
Coordinated Allocation of Mobile Edge
Computing Server Resources Based on Improved

Aquila Optimizer Algorithm
Yujing Wang, Yuanyuan Wei, Hui Li, Xiaoyu Du, and Wen Zhang

Abstract—In ultra-dense network environments, the
collaborative allocation of resources among multiple edge
computing servers presents a complex global optimization
challenge. While Aquila Optimizer (AO) can be applied for
resource optimization, it is prone to premature convergence
to local optima and exhibits relatively low task completion
rates. To address these issues, this paper proposes a Hybrid
Strategy Aquila Optimizer (HSAO) with four key innovations.
Firstly, a candidate pattern pruning method is introduced to
reduce redundant decision variables and lower computational
complexity. Furthermore, a Tent chaotic mapping mechanism
is adopted for population initialization to enhance randomness.
During the AO’s expanded exploration phase, a random spiral
update mechanism is incorporated to enhance the algorithm’s
global search ability and robustness. Finally, a hybrid strategy
combining stochastic reverse-based exploration with the Nelder-
Mead method is adopted to enhance the search capability of
individuals, thus improving the algorithm’s effectiveness in
avoiding entrapment in local optima. Comprehensive testing
using CEC2017 benchmark functions and practical case
studies validate HSAO’s superior performance, including
faster task execution, reduced service latency, and improved
user satisfaction in ultra-dense network environments.

Index Terms—mobile edge computing, bionic learning
algorithm, aquila optimizer algorithm, resource scheduling.

I. INTRODUCTION

THE rapid development of 5G communication
technology has given rise to a wide range of

new computation-intensive applications. In the context of
Ultra-Dense Network (UDN), Mobile Edge Computing [1]
(MEC) servers push mobile computing, network control,
and storage capabilities toward the network edge [2], which
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Fig. 1: Network scenarios for ultra-dense deployment of
MEC servers

enables resource-limited Mobile Smart Devices (MSD)
to run computationally intensive and latency-sensitive
applications, meeting the requeirements of low latency,
low energy consumption, and high reliability [3] in new
application domains such as virtual reality [4], health
monitoring [5], and autonomous vehicles [6]. The network
scenario for ultra-dense deployment of MEC servers is
shown in Figure 1.

Currently, resource scheduling models in edge computing
environments primarily include constrained continuous
problem models [7], bin-packing problem models [8], mixed
integer nonlinear problem models [9], and multi-objective
optimization models [10]. These problems are generally
challenging to solve due to their inherent complexity and
are often classified as NP-hard. In recent years, with
the advancement of stochastic search theory, numerous
novel bio-inspired learning algorithms, such as Genetic
Algorithms [11], Artificial Fish Swarm Algorithm [12],
and Particle Swarm Optimization Algorithm [13], have
been applied to resource scheduling problems in edge
computing environments. However, these algorithms suffer
from limitations such as premature convergence to local
optima and slow convergence speeds. Therefore, researchers
have focused on improving algorithm performance by
enhancing convergence speed and precision while avoiding
entrapment in local optima.

In this study, we propose a Hybrid Strategy Aquila
Optimizer (HSAO) algorithm to address these challenges.
The proposed algorithm introduces several innovative
strategies:
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1) Candidate Pattern Pruning: This approach decreases the
dimensionality of the decision space, thereby streamlining
the optimization procedure.

2) Tent Chaotic Mapping Mechanism: Used for population
initialization, this strategy enhances the algorithm’s
exploration efficiency during the early stages.

3) Random Spiral Update Mechanism: Incorporated during
the expanded exploitation phase of the Aquila Optimizer, this
mechanism broadens the search range of individual agents,
improving global search capabilities.

4) Combined Random Reverse Learning and Simplex
Method: This strategy optimizes individual search
mechanisms, enabling the algorithm to effectively escape
local optima.

A set of experiments with different parameter settings was
conducted to investigate the performance of the proposed
HSAO algorithm. The obtained results were systematically
compared against several well-established algorithms,
including the Levy-flight-based Whale Optimization
Algorithm (LWOA), the standard Whale Optimization
Algorithm (WOA), the Sparrow Search Algorithm (SSA),
the Genetic Algorithm (GA), the Gravitational Search
Algorithm (GSA), as well as the conventional Aquila
Optimizer (AO). The results demonstrate that the HSAO
algorithm achieves faster convergence and superior
optimization performance while maintaining high stability
across different evolutionary iterations.

Chapter 2 of this paper presents the mathematical
model for the collaborative resource allocation problem
among multiple MEC servers in an ultra-dense network
environment. Chapter 3 offers an in-depth description of the
core principles underlying the Aquila Optimizer algorithm.
Chapter 4 focuses on the practical realization of the enhanced
Aquila Optimizer, which integrates hybrid strategies. Chapter
5 presents simulation-based comparisons and analyses to
assess the effectiveness of the proposed method. Finally, the
paper concludes with a summary of the findings and provides
insights into future research directions.

II. SYSTEM MODEL

A. MEC server ultra-dense deployment model

In Figure 1, a MEC server is configured next to each
base station, and the MEC server and the base station are
denoted by the same symbols. In this paper, we consider
that the resource co-allocation system for the ultra-dense
deployment of edge servers involves a set of base stations,
a set of MEC servers denoted by M = {1, 2, ...,m, ...,M},
a set of MSDs denoted by I = {1, 2, ..., i, ..., I} and a set
of channels denoted by K = {1, 2, ..., k, ...,K}. For ease of
representation, the location numbers of all base stations are
uniformly represented by the MEC server location numbers.
Each MSD has a task to be performed, e.g., the task of
the ith MSD is denoted as Qi, which can be defined by a
quaternion: Qi = (Ci, Di, Bi, T

max
i ). Where Ci represents

the total computational workload (measured in CPU cycles)
required to complete the task, Di and Bi correspond to the
sizes of the input and output data, respectively. Additionally,
Tmax
i defines the latency constraint for Qi. Qi should be

completed within time Tmax
i . The task can be completed in

time [0, Tmax
i ].

B. Computational model

In this paper all the tasks Qi in the mobile edge computing
system can choose the task offloading mode according to
the resources of MSD and MEC server. Therefore, in this
paper, the matrix o is defined as the offloading decision,
e.g., when the task Qi chooses to be executed in the MEC
server m mode through the channel k , then oki,m = 1,
otherwise oki,m = 0; when

∑I
i=1 o

k
i,m = 0, the task Qi

chooses to be computed locally. The local computational
resource assigned to task Qi is represented by fi ∈ [0, fmax

i ],
while the offloaded computational resource corresponding to
task Qi is denoted as Fi ∈ [0, Fmax].

In local computing mode, the task Qi selects the computing
time for processing on the MSD device as:

TL
i =

Ci

fi
(1)

Analogous to local computing, if task Qi is offloaded by
the user to the MEC server, the associated computation time
is calculated as:

TS
i =

Ci

Fi
(2)

When MSD chooses to perform the task Qi under local
execution, the computational energy consumption of MSD
is:

EL
i = ζ(fi)

2Ci (3)

Where ζ = 5×10−27 is determined by the specific design
of the MSD chip architecture.

