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Abstract—Dimensionality reduction is the process of trans-
forming high-dimensional data into low-dimensional represen-
tations, aiming to preserve as much important information as
possible while reducing data complexity. It plays an important
foundational role in data analysis and machine learning. Feature
extraction generates new features by transforming raw data
to preserve important information while reducing the dimen-
sionality of the data. T-SNE is a non-linear feature extraction
algorithm that is particularly suitable for visualizing high-
dimensional data. The traditional t-SNE algorithm does not
fully consider the importance of each feature. In view of this,
this paper proposes a t-SNE dimensionality reduction method
combined with entropy weight. Firstly, the entropy weight
method is used to calculate and allocate the weight of each
feature, and then the weighted features are subjected to t-SNE
dimensionality reduction processing. Comparative experiments
were conducted on five low-dimensional datasets, five medium-
dimensional datasets, and four high-dimensional datasets. The
experimental results show that the t-SNE algorithm combined
with entropy weight outperforms the traditional t-SNE algo-
rithm in terms of KL divergence values. Therefore, the data
distribution after dimensionality reduction using the algorithm
proposed in this paper is more similar to that in the original
high-dimensional space.

Index Terms—entropy weight, feature weight, t-SNE algo-
rithm, KL divergence

I. INTRODUCTION

ATA mining is a technique that analyzes large-scale data
to reveal its inherent patterns, correlations, and trends,
providing valuable information and insights[1]. In the process
of data mining, high-dimensional data often leads to a curse
of dimensionality, making model training and prediction
more difficult and time-consuming. Data dimensionality re-
duction is a critical stage in data mining, aimed at improving
the efficiency of analysis and modeling by optimizing the
structure and quality of the dataset. Effective dimensionality
reduction techniques can significantly enhance the quality of
data mining results and applicational effectiveness.

Data dimensionality reduction can usually be divided into
feature selection and feature extraction. Feature selection
reduces data dimensionality by selecting the most important
subset of features in the dataset, including filtering, wrapping,
and embedding methods, while feature extraction transforms
the original dataset into a new feature space through mathe-
matical transformations[11]. Common methods include prin-

Manuscript received November 20, 2024; revised March 31, 2025.

This work was supported by the General Program of Natural Sci-
ence Foundation of Chongqing(Grant No. CSTB2023NSCQ-MSX0223)
and Chongqing Technology and Business University Research Initiation
Fund(Grant No. 1956043).

Y. Tang is a postgraduate student at the School of Mathematics and
Statistics, Chongqing Technology and Business University, Chongqing,
400067, China. (e-mail: 2807518452@qq.com).

L. Zou is an associate professor at the School of Mathematics and
Statistics, Chongqing Technology and Business University, Chongging,
400067, China. (Corresponding author, e-mail: 307376216@qq.com).

cipal component analysis and t-distributed stochastic neigh-
bor embedding (t-SNE). Principal component analysis maps
data to a new feature space through linear transformation,
where the new features are linear combinations of the original
features that are independent of each other. t-SNE, on the
other hand, is a nonlinear dimensionality reduction method
aimed at preserving the local structure of data points in high-
dimensional space and mapping them to low-dimensional
space, so that similar data points in high-dimensional space
remain similar in low-dimensional space.

