
Abstract—This study addresses the issues of poor obstacle
avoidance and low efficiency in unmanned aerial vehicle (UAV)
swarms during power inspections in complex areas. We
propose a multi-UAV cooperative path planning method based
on an improved Particle Swarm Optimization (PSO) algorithm.
This method integrates spatial and temporal synergy
constraints to ensure effective cooperative among UAVs in
challenging terrains. To enhance path planning efficiency, we
introduce a smoothing algorithm. This algorithm reduces
fluctuations during flight. It decreases turning and pitch angles.
As a result, the frequency and magnitude of attitude
adjustments are minimized, improving flight stability and
safety. To overcome the local optimal issue of the traditional
PSO algorithm, we present a hybrid swarm intelligence
algorithm. This combines PSO, Artificial Bee Colony (ABC),
and Simulated Annealing (SA) algorithms. This approach
enhances the UAV's obstacle avoidance capabilities and their
ability to find globally optimal paths in complex environments.
Experimental results show that the PSO-ABC-SA algorithm,
compared to existing algorithms, reduces the optimal path
length by 251 km in the same complex terrain. The obstacle
avoidance rate reaches 94.2%, with a 5.7% improvement in
average avoidance. The algorithm also outperforms others in
optimal, worst, and average cost metrics. It effectively
addresses the challenges of multi-UAV collaboration and
obstacle avoidance path planning.

Index Terms—Particle swarm optimization, Obstacle
avoidance algorithm, Complex terrain, Multi-UAV
coordination, UAV, Power inspection, Mult-domain

I. INTRODUCTION
ITH the rapid development of power grid

infrastructure, the total length of transmission lines
continues to increase. This poses higher demands for
inspection, maintenance, and upkeep of the power grid. The

traditional manual inspection methods are inefficient, high
cost, and poor security. They struggle to meet the inspection
needs of large-scale power grids. The development of UAV
technology provides a new solution for power inspection.
This method is efficient and low-cost. However, in areas
with complex terrain, finding suitable obstacle avoidance
paths for UAV swarms becomes very challenging. However,
it becomes very difficult to find a set of obstacle avoidance
paths suitable for UAV swarm inspection in areas with
complex terrain [1].
Currently, most researchers use methods such as RRT,

artificial potential fields, genetic algorithms, particle swarm
optimization[2], and reinforcement learning [3-4] for
obstacle avoidance path planning in UAVs [5]. Yang Fan et
al. tackled the problems linked to the RRT algorithm,
including excessive randomness, inefficient convergence,
extended transmission durations, and non-linear flight
trajectories. They proposed an improved RRT algorithm
combined with Ant Colony Optimization (ACO) methods,
which can effectively converge to the optimal solution.
Although it can avoid falling into the local optima, the
generated paths are not suitable for the flight conditions of
UAVs [6-7]. Fusic et al. proposed an improved rapid
random tree (IRRT) algorithm. This algorithm incorporates
a triangular inequality rewiring technique. It is designed to
find obstacle avoidance paths for UAVs in a 3D
environment. In comparison with traditional RRT and
improved RRT methods, the IRRT algorithm achieves lower
planning time and cost-related distances. Additionally, it
enhances applicability in formation path planning [8].
Enrique Aldao introduced a real-time algorithm aimed at
preventing collisions during UAV autonomous navigation in
structured environments. This algorithm can handle both
fixed and moving obstacles. It utilizes simplified geometric
models and 3D sensor data for obstacle detection and
avoidance. This approach ensures the safety of UAVs while
performing tasks [9]. In their evaluation of UAV path
planning for collision avoidance, Zhao et al. examined the
effectiveness of the fuzzy logic, artificial potential field and
ant colony algorithms. They identified that the artificial
potential field method tends to get trapped in local minima.
To address this issue, they proposed an improvement by
introducing the vertical guidance repulsion to help the UAV
escape from the local minimum [10]. Wang et al. proposed a
dual-mode control strategy to address the navigation
problem of UAVs in environments with obstacles during
formation flight. An improved Grossberg neural network
algorithm was utilized to avoid obstacles and multi-UAV
collision [11]. Yan et al. proposed a heuristic trajectory
generation scheme for complex offshore environments that
can generate optimal trajectories based on complicated
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terrain conditions and avoid uncertain obstacles[12]. Tu
enhanced path planning by leveraging the Q-learning
algorithm and applied this reinforcement learning technique
to obstacle avoidance within the AirSim simulation
environment [13]. Lin introduced a real-time obstacle
avoidance strategy based on a dual-game framework, which
demonstrated the ability to guide UAV swarms through
complex, narrow environments while also mitigating
internal disorder, thereby reducing the risk of collisions
[14].
Although previous studies have made progress in path