For the task offloading mode, MSD uses OFDM
technology to upload the data to the MEC server. Once the
calculation is completed, the result is returned to the mobile
user over the downlink. The uplink data rate of Qi over
channel k at MEC server m is expressed as:

Ri = W log2 (1 +
ptih

k
i,m

w +
∑

j ̸=i o
k
j,mptjh

k
j,m

) (4)

Here, W represents the channel bandwidth; pti indicates
the transmission power associated with mobile device i;
w corresponds to the background noise power; and hk

i,m

describes the channel gain when task Qi is offloaded to
MEC server m via channel k. During MSD communication,
each MSD occupies one channel. The same channel can
be multiplexed by multiple MSDs, and there is interference
between MSDs multiplexing the same channel resource.∑

j ̸=i oj,np
t
jh

k
j,n is the interference between mobile users in

the same channel. Since the scenario in this paper is static,
the uplink rate and downlink rate are symmetric.

The time required to transmit task Qi when processed by
the MEC server is formulated as:

T t
i =

Di +Bi

Ri
(5)

In the context of MEC-based computation, the energy
consumption associated with transmitting task Qi arises from
smart device i during the upload of input data and the
download of computation results, which can be expressed
as:

Et
i =

ptiDi + priBi

Ri
(6)
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Where pri indicates the ability of the mobile user i to
receive the results.

In summary, the overall energy expenditure and the
cumulative task latency are respectively formulated as:

E =
M∑

m=1

K∑
k=1

I∑
i=1

(oki,mEt
i + ((1− oki,m)ET

i )) (7)

T =
M∑

m=1

K∑
k=1

I∑
i=1

(oki,m(T t
i + TS

i ) + ((1− oki,m)TL
i )) (8)

The user cost is calculated as a weighted combination
of the task execution delay and the MSD’s total energy
expenditure, given by:

J = αT + (1− α)E (9)

In the equation, the weighting factor α represents the
importance of the total task delay T in the total cost for
users. In the simulation experiments conducted in this paper,
α is set to 0.5. Under the conditions specified in this section,
the edge computing system can selectively assist important
users in completing computing tasks. Therefore, an important
optimization metric in the problem of incomplete offloading
is task completion, which can be expressed as:

P =
V∑I
i=1 Vi

(10)

V is the preference of the edge computing service provider
for performing user tasks and is the sum of the weights of
all user tasks, which can be expressed as:

V =
K∑

k=1

M+1∑
n=1

I∑
i=1

oki,nVi (11)

In Equation (11), Vi ∈ (0, 4) is a normally distributed
random number.

C. Problem modeling

When the importance of different users in the edge system
is known, the task completion can be indirectly expressed
in terms of the quality of completion, and the optimization
objective of the task is min(J)&max(V ). In this section,
function Y 3 serves as a metric for evaluating the aggregate
benefit of the task, and the overall optimization goal is
defined as:

Y 3 = βV − (1− β)J (12)

In Equation (12), β = [0, 1] is the combined weight factor,
which reflects the degree of importance of task completion in
the overall ultra-dense network. As a result, the optimization
task is reformulated into a minimization problem of Y 3,

which can be formally written as:

s.t. C1 : fi ≤ fmax
i

C2 :
K∑

k=1

oki,m ≤ 1

C3 : fi + Fi > 0,∀oki,n = 1

C4 :
I∑

i=1

M∑
m=1

Fio
k
i,m ≤ F

C5 : Ti ≤ Tmax
n

C6 :
I∑

i=1

Ei ≤ Emax

C7 :
M∑

m=1

oki,m ≤ 1

(13)

C1 ensures that the computing capacity utilized in the
local execution mode remains within the device’s resource
threshold; C2 ensures that each task can only select one
channel for uploading; C3 indicates that computational
resources must be allocated for each task; C4 ensures that
the computing capacity utilized in the MEC computation
mode remains within the resource limit of the MEC server;
C5 mandates that each task adheres to its latency limit; C6

stipulates that the energy consumption of each task remains
within bounds; C7 imposes a selection constraint, allowing
each task to offload to only one MEC server.

III. BASIC AQUILA OPTIMIZER ALGORITHM

The Aquila Optimizer (AO) [14], formulated by Laith
Abualigah et al. in 2021, draws inspiration from the predatory
patterns of aquila birds for its search mechanism. The
algorithm’s procedural framework is outlined below.

A. Expanded exploration

The vector Xt indicates the aquila’s location in the
search space at iteration t, and is utilized to evaluate its
corresponding fitness value. Meanwhile, when the evolution
number is t, the whole population of aquila maintains a
global optimal position X∗

t , and other individuals scout
the sky and move towards the optimal position X∗

t . The
mathematical model is defined as:

Xt+1 = X∗
t × (1− t

T
) + (Xm

t −X∗
t × rand) (14)

In Equation (14), Xt+1 indicates the updated solution at
iteration t+1, while rand represents a random scalar drawn
from a uniform distribution over [0, 1]. T specifies the total
number of iterations. The term Xm

t signifies the centroid
position of the current solution population at iteration t, as
derived from Equation (15):

Xm
t =

1

N

N∑
i=1

Xi
t ,∀j = 1, 2, ..., Dim (15)

In Equation (15), Dim specifies the problem
dimensionality, and N refers to the population size,
indicating the total number of candidate solutions.
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B. Narrowing the scope of exploration

The aquila surrounds its prey above the sky and prepares
to attack, as defined by the mathematical model:

Xt+1 = X∗
t × Levy(D) +XR

t + (y − x)× rand (16)

where D denotes the dimensional space, and Levy(D)
represents the Lévy flight distribution, as defined in Equation
(17). At the t-th iteration, XR

t corresponds to a solution
randomly selected within the interval [1, N ].

Levy(D) = s× u× σ

|v|
1
β

(17)

s is a predefined constant set to 0.01, while u and
v are uniformly distributed random variables within the
interval [0, 1]. The parameter σ is determined according to
Equation (18).

σ =
Γ(1 + β)× sin(Πβ

2 )

Γ( 1+β
2 )× 2(

β−1
2 ) × β

(18)

β is a predefined constant set to 1.5. In Equation (16), the
variables y and x are employed to model the spiral trajectory
during the search process, which is formulated as follows:

y = r × (θ) (19)

x = r × (θ) (20)

r = r1 + U ×D1 (21)

θ = −ω ×D1 + θ1 (22)

θ1 =
3×Π

2
(23)

r1 is an integer selected within the range [1, 20] to define
the number of search iterations, while U is a predefined
small constant set to 0.00565. The variable D1 represents
an integer value ranging from 1 to the dimensionality of the
search space Dim, and ω denotes a minor constant fixed at
0.005.

C. Expanded development

The mathematical definition of an aquila performing
a vertical landing process, observing prey reactions and
preparing to attack the prey:

Xt+1 = (X∗
t −XM

t )× α− rand

+ ((UB − LB)× rand+ LB)× δ (24)

In Equation (24), rand refers to a random variable
sampled from a uniform distribution over [0, 1]. In this work,
α and δ are both assigned a value of 0.1. LB and UB
indicate the positional lower and upper limits, respectively.

D. Reducing the scope of development

Finally, the act of a skyhawk attacking its prey is
mathematically represented as:

Xt+1 = X∗
t ×QF + (G1 ×Xt × rand)

−G2 × Levy(D) + rand×G1 (25)

QF refers to the mass function that regulates the balance
between exploration and exploitation strategies, as defined
in Equation (26). G1 characterizes the diverse movement
patterns of the AO, determined by Equation (27). G2

corresponds to a sequence of diminishing values ranging
from 2 to 0, computed using Equation (28).