In 2008, Maaten et al.[9] proposed the t-SNE technique
for visualizing the structure of large datasets, which maps
data from high-dimensional space to two-dimensional or
three-dimensional space for visualization. In recent years,
many scholars have conducted extensive research on the t-
SNE algorithm. Wu et al.[17] proposed an online distribution
network operation mode recognition method based on real-
time measurement data from smart meters. This method first
preprocesses the node voltage and power data obtained from
the smart meter, calculates the pairwise voltage difference
between nodes, and then applies the t-distributed random
nearest neighbor embedding (t-SNE) algorithm to reduce the
dimensionality of the voltage difference data and power data
of the historical time section. Zhong et al.[19] designed a dy-
namic analysis system for power equipment data monitoring
based on t-SNE, aiming to solve the problems of insufficient
monitoring of abnormal states in traditional power equipment
and the inability to provide real-time warnings. Liu et al.[8]
proposed a t-distribution random nearest neighbor embedding
feature extraction and radial propagation clustering algorithm
based on user voltage data for phase recognition. Jiang
et al.[5] studied the distribution of spectral data in high-
dimensional space and the principle of manifold learning
for dimensionality reduction of high-dimensional linear data.
They compared the differences in dimensionality reduction
effects between t-SNE and principal component analysis
methods for spectral data and used an improved K-nearest
neighbor algorithm based on attribute value correlation dis-
tance for spectral classification. Wei et al.[16]proposed an
extended t-SNE dimensionality reduction visualization algo-
rithm, E-t-SNE, to address the problem that traditional t-SNE
algorithms are only applicable to single type data and cannot
effectively handle mixed attribute data. Yoshiaki et al.[18]
proposed using quantum neural networks to parameterize t-
SNE, in order to accurately reflect the characteristics of high-
dimensional quantum data in low-dimensional space. Dmitry
et al.[2] introduced various initialization strategies before
dimensionality reduction, including PCA initialization, high
learning rate, and multi-scale similarity kernels, and used
a downsampling based initialization method when dealing
with very large datasets. Maaten et al.[10] solved the prob-
lem of traditional dimensionality reduction techniques being
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unable to handle non metric similarity data visualization
by constructing a map set that displays complementary
structures. Tang et al.[15] effectively reduced the compu-
tational complexity of t-SNE dimensionality reduction by
constructing the nearest neighbor graph of low-dimensional
spatial data. Shang et al.[12] proposed an adaptive weighted
optimization method to address the problem of unsatisfactory
dimensionality reduction in t-SNE when processing vibration
signals, and introduced genetic algorithm (GA) to solve the
local optimization problem of fruit fly optimization algo-
rithm (FOA). GA-FOA was applied to RBFNN parameter
selection to improve clustering performance. Du et al.[3]
proposed an improved group weighted t-SNE algorithm to
address the issue of insufficient ability of t-SNE algorithm
to handle singular class samples in high-dimensional data di-
mensionality reduction, which is applied to the clustering and
recognition of singular class samples in digital handwriting.
Li[7] proposed a power function weighted t-SNE algorithm
to solve the problem of insufficient measurement of high-
dimensional sample similarity by Euclidean distance during
dimensionality reduction, resulting in poor dimensionality re-
duction performance. Zou et al.[20] used K-means clustering
combined with t-SNE to evaluate the transportation safety of
imported natural gas in China.

The determination of feature weights helps to analyze
the contribution of each feature to the overall system. By
allocating weights reasonably, the impact of each feature
can be evaluated more scientifically, leading to more rational
decisions. The traditional t-SNE dimensionality reduction
method does not consider the differences in feature weights,
which may lead to poor dimensionality reduction results in
datasets with significant feature weight variations. To address
this issue, this paper proposes a t-SNE algorithm combined
with entropy weight. This method first uses the entropy
weight method to calculate and allocate feature weights,
integrates the weight information into the data, and then
uses the t-SNE algorithm to reduce the dimensionality of
the weighted data. Finally, comparative experiments were
conducted on 14 different types of datasets, and the results
showed that compared with the traditional t-SNE algorithm,
the algorithm proposed in this paper has a smaller KL
divergence value. Therefore, the data distribution after di-
mensionality reduction using the algorithm proposed in this
paper is more similar to the data distribution in the original
high-dimensional space.

II. T-DISTRIBUTION RANDOM NEAREST NEIGHBOR
EMBEDDING

A. Random neighbor embedding

Random Neighbor Embedding (SNE) is a machine learn-
ing algorithm used for nonlinear dimensionality reduction,
which can effectively capture the complex manifold structure
of the original data while reducing the vector dimension[4].
The algorithm first converts the distance into a probability
distribution using Gaussian distribution in the original data
space, and then specifies the mean squared error of the Gaus-
sian distribution as —= in the low-dimensional embedding
space. KL divergence is used as a measure of similarity
between two probability distributions, with smaller values
indicating closer proximity between the two distributions.

