueberry yield. The models assessed in this
study include Linear Regression, Decision Tree, Random
Forest, AdaBoost, Gradient Boosting, LightGBM, XGBoost,
and CatBoost. Among these, Linear Regression was applied
to identify a linear association between the yield (target
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Fig. 5. Performance visualization of different machine learning models

variable) and the ten chosen features from the wild blueberry
dataset.

TABLE III
CROSS VALIDATION SCORES

Model Cross Validation
Linear Regression 159.93
Decision Tree 188.35
Random Forest 155.76
Ada Boost 216.74
Gradient Boost 133.20
LGBM 156.81
XGBoost 145.60
CatBoost 134.78

Additionally, tree-based machine learning algorithms like
decision trees and random forests were utilized to predict
wild blueberry yield. Boosting algorithms, known for their
exceptional performance and higher accuracy compared to
other machine learning techniques, played a crucial role
in this analysis. Boosting algorithms are highly effective
because they learn from the mistakes of earlier models,
enabling them to reduce the likelihood of repeating the same
errors made by previous weak learners.

1) Model Performance: The cross-validation scores (Ta-
ble III) indicated varying levels of prediction accuracy
across the models, with CatBoost achieving the lowest cross-
validation error (134.78), closely followed by Gradient Boost
(133.20). Decision Tree and AdaBoost exhibited higher
error rates, highlighting their limitations with this dataset.
The Gradient Boosting model demonstrated the best cross-
validation performance, achieving a score of 133.20, which
indicates its strong generalization capability compared to the
other models. CatBoost closely followed Gradient Boost,
with a cross-validation score of 134.78, making it one of the
top-performing models in terms of predictive consistency.
Random Forest and LGBM displayed similar performance
in cross-validation, with scores of 155.76 and 156.81, re-
spectively, which reflects their moderate accuracy across
different folds. Linear Regression, while computationally

efficient, had a cross-validation score of 159.93, indicating
that it may not be as robust as more complex models like
Gradient Boosting and CatBoost. AdaBoost recorded the
highest cross-validation score of 216.74, reflecting weaker
generalization performance compared to the other models.

TABLE IV
PERFORMANCE EVALUATION OF MACHINE LEARNING METHODS

Algorithm MAE MSE RMSE R2 Time (s)
Linear Regression 124.95 25578.09 159.93 0.98 0.0065
Decision Tree 140.67 35896.92 189.46 0.98 0.0114
Random Forest 118.61 24030.65 155.01 0.98 0.4152
Ada Boost 176.59 48816.98 220.94 0.97 0.1361
Gradient Boost 102.55 17990.46 134.12 0.99 0.1807
LGBM 114.66 24592.36 156.81 0.98 0.1229
XGBoost 110.37 21199.42 145.60 0.98 0.5732
CatBoost 98.02 18167.93 134.78 0.99 1.2029

The performance of eight distinct machine learning models
was assessed based on various evaluation metrics, including
Mean Absolute Error (MAE), Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), coefficient of determina-
tion (R²), and the time taken for computation in seconds, as
presented in Table IV. Among these, Gradient Boosting—a
robust ensemble learning technique—demonstrates improved
predictive accuracy by sequentially training models. Each
subsequent learner focuses on correcting the errors of its
predecessor by minimizing a specific loss function, often
defined using metrics like mean squared error or cross-
entropy, through gradient descent optimization. In contrast,
CatBoost, another gradient boosting method, demonstrated
versatility in handling both numerical and categorical fea-
tures. What distinguishes CatBoost is its ability to convert
categorical features into numerical ones without requiring
feature encoding techniques. It also utilizes the Symmetric
Weighted Quantile Sketch (SWQS) technique to efficiently
manage missing values in the dataset automatically. This dual
strategy not only reduces the problem of overfitting but also
improves the accuracy of wild blueberry yield predictions.

Among the models tested, CatBoost achieved the lowest
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MAE of 98.02 and one of the highest R² scores of 0.99,
demonstrating strong predictive accuracy, although it had the
longest computation time of 1.2029 seconds. The Gradient
Boosting model displayed a strong balance between accuracy
and efficiency, with an MAE of 102.55, an R² score of
0.99, and a moderate computation time of 0.1807 seconds.
While Linear Regression offered the fastest computation
time (0.0065 seconds), its performance was less accurate,
with an MAE of 124.95 and an R² score of 0.98. Random
Forest provided relatively accurate results, with an MAE of
118.61 and an R² score of 0.98, but its computation time
(0.4152 seconds) was longer than some of the other models.
AdaBoost had the weakest performance among the models,
with the highest MAE (176.59) and RMSE (220.94), despite
having a relatively short computation time of 0.1361 seconds.