QF (t) = t
2×rand−1

(1−T )2 (26)

G1 = 2× rand− 1 (27)

G2 = 2× (1− t

T
) (28)

IV. HYBRID STRATEGY-BASED AQUILA OPTIMIZER
IMPROVEMENT ALGORITHM

With the objective of optimizing collaborative resource
allocation across multiple MEC servers in ultra-dense
networks, this paper improves the AO algorithm and
proposes Hybrid Strategy-based Aquila Optimizer
improvement (HSAO). The algorithm optimizes the
objective function, reduces the solution space using a
candidate mode pruning method, and enhances population
randomness by introducing strategies such as Tent chaotic
mapping for population initialization, random spiral update
mechanism, random reverse learning, and the simplex
method. The pseudo-code for the HSAO algorithm is as
follows.

A. Optimizing the objective function

Since the original AO algorithm is used for unconstrained
optimization, this paper needs to use an effective constraint
handling technique to solve the constraint problem. In
order to handle the constraints C2, constraint C3 and
constraint C6, the decision variable X is used to represent
the current resource scheduling of all the tasks, which
consists of the offloading MEC server number m, the
offloading channel k, the MSD computational resources
f and the MEC computational resources F . Given I
MSDs in the system, vector x has a dimensionality
of 4 × I . The final vector X is encoded as X =
{m1,m2, ...,mI , k1, k2, ..., kI , f1, f2, ..., fI , F1, F2, ..., FI}.
The algorithm is optimized through iterative evolution,
and the final output corresponds to the task offloading
strategy that minimizes the overall system overhead. Since
the original AO algorithm is used for continuous problem
optimization, this paper needs to use downward rounding to
transform continuous variables into discrete variables, and
the vector range becomes Xmin < X < Xmax + 1 − ϵ. To
prevent 1− ϵ = 1, ϵ is taken as the smallest real number.

In this paper, the constraint C1, constraint C4 and
constraint C5 are transformed into the corresponding penalty
functions, at which time the optimization objective is
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Algorithm 1 Hybrid Strategy Aquila Optimizer(HSAO)
Input:
T ,N ,LB,UB,D,t = 1

Output:
BestV alue

1: Pruning candidate decision by Algorithm2;
2: Initialize population using Tent chaotic mapping by Eq

(40);
3: Calculate the parameters by Eq (26,27,28);
4: while t ≤ T do
5: if t ≤ T

3 then
6: if rand() < 0.5 then
7: Update the location of individuals by Eq (17);
8: else
9: Update the location of individuals by Eq (16);

10: end if
11: else
12: if rand() < 0.5 then
13: Updating individual locations using a

randomized spiral update mechanism by Eq (41);
14: else
15: Update the location of individuals by Eq (26);
16: end if
17: end if
18: Evaluate the objective function for each individual

using Eq (12);
19: Monomorphic method for updating the location of

individuals by Algorithm3;
20: Boundary checking and updating the value of

BestValue;
21: t = t+ 1;
22: end while

transformed into the sum of Y 3 and the value of the penalty
function:

min(Y 3′ = Y 3 + θ) (29)

The aggregated value of the penalty functions is denoted
by θ, where o denotes the candidate solution to the problem.
The computation of θ is given by:

θ =
3∑

g=1

max{0, pg(X)} (30)

The function pg(X) denotes the constraint penalty term,
formulated as follows:

p1(X) = (

M∑
m=1

oki,mFi − Fmax
i )2 (31)

p2(X) = (max{TL
i , TC

i } − Tmax
i )2 (32)

p3(X) = (Emax −
I∑

i=1

Ei)
2 (33)

B. Candidate model pruning

For the selection of server offloading locations
in the task offloading matrix, each task has

(M + 1) task offloading candidate patterns, the
local resource candidate pattern threshold denoted
as fmax = {fmax

1 , fmax
2 , ..., fmax

i , ..., fmax
I } and the

offloading resource candidate pattern threshold denoted
as Fmax, the number of task Qi offloading decisions is
I(M +1), the number of local resource allocation decisions
is I × fmax

i ,∀i ∈ I , and the number of MEC server
offloading decisions is I × Fmax. In practice, a significant
portion of the generated solutions are infeasible. To address
this challenge, infeasible candidate patterns are filtered out
for each task at the initial stage of the algorithm. If the
local offloading mode is 1, there are 3 MEC servers and 3
users, and its candidate mode is shown in Figure 2, green
indicating the computational resource allocation range,
before the candidate mode pruning, tasks Q1, Q2 and Q3 all
MEC servers as well as local resources belong to the range
of the decision variables, after the candidate mode pruning,
the task Q1 can not select the MEC server in position 3 for
offloading and the corresponding allocated. The task Q2 can
only select the local computing mode and the corresponding
allocated computing resources cannot be lower than the
minimum value, while the task Q3 cannot satisfy all the
computing modes. The proposed strategy contributes to a
substantial reduction in task offloading decisions.

Fig. 2: Comparison of Decision Variable Lengths for
Candidate Models Improved to Pruned Candidate Models

The conditions for judging the feasibility of candidate
models are given below: If the minimum computational
resource demand of a task under a specific mode cannot
be fulfilled, that mode will be considered an invalid option
for executing the task. The minimum computational resource
requirements based on C5, Qi in the MEC server offload
mode and in the local computing mode can be expressed as
follows:

Fmin
i =

Ci

Tmax
i − Di

Ri
+ Bi

Ri

(34)

fmin
i =

Ci

Tmax
i

(35)
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Algorithm 2 Candidate Pattern Pruning (CPP)
Input:
Qi, M , fmax

i , Fmax, Fmin
i

Output:
X lim

i

1: Initialize mmin
i = rmin

i = F ′min
i = 0, mmax

i = M ,
rmax
i = fmax

i , Fmax
i = Fmax;

2: if Fmax ≥ Fmin
i and rmax

i ≥ Fmin
i then

3: Update F ′min
i and rmin

i by Eq. (34);
4: Set mmax

i = M ;
5: else if Fmax ≥ Fmin

i and rmax
i < Fmin

i then
6: Set Fmax

i = 0, mmax
i = 0;

7: Update rmin
i by Eq. (34);

8: else if Fmax < Fmin
i and rmax

i ≥ Fmin
i then

9: Set mmax
i = 0, Fmax

i = 0;
10: Update rmin

i by Eq. (34);
11: else
12: Set Fmax

i = mmax
i = rmin

i = 0;
13: end if
14: Construct X lim

i = {mmin
i , rmin

i , F ′min
i ,mmax

i , rmax
i , Fmax

i };
15: return X lim

i ;

In accordance with constraints C3 through C5 and C7, a
candidate model is deemed acceptable if it meets the criteria
outlined below:

fmin
i < fmax

i ,∀i ∈ I (36)

Fmin
i < Fmax

i ,∀i ∈ I (37)

Fmin
i + fmin

i > 0,∀i ∈ I (38)

For the computational offloading mode, since it is not
possible to predict in advance which tasks the mode performs
during the initialization phase, it is not possible to obtain it
by eliminating channel interference, and it is not possible to
obtain the data rate, which leads to the unavailability of the
minimum computational resource requirement in Equation
(4). In this case, Equation (5) cannot be directly used to
determine the feasibility of the candidate mode. Under the
assumption that a single task is handled by the MEC server,
the upper bound of the uplink data rate, denoted as Ri, is
determined by Equation (39).

Ri = W log2(1 +
ptih

k
i,m

w
) (39)

The maximum achievable downlink data rate Ri can
be derived analogously. Substituting Equation (39) into
Equation (34) yields a lower bound on the computational
resource requirements. Since the infeasible patterns have
been pruned, it facilitates the quick construction of feasible
offloading decisions.