planning and obstacle avoidance control, existing algorithms
still face challenges[15-16]. These challenges include
handling obstacles in complex environments, ensuring path
smoothness, and facilitating multi-UAV collaboration. To
address these issues, this paper proposes a novel obstacle
avoidance path planning method. The method is based on
the PSO-ABC-SA algorithm. Its aim is to enhance the
obstacle avoidance capability and path planning efficiency
of UAVs in complex scenarios, as depicted in Fig. 1. The
main contributions of this work are summarized as follows:
(1) In this study, we have developed a collaborative

inspection model for multi-UAV power systems, addressing
the challenges of multi-UAV operations in complex terrains.
By integrating spatial and temporal synergy constraint
models, we ensure efficient collaborative operations of
UAV swarms in intricate landscapes. Additionally, we
introduce path smoothing techniques to minimize the
turning angles and pitch variations during UAV flights,
thereby maintaining the stability and safety of UAV
operations.
(2) A novel obstacle avoidance path planning method

based on the PSO-ABC-SA algorithm is proposed. This
method integrates PSO, ABC, and SA algorithms to enhance
the capability of UAVs in finding globally optimal paths
while avoiding obstacles in complex environments. The
algorithms PSO-SA, ABC-SA, QPSO, PSO, and AVOA are
selected to be compared in five groups of test functions, and

among the nine sets of test functions, the optimization
performance of the PSO-ABC-SA algorithm has significant
advantages.
(3) ,Comparative experiments involving five optimization

algorithms were performed to demonstrate the proposed
algorithm’s effectiveness. These experiments were
performed in both simulated terrain, created with a
two-dimensional grid method, and simulated mountainous
terrain. The experimental results indicate that the
PSO-ABC-SA algorithm demonstrates superior reliability in
obstacle avoidance performance compared to the other
algorithms. Secondly, this study extends the application
scenario to the multi-domain environment of sea, land, and
air. The effectiveness of the algorithm is similarly verified
by three sets of comparative experimental results.
(4) Comparative experiments were conducted to evaluate

the performance of the PSO-ABC-SA algorithm against five
other algorithms. The algorithm exhibited strong
performance across multiple evaluation metrics. In
comparison with the PSO algorithm, the PSO-ABC-SA
algorithm reduced the optimal path length by 251 km and
the average path length by 130 km. Furthermore, it achieved
an obstacle avoidance rate of 94.2%, representing a 5.7%
improvement in average obstacle avoidance rate. The
PSO-ABC-SA algorithm exhibited optimal performance in
terms of best cost, worst cost, and average cost. These
comprehensive results validate the reliability and
effectiveness of the PSO-ABC-SA algorithm in path
planning and obstacle avoidance.