Figure 5 illustrates a comparative analysis of the per-
formance of various machine learning models based on
their training and testing scores. Each model’s predictive
performance was represented by blue bars (training scores)
and red bars (testing scores), allowing a visual assessment of
overfitting or underfitting. Most models, including Gradient
Boost, LGBM, XGBoost, and CatBoost, displayed minimal
differences between training and testing scores, indicating
strong generalization capabilities. These models achieved
the highest testing scores, reflecting their superior predictive
accuracy. Linear Regression exhibited slightly lower scores
compared to other advanced models, suggesting it might not
have captured the dataset’s complexity as effectively. While
competitive, AdaBoost’s testing score lagged slightly behind
ensemble methods like Gradient Boost and Random Forest.
This visualization emphasized the comparative effectiveness
of boosting techniques, particularly Gradient Boost, LGBM,
XGBoost, and CatBoost, in achieving both robust training
and testing performances.

2) Scatter Plot Analysis: Figure 6 illustrated the correla-
tion between the predicted outcomes and the actual values
for each model. The near-linear alignment of the data points
for Gradient Boost, XGBoost, and CatBoost signified their
strong predictive performance. In contrast, Linear Regression
and Decision Tree exhibited relatively higher dispersion,
suggesting limited accuracy in capturing the complexity of
the data. All eight machine learning models showed a strong
correlation between actual and predicted yield values, as
evidenced by the close clustering of data points along the
diagonal line—indicating high predictive accuracy. Among
them, the Gradient Boosting Regressor and CatBoost Re-
gressor stood out, displaying minimal variance from the
diagonal, which highlights their exceptional effectiveness in
accurately predicting yield outcomes. The Linear Regression
model exhibited a reasonably strong performance, with its
predictions generally aligning well with the actual yield
values. However, it showed slightly lower accuracy compared
to ensemble models such as Gradient Boosting and Ran-
dom Forest. In contrast, the AdaBoost Regressor produced
more dispersed prediction points, suggesting a less accurate
fit and higher variability in yield estimates. On the other
hand, the Random Forest Regressor and XGBoost Regressor
delivered superior predictive accuracy, with their outputs
closely following the ideal diagonal line—indicating their
effectiveness in modeling yield outcomes. The LGBM Re-
gressor model also displayed strong predictive performance,

though it showed slightly more spread in the middle range
compared to Gradient Boosting and CatBoost models. The
differences observed between the actual and predicted yields,
as determined by the Gradient Boosting model, served as
an indicator of the model’s predictive performance. Smaller
differences indicated better model performance, as shown in
Figure 7. The findings demonstrate that advanced ensemble
methods (e.g., CatBoost, Gradient Boost) are well-suited for
yield prediction in agricultural datasets.

F. Explainable AI Methods
1) SHapley Additive exPlanation (SHAP): Shapley Ad-

ditive Explanation (SHAP), a technique based on game
theory, was initially introduced by Lundberg and Lee [17].
It was used to attribute SHAP values to the features that
significantly contributed to a model’s predictions. Seireg et
al. employed SHAP to analyze the influence of features
on the predictions made by XGBoost [18]. They utilized
stacking and cascading methods to integrate the predictions
of four distinct machine learning models—LGBM, GBR,
XGBoost, and Ridge—following the fine-tuning of their
respective hyperparameters. Additionally, unique feature se-
lection methods, including SFFS, SBEFS, VIF, and XFI,
were employed to reduce model complexity. The predic-
tive accuracy of the models was further enhanced through
Bayesian optimization, which involved 17 different machine
learning algorithms, all focused on predicting wild blueberry
yield. A hybrid deep learning method, LSTM-CNN, was also
proposed for predicting corn and soybean yields [19]. The
dataset included information on average yield, environmental
variables, management practices, soil data, and MODIS data.
The SHAP XAI tool was used to identify the most influential
features contributing to yield predictions.

The figure 8 illustrated how features affected Gradient
Boost predictions using SHAP explanations. On the Y-axis,
features were ordered by their average absolute SHAP values,
while the X-axis displayed the SHAP values. High feature
values were depicted in red, while low values were shown
in blue. The analysis clearly highlighted that the Gradient
Boost model’s predictions were most significantly influenced
by fruitset, RainingDays, osmia, MaxOfLowerTRange, and
MaxOfUpperTRange. The results showed that greater fruitset
values led to higher blueberry yields. Conversely, decreased
RainingDays values corresponded to lower blueberry yields,
while increased osmia values resulted in higher yields of
blueberries.