C. Tent chaos to initialize populations

In recent years, many scholars have introduced Tent
chaotic mapping into heuristic optimization algorithms such
as Gray Wolf Optimization Algorithm [15], Sparrow Search
Algorithm [16] and Vulture Algorithm [17] to enhance the
searching ability of bionic learning algorithms. The mean

dot plots and mean histograms of the original random
population and the Tent chaotic mapping population with a
population size of 1000 under 100 independent experiments
using the rand function in Matlab are shown in Figure 3.
It can be inferred that Tent chaotic mapping significantly
enhances population diversity and accelerates the algorithm’s
convergence during the initial phase.

It should be noted that the Tent chaotic mapping system
is short-periodic when ρ = 0.5 and the initial value
of the system xt cannot be the same as the system
parameter ρ, otherwise it will be periodic. In this section,
Tent chaotic mapping is chosen instead to enhance the
population diversity of the proposed HSAO with the
following equations:

Xt+1 =

{
Xt/ρ ,Xt ∈ [0, ρ]

(1−Xt)/(1− ρ) , Xt ∈ [ρ, 1]
(40)

D. Randomized spiral update mechanism

In the ocean, whales like to prey on krill colonies or
small fish close to the water surface by generating unique
bubbles along a circular or ”9”-shaped path, a foraging
behavior known as spiral bubble attack. From the way the
position is updated in the expanded development phase
of the AO algorithm, it is clear that the difficulty of the
algorithm to escape the local optimum gradually increases
when the number of evolutions gradually increases. Inspired
by the whale spiral exploration model, randomized spiral
exploration is introduced in the expanded exploitation phase,
which further extends the ability of individuals to explore
unknown regions.

In this paper, we replace the average position update in
the AO algorithm Equation (25) with the spiral exploration
formula of the bubble network attack in WOA, and add a
random factor r ∗ Drand into the whale spiral exploration
formula, which ensures the influence of the optimal position
of the algorithm and enhances the ability of the individual
to learn the information carried by the other individuals
among the populations, and the stochastic spiral updating
mechanism is formulated as follows:

Xt+1 = Xt +D′ebl cos(2πl) + r ∗Drand (41)

D′ = |X∗
t −Xt| (42)

Drand = |Xrand −Xt| (43)

b is a constant that defines the shape of the logarithmic
spiral, l and r are random numbers generated in the interval
[−1, 1].

E. Mixed variants based on stochastic inverse learning and
simplex methods

The Monomorphic Method generates an individual
with better quality by putting the individual through
symmetry, expansion, exocontraction and endocontraction
operations as shown in Figure 4. The ability of the
monomorphic method to effectively improve the optimization
of bionic learning algorithms has been demonstrated, such
as the Whale Optimization Algorithm [18], the Ant-
Lion Optimization Algorithm [19], and the Harris Hawk
Optimization Algorithm [20].
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Fig. 3: Comparison of 100 times average scatter plots and
mean distribution histograms of populations generated by
random number improvement for Tent chaotic mapping

Fig. 4: Simplex method

Reverse learning [21] is the process of expanding the
search by computing the inverse solution of the current
solution in the search space. There have been bionic learning
algorithms having demonstrated that the reverse learning
approach can enhance the search capability, such as the
Gray Wolf Optimization Algorithm [22], the Raven Search
Algorithm [23], and the Aquila Optimization [24] algorithms.
Based on the introduction of stochastic factors in the inverse
learning strategy, the search range of population individuals
is extended, and the ability of population individuals to jump
out of the local extremes is enhanced. Then the stochastic
backward learning and simplex method are combined, and
the specific implementation steps of its mixed variational
strategy (MVS) are as follows.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. CEC2017 Benchmark Test Functions

This study evaluates the optimization performance of the
HSAO algorithm using the CEC2017 benchmark test suite.
This test suite consists of a series of nonlinear functions with
high dimensionality and complexity, containing numerous
local extrema and saddle points within their parameter space,
which pose significant challenges to the solving capabilities
of optimization algorithms. The test suite is divided into
four categories: unimodal functions (f1(x) - f3(x)), simple
multimodal functions (f4(x) - f10(x)), hybrid functions
(f11(x) - f20(x)), and composite functions (f21(x) - f30(x)).
Since all 30 benchmark functions in this suite have been
subjected to translation and rotation transformations, their
theoretical optimal values are no longer zero but exhibit
a stepwise distribution ranging from 100 to 3000, with an
increment of 100. Additionally, function f2(x) has been
removed from the CEC2017 test suite due to significant
numerical instability observed in high-dimensional spaces.

1) Optimization accuracy analysis: To comprehensively
evaluate the algorithm’s performance, this subsection
presents a comparative experimental analysis of the HSAO
algorithm with the AO algorithm, Gravitational Search
Algorithm (GSA), and Whale Optimization Algorithm
(WOA). To ensure fairness and objectivity in the algorithm
performance comparison, all four algorithms were tested
on the same hardware and software platform: Windows
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Algorithm 3 Mixed Variational Strategy (MVS)
Input:
A, X , Fx, X∗, XS

Output:
X∗, Fx∗

1: Initialize population: X = {X1, X2, ..., Xa, ..., XA},
Fx = {Fx1, Fx2, ..., Fxa, ..., FxA};

2: Initialize parameter: a;
3: for a = 1 : A do
4: Calculate symmetry point Xr, center point Xc,

expansion point Xe,
5: external constriction point Xt, internal

contraction point Xw;
6: if Fxr < Fx∗ and Fxe < Fx∗ then
7: Update Xa ← Xe, Fxa ← Fxe;
8: else if Fxr < Fx∗ and Fxe > Fx∗ and Fxa >

Fxt then
9: Update Xa ← Xt, Fxa ← Fxt;

10: end if
11: if Fxr < Fxa and Fxr > Fx∗ and Fxw < Fx∗

then
12: Update Xa ← Xw, Fxa ← Fxw;
13: end if
14: Apply reverse learning: Randomize current point Xa;
15: if Fx∗ > Fxa then
16: Update Xa ← X∗, Fxa ← Fx∗;
17: end if
18: end for
19: return Fx∗, X∗;

11 operating system, Intel i7-13650 CPU, and MATLAB
R2021a environment. All algorithms used the same
population size N , spatial dimension D, and maximum
number of iterations T , with values of N = 30, D =
10/50/100, and T = 500. Each algorithm was independently
run 10 times.

The test results of 15 benchmark functions are presented,
including unimodal functions f1 and f3, simple multimodal
functions f4 and f7, hybrid functions f11, f13, f15, f17, f19,
and f20, as well as composition functions f21, f25, f27, f29,
and f30. The results of other test functions are similar and
are not elaborated here for brevity.

Tables I,II,III summarize the best values, mean values, and
variances of the HSAO, AO, GSA, and WOA algorithms
in function optimization tests across 10-dimensional, 50-
dimensional, and 100-dimensional search spaces. The
experimental results demonstrate that the HSAO algorithm
outperforms the other three algorithms across all dimensions,
particularly in terms of achieving optimal values, mean
values, and variances. This highlights its strong global search
capability and solution stability.