II. OBSTACLE AVOIDANCE MODEL IN COMPLEX MOUNTAIN
ENVIROMENT

A. Multi-UAV Collision Constraint
Assume that there are N UAVs in the UAV swarm, and

the position of each UAV is represented by a
two-dimensional vector as 푖 =[ 푖1 , 푖2 ], where
i={1,…,i,…,N}. Then the objective function is:

Fig. 1. Multi-UAV cooperative obstacle avoidance model
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푂푏푠푡푎푐푙푒 푖=1
푁

1 푖푐 2 푖표 (1)
Where 푖푐 is the distance between UAVs, 푖표 is the

distance between UAVs and obstacles, 1 and 2 are
weight coefficients used to balance the distances between
UAVs and obstacles. Let 푚푖푛 be the minimum distance.
The constraint conditions are:

푖푐푚푖푛 푚푖푛 (2)
푖표푚푖푛 푚푖푛 (3)

B. Flight Constraints in Complex Environments.
To maintain safe UAV inspection operations in the

complex mountain environment, the flight altitude cannot be
too high or too low. It typically lies between the given two
extreme values, so it is necessary to set the maximum and
minimum flight altitudes, denoted as 푚푎푥 and 푚푖푛 , as
shown in equation (4). Meanwhile, the turning radius 푖
during UAV flight should be greater than or equal to the
minimum turning radius 푚푖푛, as shown in equation (5). The
inspection area of the UAV is constrained according to the
actual inspection task, as shown in equation (6), where 푚푖푛
is the minimum inspection area. The pitch angle constraints
generated by the UAV during flight due to climb or descent
operations are shown in equation (7), where 푖 푖 .
The UAV needs to constrain the turning angle during flight
due to its own performance as well as inertia, as shown in
equation (8), which satisfies the condition 푖 푖 . The
above constraints are utilised to ensure that the UAV can
avoid obstacles smoothly in complex terrain.

푚푖푛 푖 푚푎푥 (4)
푖 푚푖푛 (5)

푚푖푛 (6)
푍푖−푍푖−1

푋푖−푋푖−1 2+ 푌푖−푌푖−1 2 (7)

1
푐표푠

푋푖+1푋푖푋푖푋푖−1+푌푖+1푌푖푌푖푌푖−1

푋푖+1푋푖
2
+푋푖−1푋푖

2
푌푖+1푌푖

2
+푌푖−1푌푖

2 푚푎푥 (8)

C. Multi-UAV Spatial and Temporal Synergy
In order to avoid the collision of UAVs during the flight

process, the distance between UAVs is constrained in the
spatial. 푖,푗 denotes the distance between the i-th UAV and
the j-th UAV, and 푚푖푛 denotes the minimum distance
between UAVs as shown in equation (9). In time, the speed
of the UAV is v can be set between [ 푚푖푛 푚푎푥], the length
of the route is L, and the arrival time at the target position is
the time used as shown in equation (10). If max 1

2 푛 is a non-empty set, then t in any set can be used
as a synergy time.

푖,푗 푚푖푛 (9)

푖
퐿

푉푚푎푥

퐿
푉푚푖푛

(10)

D. Path Smoothness Processing
The optimization of the obstacle avoidance path

smoothing algorithm is a key technical link to achieve the
smoothness of UAV movement and the improvement of
operational efficiency in the UAV power inspection task.
The path planning model in this study uses the shortest
Euclidean distance between discrete waypoints as the initial
optimization objective. Global paths are generated by
connecting the waypoints. However, such paths are prone to
triggering frequent UAV attitude adjustments due to
curvature discontinuities at turning points. This in turn leads

to problems such as increased energy loss. In order to solve
the above defects, this paper adopts the multiconstrained
path smoothing algorithm based on cubic spline
interpolation, and equation (12) presents the relevant
mathematical expression. The algorithm effectively
suppresses the phenomenon of abrupt change of heading
angle by ensuring the continuous property of the
second-order derivative of the trajectory. It significantly
improves the stability of UAV flight. In the optimization
process, multi-objective constraints such as cost of obstacle
avoidance, cost of voyage, and cost of inspection are added
in this study,as shown in equations (1), (14), and (15),
respectively. By introducing an adaptive weight adjustment
mechanism, the competition between the subgoals is
dynamically balanced. The continuous flyable path that
meets the UAV dynamics constraints is finally generated.
The specific smoothing process is shown in equation (11),
where 푠푚표표푡ℎ represents the smoothing function, S denotes
the target path, and 푖 푖 푖 denotes the coordinate points
in the 3D space.