Figure 9 highlights the key features that significantly in-
fluenced the predictions of the CatBoost model, as identified
through SHAP analysis. Among these, fruitset, RainingDays,
osmia, bumbles, and clonesize emerged as the most impactful
variables contributing to the model’s performance. It is note-
worthy that fruitset, RainingDays, and osmia demonstrated
consistent predictive influence across both the Gradient Boost
and CatBoost models. This insight was derived from the
SHAP feature importance, as depicted in Figure 10.This
analysis of feature importance offered valuable insights into
the features with high absolute Shapley values, highlighting
their critical contribution to the CatBoost model’s predictive
performance.

By aligning these findings with our overall understanding
of the issue, we can have confidence that the model is
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Fig. 6. Yield prediction of wild blueberry achieved by machine learning models
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Fig. 7. Actual and predicted yield by Gradient Boost Model

Fig. 8. Impact of features on Gradient Boost Model’s Output by SHAP

intuitive and accurately predicting blueberry yields. It is
probable that the model will predict higher blueberry yields
for greater values of fruitset, RainingDays, and osmia.

2) Local Interpretable Model-Agnostic Explanations
(LIME): LIME is a well-known approach within Explainable
Artificial Intelligence (XAI) that gained recognition for
its ability to interpret and explain the outputs of complex
machine learning models. It was originally introduced by
Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin
in 2016 [20]. This technique allowed for the assessment
of the individual contributions of each variable within
a dataset to each prediction generated by the model.
LIME proved to be an effective approach for assessing
the impact of individual variables on a machine learning
model’s predictions, as well as for comparing the relative
importance of different variables in influencing the model’s
outcomes. Masahiro Ryo leveraged explainable artificial

Fig. 9. Impact of features on CatBoost Model’s Output by SHAP

Fig. 10. Feature importance on CatBoost Model’s Output by SHAP

intelligence, incorporating techniques such as partial
dependence plots (PDPs), pairwise interaction importance,
permutation-based variable importance, and LIME, to
investigate maize crop data [21]. The study employed
a dataset containing 17 variables and applied predictive
models such as Linear Regression, Decision Tree, Random
Forest, and Gradient Boosting to estimate maize crop yield.
LIME proved valuable in identifying the factors that wield
the most significant or minimal influence on each prediction
generated by a machine learning model. Additionally, it
helped discern which variables hold the most or least sway
over the outcome of each prediction in comparison to other
variables. In practice, LIME generated an explanation for
a particular instance within the test dataset, employing a
Gradient Boost classifier. This explanation is then presented
in a tabular format as shown in figure 11.In this table, the
leftmost column illustrates the predicted probabilities for
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Fig. 11. Local Explanation by LIME for Gradient Boost

Fig. 12. Feature and their respective values for Gradient Boost

Fig. 13. Local Explanation by LIME for Cat Boost

wild blueberry yield. Features that had a positive impact
on the model’s predictions are highlighted in orange,
whereas those that negatively influenced the outcome are
shown in blue. For a particular instance from Blueberry
dataset, the Gradient Boost has predicted the 7575.41
yield for which fruitset, osmia has positively contributed
and RainingDays has negatively contributed towards the
predicted yield. According to explanation generated by
LIME as shown in figure 12, fruitset, osmia, RainingDays,
MaxofLowerTRange and clonesize have contributed most in
the Gradient Boost model’s prediction of blueberry yield.
The fruitset, bumbles, MaxofLowerTRange, RainingDays,

Fig. 14. Feature and their respective values for Cat Boost

and andrena have contributed most in the Cat Boost
model’s prediction as per the explanations generated for
local instance by LIME as shown in figure 13. One of the
case where Cat Boost has predicted the blueberry yield
as 7598.13, fruitset, bumbles and MaxOfLowerTRange
has positively contributed and RainingDays has negatively
contributed towards the prediction. The feature and their
respective values for Cat Boost are shown in figure 14.
Higher the value of fruitset, higher the yield of blueberry
and lower the value of RainingDays affected the blueberry
yield. The patterns predicted for top features from wild

Fig. 15. Patterns detected by LIME for Cat Boost
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blueberry dataset learned by Cat Boost model identified
by LIME as shown in figure 15. The fruitset feature has
the higher impact on model’s prediction. The bumbles
and MaxofLowerTRange have positive contribution in
model output whereas the decrease in the feature value of
RainingDays affected the yield of blueberry.

IV. CONCLUSION

The wild blueberry dataset, created through a spatially
explicit simulation computing model, was examined to fore-
cast blueberry yield using eight different machine learning
models. Among these models, Gradient Boost and Catboost
stood out as top performers, achieving cross-validation scores
of 133.20 and 134.78, along with an impressive R2-score
of 0.99. To gain insights into model behavior, the study
employed the Shapley Additive exPlanation (SHAP) method,
which provides a global perspective, elucidating how the
model behaves across all instances. To gain insight into indi-
vidual predictions LIME was employed, providing localized
explanations that help interpret the machine learning model’s
behavior for particular cases.
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