In the 10-dimensional problem, the HSAO algorithm
performs exceptionally well, particularly in obtaining optimal
values with a clear advantage. For instance, the optimal
solution for the F1 function is 1.01× 105, while AO, WOA,
and GSA achieve solutions of 4.84 × 106, 5.53 × 106, and
1.60 × 102, respectively. HSAO significantly outperforms

TABLE I: Performance comparison of HSAO, AO, WOA,
and GSA algorithms on benchmark functions(D=10)

Function Metric HSAO AO WOA GSA

f1 Best 1.01E+05 4.84E+06 5.53E+06 1.60E+02
Mean 4.21E+05 1.80E+07 5.77E+07 7.31E+02
Std 2.89E+05 1.69E+07 6.22E+07 8.90E+02

f3 Best 3.03E+02 8.57E+02 9.90E+02 6.55E+03
Mean 3.07E+02 2.11E+03 6.54E+03 1.44E+04
Std 4.19E+00 7.36E+02 6.45E+03 3.97E+03

f4 Best 4.00E+02 4.04E+02 4.05E+02 4.06E+02
Mean 4.05E+02 4.25E+02 4.55E+02 4.13E+02
Std 2.54E+00 2.21E+01 6.04E+01 1.93E+01

f7 Best 7.21E+02 7.34E+02 7.69E+02 7.24E+02
Mean 7.50E+02 7.58E+02 7.97E+02 7.33E+02
Std 7.83E+00 2.25E+01 3.18E+01 1.05E+01

f11 Best 1.11E+03 1.13E+03 1.15E+03 1.14E+03
Mean 1.18E+03 1.22E+03 1.24E+03 1.43E+03
Std 4.63E+01 9.10E+01 9.81E+01 3.36E+02

f13 Best 1.91E+03 7.73E+03 2.11E+03 9.69E+03
Mean 4.80E+03 1.89E+04 1.60E+04 1.23E+04
Std 1.72E+03 1.04E+04 1.43E+04 3.16E+03

f15 Best 1.63E+03 2.10E+03 4.55E+03 1.03E+04
Mean 2.40E+03 6.14E+03 1.46E+04 1.99E+04
Std 1.26E+03 2.51E+03 9.24E+03 8.11E+03

f17 Best 1.74E+03 1.76E+03 1.77E+03 1.75E+03
Mean 1.78E+03 1.79E+03 1.83E+03 1.96E+03
Std 2.31E+01 2.91E+01 6.26E+01 1.15E+02

f19 Best 1.94E+03 2.12E+03 6.94E+03 5.35E+04
Mean 3.22E+03 1.07E+04 4.18E+04 1.70E+05
Std 3.23E+03 1.04E+04 5.89E+04 1.02E+05

f20 Best 2.05E+03 2.07E+03 2.13E+03 2.20E+03
Mean 2.13E+03 2.16E+03 2.21E+03 2.34E+03
Std 5.81E+01 7.01E+01 8.46E+01 9.70E+01

f21 Best 2.20E+03 2.22E+03 2.34E+03 2.39E+03
Mean 2.24E+03 2.32E+03 2.35E+03 2.40E+03
Std 5.15E+01 5.80E+01 5.28E+01 5.37E+01

f25 Best 2.62E+03 2.90E+03 2.95E+03 2.94E+03
Mean 2.91E+03 2.93E+03 2.96E+03 2.94E+03
Std 2.00E+01 2.45E+01 4.17E+01 2.12E+01

f27 Best 3.09E+03 3.10E+03 3.10E+03 3.26E+03
Mean 3.10E+03 3.11E+03 3.16E+03 3.37E+03
Std 2.76E+00 1.13E+01 5.12E+01 9.79E+01

f29 Best 3.17E+03 3.20E+03 3.25E+03 3.38E+03
Mean 3.24E+03 3.28E+03 3.41E+03 3.57E+03
Std 3.20E+01 5.16E+01 1.00E+02 2.56E+02

f30 Best 7.25E+03 7.95E+04 1.58E+05 5.52E+05
Mean 4.41E+05 1.69E+06 1.50E+06 1.45E+06
Std 6.37E+05 1.55E+06 1.79E+06 1.13E+06

the other algorithms in terms of solution accuracy for this
function. Meanwhile, the standard deviation of HSAO is also
relatively small, indicating good stability in this dimension.
Regarding the mean value, HSAO’s mean is noticeably better
than that of the other algorithms, suggesting that it not only
converges quickly to the global optimum but also maintains
superior performance across multiple runs.

As the dimensionality increases, the complexity of the
optimization problem also rises. In the case of 50 dimensions,
the HSAO algorithm still performs excellently, achieving
near-optimal solutions across multiple benchmark functions.
For example, for the F3 function, the optimal solution
for HSAO is 3.7 × 108, while AO’s optimal solution
is 1.26 × 1010, WOA is 1.14 × 1010, and GSA is
4.71 × 1010, clearly showing that HSAO outperforms the
other algorithms. Additionally, HSAO maintains lower mean
values and standard deviations across several functions,
which effectively balance accuracy and stability, ensuring
better solutions while avoiding excessive local search.

In high-dimensional problems with 100 dimensions, the
accuracy and stability of algorithms face greater challenges.

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2091-2104

 
______________________________________________________________________________________ 



TABLE II: Performance comparison of HSAO, AO, WOA,
and GSA algorithms on benchmark functions(D=50)

Function Metric HSAO AO WOA GSA

f1 Best 3.7E+08 1.26E+10 1.14E+10 4.71E+10
Std 2.1E+08 4.94E+09 2.98E+09 6.97E+09

Mean 7.4E+08 2.07E+10 1.86E+10 5.82E+10
f3 Best 113406.3 237451.2 206701.2 178372.1

Std 14117.32 56630.9 102328.7 17376.86
Mean 135096.4 331139.8 291963.5 198690.8

f4 Best 745.3046 2293.959 2728.272 11941.2
Std 81.60256 1216.698 1065.703 2172.399

Mean 832.2251 3901.462 4241.038 15742.17
f7 Best 1370.019 1473.212 1704.75 1437.456

Std 104.6451 123.0221 153.8348 133.9941
Mean 1576.715 1596.766 1895.744 1586.935

f11 Best 1639.596 5103.627 5045.148 22641.52
Std 158.3358 1544.635 1866.033 2426.693

Mean 1847.867 7291.718 8506.888 25884.43
f13 Best 2634000 2.36E+08 1.23E+08 1.1E+10

Std 5481636 7.25E+08 4.51E+08 4.54E+09
Mean 10196677 1.46E+09 5.76E+08 1.73E+10

f15 Best 4.69E+05 1.01E+06 1.04E+07 8.15E+06
Std 4.12E+05 2.79E+07 3.79E+07 2.72E+08

Mean 1.16E+06 1.77E+07 5.60E+07 2.70E+08
f17 Best 2.73E+03 3.71E+03 3.81E+03 3.22E+03

Std 3.21E+02 4.58E+02 5.21E+02 5.58E+02
Mean 3.68E+03 3.91E+03 4.36E+03 3.86E+03

f19 Best 2.76E+05 2.51E+06 7.25E+06 4.59E+05
Std 3.50E+06 4.72E+06 4.77E+06 4.36E+08

Mean 3.19E+06 6.05E+06 1.33E+07 2.25E+08
f20 Best 2.71E+03 3.08E+03 3.40E+03 3.26E+03

Std 1.84E+02 5.04E+02 4.21E+02 4.50E+02
Mean 3.31E+03 3.48E+03 3.99E+03 3.80E+03

f21 Best 2.65E+03 2.70E+03 2.93E+03 2.87E+03
Std 4.69E+01 4.99E+01 8.62E+01 7.30E+01

Mean 2.77E+03 2.79E+03 3.11E+03 3.03E+03
f25 Best 3131.77 3931.749 4891.661 7945.652

Std 85.48339 554.2433 415.2051 651.0807
Mean 3280.317 4721.024 5364.05 8795.344

f27 Best 3590.163 3962.695 4165.663 8131.507
Std 176.8759 177.005 283.8162 378.932

Mean 3823.754 4222.418 4521.682 8828.147
f29 Best 5667.312 6477.441 6675.149 17287.29

Std 790.1246 1648.844 1807.265 10743.45
Mean 6578.101 8529.382 9693.203 28013.75

f30 Best 47916483 1.09E+08 1.78E+08 4.89E+08
Std 28462130 80339868 1.16E+08 6.28E+08

Mean 97878947 2.1E+08 2.99E+08 1.5E+09

However, the HSAO algorithm still demonstrates outstanding
performance in this dimension. Taking the F1 function as
an example, the optimal solution of HSAO is 1.13 × 1010,
which is clearly better than the other three algorithms
(AO: 8.26 × 1010, WOA: 8.77 × 1010, GSA: 1.84 ×
1011). Despite the increased complexity due to the higher
dimensionality, HSAO still provides lower mean values and
standard deviations, indicating that its stability and accuracy
in high-dimensional problems remain strong.