1 2 푖

1 2 푖
1 2 푖

(11)

푠푚표표푡ℎ 푖<푗
2 (12)

E. Revenue Function
In this paper, the revenue function consists of a range cost,

an obstacle avoidance cost, an inspection cost, and a
smoothness processing cost. Different weight coefficients
are set for each cost, 1 2 3 4 ,with different costs
indicating different degrees of influence. The revenue
function is:

1 푣표푦푎푔푒 2 표푏푠푡푎푐푙푒 3 푖푛푠푝푒푐푡푖표푛 4 푠푚표표푡ℎ
(13)

푣표푦푎푔푒 푖푗 푗=0
푁

푗=1
푁+1 2 2 2 (14)

where ， ， are the components of the Euclidean
distance, respectively, and N is the number of UAVs.
Maximising the sum of weights of high-voltage electric

towers inspected by UAV swarms as an objective function.
푖푛푠푝푒푐푡푖표푛 푖=1

푁
푗=1
푁+1

푖 푖푗 (15)
Assuming that the set of the high-voltage electric towers

is A={0,1…,N,N+1}, and let the high-voltage electric towers
that have not been inspected be i. Then 푖 (i∈T) is the
time interval since the last inspection in which the i-th
high-voltage electric tower has not been inspected. If the
value of 푖 is larger, it means that the priority of the
high-voltage electric towers that are not inspected is also
higher. P={0,i,...j,N+1}, i denotes the UAV and x denotes
the distance.

III. OBSTACLE AVOIDANCE MODEL INMULTI-DOMAIN
ENVIRONMENT

A. Peak Collision Avoidance Constraint
In a multi-domain environment, drones need to avoid

obstacles such as mountain peaks during flight to ensure
safe flight. To effectively represent the characteristics of
complex terrain, this study defines the geometry of the peak
as a cone, C denotes the center coordinates of the peak, R
denotes the horizontal radius of the peak, and H denotes the
height of the peak. Define 푐표푙푙푖푠푖표푛 as the collision function,
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which is used to detect whether the path of the UAV collides
with the mountain peak.

푓푐표푙푙푖푠푖표푛 =
0 푧푝푎푡ℎ < 푧푐 표푟 (푥 − 푥푐)2 + (푦 − 푦푐)2 ≥ 푅

(푧푝푎푡ℎ −퐻)2 (푥 − 푥푐)2 + (푦 − 푦푐)2 < 푅 푎푛푑 푧푝푎푡ℎ ≥ 푧푐
∞ 푧푝푎푡ℎ ≥ 퐻

(16)
푝푎푡ℎ denotes the flight altitude of the UAV, c c c

denotes the coordinates of the center point of the horizontal
cut of the peak, R denotes the radius.

B. Radar Detection Constraint
For radar detection facilities distributed in the

environment, to maintain UAV flight stability, the radar
detection zone must be avoided. The definition function
푟푎푑푎푟represents the distance relationship between the UAV
and the radar, and 푟푎푑푎푟 represents the detection radius of
the radar. When the UAV’s distance to the radar falls below
its detection threshold, a penalty is triggered.

푟푎푑푎푟
푖 푟푎푑푎푟

푟푎푑푎푟 푖
2

푖 푟푎푑푎푟
(17)

C. Atmospheric Impact Constraint
In the atmosphere, taking into account the differences in

aerodynamic characteristics of the UAV when flying at
different altitudes. Define the function 푎푡푚표푠푝ℎ푒푟푒 , which
represents the effect of flight altitude on energy
consumption. 푎 is a constant related to atmospheric drag.