Therefore, KL divergence can be used to quantify the differ-
ences between high-dimensional and low-dimensional spatial
distributions.

In high-dimensional space, the similarity between data
point x; and data point x; is represented by the conditional
probability density pj; . The larger the value of p;;, the
higher the similarity between x; and z;:

2
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Among them, o; is usually taken as the Gaussian mean
squared error centered around z;. In addition, set p;; = 0
and for y; in low-dimensions, specify the mean squared error
of the Gaussian distribution as % The similarity between
data point x; and data point x; is as follows:
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Similarly, set g;; = 0 to minimize the KL divergence
between high-dimensional and low-dimensional spaces:
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Using gradient descent, calculate the gradient 3—5 of the

objective function with respect to the independent variable:
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Loop iteration minimizes the loss function C to obtain low-
dimensional data y = {y1,¥2, ", Yn}-

B. T-distribution random nearest neighbor embedding

The random nearest neighbor embedding algorithm has
two main problems: (1) The similarity between data points
is asymmetric, that is, the similarity between data point x;
and data point x; is not equal to the similarity between
data point x; and data point x;; (2) In low-dimensional
space, data points are prone to “crowding problems”, where
data points from different clusters gather together and are
difficult to distinguish clearly. To address these issues, the
t-distributed random nearest neighbor embedding algorithm
(t-SNE) has been proposed. This method not only ensures the
similarity symmetry between data points, but also applies the
t-distribution of long tail distribution in low-dimensional s-
pace to convert distance into probability distribution, thereby
alleviating the “crowding problem” to some extent[9].

In high-dimensional space, the similarity between data
point z; and data point x; is represented by a joint probability
density p;;. The larger the value of p;;, the higher the
similarity between x; and x;:

Pyt Py

p"j 9 (6)
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Among them, pj; represents the conditional probability
density of data point x; and data point x;:

exp (= lloi — ;] /202
> exp (= lloi — ail* /207)
ki

Djli = i =0. (7)

In low-dimensional space, the similarity between data point
x; and data point x; is represented by a joint probability
density g;;:

(1+ 1y —wl”)
> (14l — )

k#l
Minimize KL divergence in high-dimensional and low-

dimensional spaces:
Di
szmj ©)

Using gradient descent, calculate the gradient 37? of the
objective function with respect to the independent variable:
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Loop iteration minimizes the loss function C to obtain low-
dimensional data y = {y1,¥y2, ", Yn}-

(1)
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Fig. 1. Comparison of two methods on the small dataset Iris

III. T-SNE COMBINED WITH ENTROPY WEIGHT
A. Entropy weight method

Information entropy is the expectation of information
quantity. Assuming X is a random variable with m values,
its information entropy can be expressed as:

m
—> " pilogp;.
=1

The idea of entropy weight method is: if the information
entropy of a feature is smaller, it indicates that the variation
degree of the feature value is greater, so the greater the role
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Fig. 2. Comparison of two methods on the small dataset Real Estate

Valuation

of the feature, the greater the weight. The steps of entropy
weight method are as follows: (i) Assuming dataset X has
m samples, each with n features:

T11 T12 Tin
T21  X22 T2n

X = ) . (13)
Tmi Tm?2 Tmn

Among them, z;; is the value of the j-th feature of the i-th
sample. Normalize the data:

x;; — min(z;;)

i = - . 14
Yis max(x;;) — min(x;;) (14
(ii) Calculate the proportion of the i-th sample to a certain
feature X;, where p;; is the proportion of the i-th sample to
the j-th feature:
_ Y
Dij = - (15)

Z Yij
i=1

(iii) Calculate the entropy value of a certain feature X;:

Ej = log pr Ingzj (16)