By analyzing the experimental results for different
dimensions, it can be observed that the HSAO algorithm
exhibits strong optimization capabilities across different
dimensions, especially in terms of accuracy and stability,
which far exceed those of AO, WOA, and GSA. Whether
in low-dimensional or high-dimensional problems, HSAO
effectively avoids local optima, ensures convergence to better
solutions, and demonstrates strong global search capabilities,
making it suitable for complex engineering optimization
problems.

2) Convergence curve analysis: In solving optimization
problems, the convergence and stability of an algorithm

TABLE III: Performance comparison of HSAO, AO, WOA,
and GSA algorithms on benchmark functions(D=100)

Function Metric HSAO AO WOA GSA

f1 Best 1.13E+10 8.26E+10 8.77E+10 1.84E+11
Mean 1.50E+10 9.42E+10 1.10E+11 2.09E+11
Std 3.57E+09 1.28E+10 1.09E+10 1.96E+10

f3 Best 2.62E+05 3.45E+05 8.03E+05 3.52E+05
Mean 3.11E+05 3.55E+05 9.07E+05 3.74E+05
Std 1.36E+04 1.52E+04 2.72E+05 2.36E+04

f4 Best 2.44E+03 1.79E+04 1.46E+04 5.36E+04
Mean 2.99E+03 2.06E+04 2.22E+04 6.66E+04
Std 5.48E+02 1.44E+03 4.30E+03 8.34E+03

f7 Best 2.85E+03 3.26E+03 3.65E+03 3.06E+03
Mean 3.22E+03 3.57E+03 3.85E+03 3.37E+03
Std 1.52E+02 1.88E+02 1.84E+02 2.51E+02

f11 Best 7.90E+04 2.83E+05 1.14E+05 1.71E+05
Mean 9.67E+04 3.34E+05 2.72E+05 1.98E+05
Std 1.33E+04 4.27E+04 1.68E+05 2.09E+04

f13 Best 1.67E+07 1.24E+09 1.21E+09 2.56E+10
Mean 2.94E+07 3.05E+09 3.39E+09 3.13E+10
Std 8.97E+06 1.05E+09 1.20E+09 5.67E+09

f15 Best 3.03E+06 7.69E+07 1.33E+08 9.86E+09
Mean 6.19E+06 5.74E+08 4.47E+08 1.44E+10
Std 2.92E+06 4.69E+08 3.23E+08 2.37E+09

f17 Best 5.33E+03 9.95E+03 9.29E+03 1.47E+06
Mean 6.69E+03 1.94E+04 3.75E+04 3.27E+06
Std 5.44E+02 7.61E+03 2.21E+04 1.56E+06

f19 Best 4.42E+06 2.41E+08 1.88E+08 8.63E+09
Mean 2.67E+07 5.83E+08 4.19E+08 1.45E+10
Std 2.01E+07 2.80E+08 2.00E+08 3.62E+09

f20 Best 5.23E+03 5.48E+03 7.14E+03 5.47E+03
Mean 6.24E+03 6.33E+03 7.66E+03 6.43E+03
Std 3.64E+02 4.91E+02 6.26E+02 7.94E+02

f21 Best 3.69E+03 4.08E+03 4.23E+03 5.21E+03
Mean 4.42E+03 4.51E+03 4.52E+03 5.55E+03
Std 1.98E+02 2.89E+02 2.63E+02 3.05E+02

f25 Best 4.50E+03 8.21E+03 9.35E+03 1.68E+04
Mean 4.89E+03 9.76E+03 1.03E+04 2.08E+04
Std 2.75E+02 9.72E+02 7.96E+02 2.33E+03

f27 Best 4.10E+03 6.34E+03 4.95E+03 1.32E+04
Mean 4.46E+03 7.42E+03 6.32E+03 1.60E+04
Std 2.95E+02 1.00E+03 1.09E+03 1.76E+03

f29 Best 9.62E+03 1.31E+04 1.79E+04 1.19E+05
Mean 1.22E+04 1.77E+04 2.31E+04 2.69E+05
Std 1.50E+03 3.30E+03 4.59E+03 1.28E+05

f30 Best 1.62E+08 1.44E+09 1.59E+09 2.57E+10
Mean 2.67E+08 4.08E+09 2.60E+09 3.01E+10
Std 8.65E+07 1.48E+09 7.62E+08 3.58E+09

are key factors that determine the quality and efficiency of
the solution. This section compares the HSAO algorithm
with the AO, GA, WOA, and GSA algorithms. To provide
a more intuitive comparison of the performance of the
five algorithms, Figure 5 shows the convergence curves for
the 15 benchmark functions mentioned above. From the
convergence behavior, it is clear that the HSAO algorithm
demonstrates significant superiority in most test functions,
particularly in terms of early convergence speed and final
solution accuracy.

Specifically, on several benchmark functions (e.g., f1, f3,
f4, f19, etc.), the HSAO algorithm is able to rapidly reduce
the objective function value within fewer iterations and
maintain a stable decreasing trend, ultimately converging to a
lower optimal solution. This indicates that HSAO has strong
global search capability and can effectively avoid getting
trapped in local optima. In contrast, the AO, GA, WOA,
and GSA algorithms exhibit slower convergence speeds and
higher final convergence values on these functions, indicating
that they are more prone to getting stuck in local optima
when dealing with complex optimization problems.
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Especially on high-difficulty functions (e.g., f15, f17,
and f30), the performance of the HSAO algorithm is
more pronounced. Compared to other algorithms, HSAO
not only converges faster on these functions but also
finds better solutions, indicating its stronger solving ability
and stability when tackling complex high-dimensional
optimization problems. Although AO, GA, WOA, and
GSA also make certain progress in the early stages, their
convergence process is more fluctuating, and especially in
later iterations, they tend to experience stagnation or rebound.

From the convergence curves, it is evident that the HSAO
algorithm outperforms AO, GA, WOA, and GSA on multiple
benchmark functions. It can find better solutions within fewer
iterations and maintain lower fluctuations during the solution
process. These results demonstrate that the HSAO algorithm
not only possesses powerful global exploration capability but
also maintains high stability throughout the solving process,
showcasing significant performance advantages.

Fig. 5: Convergence performance analysis of the five
algorithms on diverse test functions

3) Wilcoxon rank-sum test statistical analysis: The
Wilcoxon rank-sum test, a widely used non-parametric
statistical approach, is employed to determine whether
the performance differences between two optimization
algorithms are statistically meaningful. It functions as a

crucial method for verifying the validity of algorithmic
enhancements. To assess whether the HSAO algorithm
exhibits superior optimization effectiveness compared to
other benchmark algorithms, this study utilizes the Wilcoxon
rank-sum test for significance testing. Table V reports
the corresponding test results between HSAO and the
competing methods. In this table, the symbol “+” denotes that
HSAO achieves statistically superior optimization results, “-
” indicates inferior performance relative to the compared
algorithm, while “=” signifies no statistically discernible
difference or equivalent performance. A p-value below 0.05
leads to the rejection of the null hypothesis, confirming
the existence of a significant performance gap between the
algorithms.

TABLE IV: Wilcoxon rank-sum test p-value between HSAO
and comparison algorithms

Function HSAO vs AO HSAO vs GA HSAO vs WOA HSAO vs GSA
p-value win p-value win p-value win p-value win

F1 3.04e-34 + 1.19e-187 + 2.40e-06 + 3.92e-18 +
F3 9.36e-145 + 1.15e-187 + 1.73e-94 + 1.39e-07 +
F4 8.75e-24 + 1.20e-187 + 5.92e-09 + 8.51e-20 +
F7 5.08e-22 + 1.20e-187 + 4.99e-28 + 1.37e-97 +
F11 2.41e-19 + 1.10e-187 + 1.44e-06 + 1.61e-17 +
F13 5.30e-29 + 1.19e-187 + 5.27e-07 + 8.32e-27 +
F15 1.73e-53 + 1.17e-187 + 5.48e-10 + 1.88e-11 +
F17 1.88e-16 + 1.18e-187 + 1.79e-20 + 9.81e-15 +
F19 1.56e-15 + 1.20e-187 + 2.63e-09 + 3.28e-14 +
F20 1.52e-11 + 1.14e-187 + 7.54e-21 + 4.19e-07 +
F21 1.25e-02 + 1.20e-187 + 2.48e-21 + 8.03e-16 +
F25 1.41e-22 + 1.20e-187 + 7.24e-11 + 2.44e-18 +
F27 2.81e-78 + 1.19e-187 + 2.53e-30 + 4.43e-161 +
F29 1.43e-39 + 1.14e-187 + 1.47e-18 + 8.13e-113 +
F30 6.90e-20 + 1.20e-187 + 1.10e-10 + 3.23e-22 +
+/=/- 15/0/0 15/0/0 15/0/0 15/0/0

From the data in the table, it can be observed that HSAO
demonstrates significant superiority in the comparison of 15
benchmark functions, with all p-values being substantially
less than 0.05. This indicates that, when addressing these
typical optimization problems, HSAO is capable of finding
the global optimum more effectively compared to other
algorithms, showcasing robust search capabilities and high-
quality solutions. In contrast to HSAO, AO, GA, WOA,
and GSA fail to exhibit significant advantages on most
benchmark functions. Although the differences between these
algorithms and HSAO may be relatively minor on certain
functions, overall, HSAO demonstrates more stable and
superior performance over diverse benchmark functions.

B. Algorithm Performance Analysis

To evaluate the effectiveness of the HSAO algorithm
in addressing the co-allocation of MEC server resources
under ultra-dense deployment scenarios, 16 deployed base
stations are separated from each other by 60m on the
site of 300m × 300m to test the algorithm’s performance.
In this paper, we experimentally test the optimization
performance of the HSAO algorithm for MSD values in the
range of [80, 100, 120, 140, 160, 180, 200], with the channel
gain obeying 127 + 30logd, and the number of channels
in all experimental scenarios in this paper is set to 10.
All the simulation experiments in this paper refer to the
literature [25], [26] for adjusting the parameters such as
the computational resources of the MEC servers and the
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computational resources of the MSD, and the specific
parameter setting values are shown in Table V. In addition,
all the test cases in all the experiments in this paper
are randomly generated in 30 independent tests within the
specified range, such as channel gain and user position, etc.
Moreover, all the experiments in this paper use the average
value of the algorithm’s 30 convergences as the convergence
value, and the convergence value is rounded up to five
significant digits.

TABLE V: Simulation parameter list

Parameter symbol Numerical value Parameter symbolNumerical value

Ci [0.01, 2.5] Gigacycles Emax 1000J
Di [0.5, 2] MB W 20MZH
Bi [0.1, 1] MB ω 1× 10−23

fmax
i [0.5, 1.5] GHZ pti 0.5W

Fmax 20 GHZ pri 0.1W
Tmax
i 1s

In this section, the cost weighting factor ℵ is fixed to
0.5 and different comprehensive weighting factor β and
number of populations are set to compare the effect. Figure
6 shows the variation of task completion rate \ user cost
and minimum cost maximum completion value with the
integrated weight factor β for the scenarios of 80, 100, 120,
140, 160 and 180 total users respectively.

When the combined weight factor β is 0.9, it can be
seen from Figure 6a that the user cost grows linearly as
the number of users increases. Figure 6b demonstrates that
the task completion rate grows at an accelerating rate as the
combined weight factor grows when the number of users is
constant. Figure 6c demonstrates that as the integrated weight
factor β grows, the decline curve of the composite index with
the integrated weight factor β of 0.9 is significantly better
than the composite index of other integrated weight factors.
Therefore, when the comprehensive weight factor β is 0.9,
it has the best convergence result, which can get a more
reasonable user cost and maximum task completion.

The number of populations determines the length of the
search vector, and under the same number of evolutions, the
higher the number of populations, the more positions the
algorithm traverses, and the stronger the algorithm’s search
function. The effect of the number of populations on the
experimental results is shown in Figure 7. In this section, we
test the convergence of HSAO with 20, 30 and 60 populations
when the number of users is 180 and the combined weight
factor β is 0.9.

When the number of populations is 20, due to the relatively
small number of populations, the algorithm converges slowly,
and basically converges at about 779 evolutions, with a
lower convergence accuracy of about -235.95. When the
number of populations is 30, the algorithm converges faster,
and converges to about -235.70 at 636 evolutions, and at
60, the algorithm converges relatively faster, and at 494
evolutions converges to about the optimal solution of the
other algorithms, and converges to about -236.44. When the
number of evolutions is 1000, the algorithm converges at -
245.21 for a population size of 20, -245.94 for a population
size of 30, and -246.56 for a population size of 60. Therefore,
as the number of populations increases, the accuracy of
convergence increases, but the time cost limits the number

(a) The impact of β on user costs

(b) The impact of β on task completion rate

(c) The impact of β on minimum cost maximum task completion
value

Fig. 6: Effect of combined weighting factors β on algorithmic
metrics
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Fig. 7: Effect of the number of populations on the algorithm
proposed in this paper

of populations, and for reasons of time cost and convergence
accuracy, the algorithm converges at -235.70 for a population
size of 636. For the comprehensive consideration of time cost
and convergence accuracy, all the experiments in this paper
set the number of populations to 30.

C. Algorithm Comparison and Analysis

In order to verify the effectiveness and superiority of the
HSAO algorithm, this section compares the optimization
searching effect of the LWOA, SSA, and AO algorithms,
testing the number of users as 80, 100, 120, 140, 160 and 180
respectively, the number of stationary populations as 30, the
weighting factor of the user cost and the task completion as β
as 0.9, and the weighting factor of the latency and the energy
consumption as α as 0.5, the convergence and algorithmic
stability of the four algorithms over 1000 convergence and
algorithm stability of the four algorithms in 1000 iterations.