(iv) Calculate the 1nformat10n redundancy D; of each
feature:

Dj=1-E;. 17)

(v) Normalize the redundancy D; to obtain the weight W;:

D
W; = -2

> D
j=1

(18)

B. Improved t-SNE

This paper proposes a new t-SNE dimensionality reduction
method by combining entropy weight and t-SNE dimension-
ality reduction. The steps of this method are as follows:

(i) Assuming dataset X has m samples, each with n
features:

X1 Xypo Xin
Xo1 Xogo Xop

X = ) ) . (19)
Xml Xm2 an
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(i) Use entropy weight method to obtain the weight of
each feature:

W = [Wy, Wy, -, W,]". (20)

(iii)) Add the weight of each feature to the data of each
feature to obtain a weighted dataset Z:

Z =X xdiag (W). 21

(iv) Using t-SNE to reduce the dimensionality of weighted
datasets and obtain the dimensionality reduction results.
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Fig. 3. Comparison of two methods on the small dataset Raisin
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Fig. 4. Comparison of two methods on the small dataset Wine

IV. EXPERIMENTAL RESULTS AND COMPARATIVE
ANALYSIS

A. Dataset description

The dataset can be classified based on the number of
features. Generally speaking, a dataset with 0 to 19 fea-
tures is considered a small dataset, a dataset with 20
to 49 features is considered a medium dataset, and a
dataset with 50 or more features is considered a large
dataset[6][13][14]. To ensure the representativeness of the
dataset, this study selected 14 datasets from UCI as research
objects(https://archive.ics.uci.edu/). Table 1 shows the names,
sample sizes, and number of features of these datasets.
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Fig. 5. Comparison of two methods on the small dataset Statlog(Heart)

TABLE 1
DATASET DESCRIPTION

feature number

type name sample size
small Iris 150 4
small Real Estate Valuation 414 6
small Raisin 900 7
small Wine 178 13
small Statlog(Heart) 270 13
medium Breast cancer 569 30
medium IR Temperature 1020 33
medium Horse Colic 368 27
medium Dermatology 366 34
medium Glioma Grading Clinical 839 23
large Spambase 401 57
large Lung cancer 32 56
large Mice Protein Expressionin 1080 80
large Connectionist Bench 208 60
Breast Cancer
2.5
—*— t-SNE AUC:39.9195
Entropy weight t-SNE AUC:20. 9945
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Fig. 6. Comparison of two methods on the medium dataset Breast cancer

B. Result analysis

Using t-SNE combined with entropy weight and traditional
t-SNE for dimensionality reduction on different datasets, KL
divergence is used as a measurement standard to obtain
the comparison values of KL divergence between the two
methods in different dimensions. For ease of observation,
the dimensionality reduction dimension is used as the x-
axis, and the KL divergence value is used as the y-axis for
visualization. Firstly, the performance of the two methods
on small datasets is shown in Fig 1-Fig 5. Observation
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Infrared Thermography Temperature
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Fig. 7. Comparison of two methods on the medium dataset Infrared

Thermography Temperature

shows that two curves intersect in the graph. In order to
objectively compare the advantages and disadvantages of the
two methods, the Area Under the Curve (AUC) under the
two curves is calculated.

As illustrated in Fig 1-Fig 5, the KL divergence values
for the two methods across different dimensionalities indi-
cate that t-SNE combined with entropy weight outperforms
traditional t-SNE on the Iris, Raisin and Real Estate Valuation
datasets. In contrast, for the Wine dataset, when the number
of dimensions is reduced to 10, the KL divergence value
for the t-SNE with entropy weight is higher than that of
traditional t-SNE. A further comparison of the AUCs reveals
that the AUC for t-SNE with entropy weight (5.7848) is
significantly lower than that of traditional t-SNE (11.2656).
For the Statlog (Heart) dataset, t-SNE combined with entropy
weight exhibits higher KL divergence values than traditional
t-SNE when the dimensionality is reduced to 12 and 13.
AUC comparisons for this dataset also show that the AUC
for t-SNE with entropy weight (8.2397) is lower than that of
traditional t-SNE (11.9927). These results suggest that t-SNE
combined with entropy weight performs more effectively on
small datasets compared to traditional t-SNE.
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Fig. 8. Comparison of two methods on the medium dataset Horse Colic