1) Comparison between user costs and task completion
rates: Figure 8 illustrates the user cost and task completion
for four algorithms, HSAO algorithm, LWOA, SSA, and
AO algorithm in three different metrics. As can be
seen from Figure 8, the HSAO algorithm obtains higher
task completion, more reasonable user cost and optimal
comprehensive indexes under the above several parameter
condition settings. In terms of task completion, HSAO has
been maintaining close to 100% task completion and is far
ahead of other bionic learning algorithms. And the HSAO
algorithm improves up to about 42.0% over LWOA, about
21.5% over SSA, and about 34.1% over AO algorithm.
With the increase in the number of users, the demand for
resources for edge user tasks increases, in order to improve
the completion of the task will inevitably improve the user’s
cost, but through the optimization of the algorithm can
be relatively reasonable user cost to achieve a larger task
completion. It can be seen that although the HSAO algorithm
is higher than other algorithms in terms of user cost, the
HSAO algorithm is greatly ahead of other algorithms in
terms of task completion. In general, as the number of users
increases, the gap between HSAO’s advantage and other
algorithms will further widen.

2) Comparison of optimization between minimum cost
and maximum completion value: To intuitively analyze

(a) The impact of user quantity on task completion rate

(b) The impact of user quantity on user costs

(c) The impact of user quantity on comprehensive
indicators

Fig. 8: Influence of user scale on evaluation indicators

the convergence efficiency and outcomes of the four
algorithms, the experiment is conducted again according to
the simulation environment mentioned above, and Figure 9
depicts the convergence trend graphs of the four algorithms
of the system utility under different numbers of users in
this experiment. For the convenience of displaying and
comparing the experimental results, the optimal objective
function value and the convergence situation near the optimal
objective function value are intercepted in this experiment.

As can be seen from Figure 9a, when the number of users
is small such as I=80, although the HSAO algorithm does
not have a significant advantage in convergence speed, the
number of evolutionary times reaches 700 when it basically
converges to the value of the optimal objective function of
the other algorithms, and with the increase in the number
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(a) I=80 (b) I=100

(c) I=120 (d) I=140

(e) I=160 (f) I=180

Fig. 9: Convergence plots of optimizing minimum cost and
maximizing completion value for four algorithms

of evolutionary times, the HSAO algorithm converges to
the optimal value of the function of all the algorithms.
From Figure 9b, when I = 100, the HSAO algorithm
converges to the optimal convergence result compared to
other algorithms when the number of evolution reaches
500, and after 500 times of evolution, the optimization
result of the HSAO algorithm is significantly better than
other algorithms, and the algorithm is still in the stage
of continuous optimization when it reaches 1000 times
of evolution. From Figure 9c, when I=120, the HSAO
algorithm converges to the optimal convergence result of
SSA and LWOA when the number of evolutions reaches
330, and after 500 evolutions, the optimization result of
the HSAO algorithm is obviously better than the other
algorithms, and the algorithm is still obviously in the stage
of continuous optimization. From Figure 9d, Figure 9e and
Figure 9f, it is observed that as the user count increases,
specifically when I = 140, I = 160, and I = 180, the
HSAO algorithm exhibits markedly superior convergence
performance compared to other methods, whereas the LWOA
algorithm demonstrates the poorest convergence behavior.
Prior to 100 iterations, the HSAO algorithm nearly aligns
with the optimal objective function values achieved by
AO and other competitors. Beyond 100 iterations, however,
HSAO consistently surpasses its counterparts. These results
indicate that, although the convergence rate of HSAO is
not initially the fastest among bio-inspired algorithms, its
superiority becomes increasingly pronounced as the number
of users grows, enabling it to rapidly approach the optimal
solutions obtained by other bio-inspired methods.

3) Stability Comparison: To further validate the stability
of the HSAO algorithm, this section tests all scenarios using
four different algorithms with a fixed number of evolutions
of 1,000 and a population size of 30. The experimental data
was collected 30 times, resulting in the optimal solution, the
worst solution, the average solution, and the variance, and
the results of the stability of the four algorithms are listed in
Table VI.

TABLE VI: Stability indicators of different algorithms

Numbers of users Evaluation metrics LWOA SSA AO HSAO

80 average value -106.35 -100.87-79.518-111.03
variance 108.17 81.449 69.213 30.260

worst case solution-84.199 -89.505-66.843-100.21
optimal solution -115.17 -177.63-92.693-188.17

100 average value -105.78 -112.28-81.709-128.34
variance 800.80 75.010 358.59 104.61

worst case solution-65.407 -104.17-58.439-106.70
optimal solution -132.36 -128.28-114.99-138.38

120 average value -86.850 -127.09-99.414-143.77
variance 657.07 208.71 481.75 99.784

worst case solution-69.759 -111.09-74.386-124.15
optimal solution -140.82 -155.42-141.58-155.45

140 average value -123.04 -161.51-150.98-183.81
variance 915.45 409.12 145.64 34.2610

worst case solution-96.215 -138.06-126.79-172.06
optimal solution -177.90 -194.12-171.66-194.24

160 average value -182.35 -179.37-188.95-213.39
variance 642.96 168.567 149.79 47.182

worst case solution-125.17 -160.51-164.33-202.71
optimal solution -208.43 -198.45-206.91-225.30

180 average value -147.77 -204.71-210.34-235.06
variance 834.752877.595 860.09 734.24

worst case solution 1917.5 617.35 60.766 29.777
optimal solution -109.74 -164.36-198.32-224.71

From Table VI, when solving the resource scheduling
problem of MSD with the collaborative assistance of MEC
servers in ultra-dense deployment, LWOA has the worst
stability and poor convergence accuracy; HSAO algorithm
has a higher mean than the other three algorithms as well as
a smaller variance and a better algorithmic stability, which
makes it more suitable for solving large-scale optimization
problems with large-scale number of users.

In different scenarios, by testing the weighting factors
on the performance of the algorithm, the demonstration
of different convergence curves, and the analysis of the
stability of the algorithm. It can be concluded that
under identical conditions, the HSAO algorithm achieves
accelerated convergence and enhanced solution accuracy,
while exhibiting a lower tendency to become trapped in
local optima. Moreover, it is capable of deriving the optimal
resource co-allocation strategy within a reasonable number
of iterations.

VI. CONCLUSION

This study investigates the resource allocation problem
in ultra-dense networks involving mobile edge computing
(MEC) servers. By constructing a system cost model, a
novel improved Aquila Optimizer algorithm, HSAO (Hybrid
Strategy Aquila Optimizer), is proposed to address the
resource allocation optimization issue. The HSAO algorithm
incorporates several advanced strategies, including candidate
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pattern pruning, Tent chaotic population initialization,
random spiral update mechanisms, and a hybrid mutation
strategy combining random reverse learning with the
simplex method, significantly enhancing its global search
capability and convergence performance. Experimental
results demonstrate that HSAO outperforms traditional bio-
inspired algorithms (such as WOA, GSA, and AO) in terms
of optimization accuracy, convergence speed, and stability,
both on CEC2017 benchmark functions and practical
application scenarios. Furthermore, through comparative
analysis of user costs and task completion rates, the
superiority of HSAO in reducing service latency, improving
task execution efficiency, and enhancing user satisfaction is
validated. This research provides an efficient and reliable
optimization solution for resource allocation in ultra-dense
networks. Future studies will focus on the design and
implementation of dynamic real-time scheduling strategies
to meet diverse requirements in high-speed mobile network
scenarios such as autonomous driving.
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