The medium and large datasets contain a large number of

features. When the number of features does not exceed 30,
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Fig. 9. Comparison of two methods on the medium dataset Dermatology
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Fig. 10. Comparison of two methods on the medium dataset Glioma
Grading Clinical

at each dimensionality reduction level, as shown in the
graph. However, when the number of features exceeds 30, to
account for computational cost, the maximum dimensionality
reduction is limited to 30 for both methods. Fig 6-Fig 10
illustrates the performance of t-SNE combined with entropy
weight and traditional t-SNE on a medium dataset.
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Fig. 11. Comparison of two methods on the large dataset Spambase

As illustrated in Fig 6-Fig 10, for the datasets Breast
Cancer, Infrared Thermography Temperatures, and Horse

the KL divergence values for both methods are described Colic, t-SNE combined with entropy weight yields lower
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Fig. 12. Comparison of two methods on the large dataset Lung Cancer

KL divergence values across all dimensions compared to
traditional t-SNE. For the Dermatology dataset, the KL
divergence value of t-SNE with entropy weight exceeds that
of traditional t-SNE only when the dimensionality is reduced
to 30. A further comparison of the Area Under the Curve
(AUC) for both methods reveals that t-SNE combined with
entropy weight achieves an AUC of 19.3065, which is lower
than the AUC of traditional t-SNE (26.3214). For the Glioma
Grading Clinical dataset, the KL divergence value of t-SNE
with entropy weights is higher than that of traditional t-SNE
only when the dimensionality is reduced to 21, 22, and 23.
The AUC of this method is 5.6213, which is lower than the
AUC of traditional t-SNE (8.4835). These results suggest that
t-SNE combined with entropy weight demonstrates superior
performance over traditional t-SNE on medium datasets.

For high-dimensional datasets with more than 49 features,
this paper only considers the KL divergence values of the two
methods when the dimensionality reduction does not exceed
30, as shown in Fig 11-Fig 14.
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Fig. 13. Comparison of two methods on the large dataset Mice Protein

Expression

Fig 11-Fig 14 demonstrates that, for the Lung Cancer,
Mice Protein Expression, and Spambase datasets, t-SNE
combined with entropy weight achieves lower KL divergence
values across all dimensions compared to traditional t-SNE.
However, for the Connectionist Benchmark dataset, t-SNE
combined with entropy weight exhibits higher KL divergence
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Fig. 14. Comparison of two methods on the large dataset Connectionist

Bench

values than traditional t-SNE when the dimensionality re-
duction is set to 3, 9, 15, and 23. Further comparison of
the Area Under the Curve (AUC) for both methods reveals
that t-SNE combined with entropy weight yields an AUC
of 42.452, which is lower than the AUC of traditional t-
SNE (47.4988). These results indicate that t-SNE combined
with entropy weight outperforms traditional t-SNE on large
datasets.

V. CONCLUSION

This paper proposes a t-SNE dimensionality reduction
algorithm that incorporates entropy weight. Comparative
experiments were conducted on 14 distinct datasets, and the
results demonstrated that the KL divergence values achieved
by the proposed algorithm were lower, indicating superior
performance compared to traditional t-SNE. However, further
analysis revealed some limitations of the proposed algorithm,
particularly its suboptimal performance on the image dataset
MNIST, as shown in Fig 15. A possible explanation for this
is that the entropy weight method may not effectively capture
the feature weights in image data. In future work, we plan to
explore alternative methods for calculating feature weights,
with the aim of enhancing the performance of the proposed
algorithm on image datasets.
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Fig. 15. Comparison of two methods on MNIST dataset
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