푎푡푚표푠푝ℎ푒푟푒 푎 푝푎푡ℎ2 (18)

D. Marine Environmental Constraint
There may be unidentified obstacles in the ocean, so

UAV need to keep a safe distance during flight to avoid
collisions. Define the function 표푐푒푎푛 , which represents the
restriction of the marine environment on the path of the
UAV power inspection process.

푓표푐푒푎푛 =
0 (푥푖 − 푥표푐)2 + (푦푖 − 푦표푐)2 + (푧푖 − 푧표푐)2 ≥ 푅표푐
∞ (푥푖 − 푥표푐)2 + (푦푖 − 푦표푐)2 + (푧푖 − 푧표푐)2 < 푅표푐

(19)

i i i represents the position of the i-th UAV,
oc oc oc represents the position of the obstacle in the

ocean, and 표푐 represents a safe range between the UAV
and the obstacle.

E. Objective Optimization Function
When conducting power inspection tasks in multi-domain

environments encompassing land, sea, and air, it is essential
to comprehensively consider the multi-dimensional
constraints imposed by the distinct characteristics of each
environment. In this study, the influencing factors present in
the mountain peaks, radar, atmosphere, and ocean are used
as constraints. Meanwhile, ensuring that the UAV follows a
smooth flight path requires careful planning, the same cubic
spline interpolation method is used as the path smoothing
algorithm to ensure that the planned path meets the
conditions of stable UAV flight, as in equation (12). Let the
objective optimization function of multi-UAVs for power
inspection in multi-domain environments be 푚푖푛 . Set the
weight coefficients for each constraint to indicate different
degrees of influence.
푚푖푛 1 푐표푙푙푖푠푖표푛 2 푟푎푑푎푟 3 푎푡푚표푠푝ℎ푒푟푒 4 표푐푒푎푛

5 푠푚표표푡ℎ (20)

IV. DESCRIPTION OF THE BASE ALGORITHM

A. Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a population-based

optimization method inspired by swarm intelligence. In this
algorithm, each individual — referred to as a "particle"—
navigates the search space, representing a potential optimal
solution. These particles navigate through a
multi-dimensional space, guided by two key "extrema": the
personal best, which is the optimal solution discovered by
the individual particle, and the global best, which represents
the best solution found by the whole swarm of particles. The
particles update their positions and velocities, taking into
account not only their own experience but also the wisdom
of the group, especially the experience of other particles. In
this way, the PSO algorithm can effectively search through
the solution space and converge to a region close to the
global optimal solution [17].
푖,푗 푖,푗 1 1 푖,푗 푖,푗 2 2

푖,푗 푖,푗 (21)
푖,j 푖,j 푖,푗 (22)

where 푖,푗
(푡+1) is the velocity of the i-th particle in the

j-th dimension under generation t+1. 푖,푗
(푡) denotes the

velocity of the i-th particle in the j-th dimension under
generation t. The parameters 1 and 2 are the learning
factors, w is the inertia weight, 1 and 2 are random
numbers between [0,1] used to increase the randomness of
the algorithm. Additionally, 푖,푗 is the global optimal
position of the entire particle swarm in the j-th dimension,
and 푖,푗 is the localized position of the i-th particle in
the j-th dimension optimal position

B. Artificial Bee Colony
Inspired by the foraging activities of real bees, the

Artificial Bee Colony (ABC) algorithm serves as a
nature-based optimization technique. The algorithm
identifies optimal solutions by leveraging the cooperative
behavior of three bee roles: employed, onlooker, and scout
bees. The updating of the solution can be expressed as
[18-19]:

푖푗 min 푗 max 푗 min 푗 (23)
푖푗 푖푗 푖푗 푖푗 푘푗 (24)

Where 푖푗 denotes the position of the i-th bee in the j-th
dimension, and rand[0,1] is a random number in the range
[-1,1] denoting a random number. The search phase, where
the scout bees searches for a new nectar source is denoted as
equation (19).

C. Simulated Annealing
Simulated Annealing (SA) is a stochastic optimization

technique that mimics the thermal annealing process in
physics to locate a function's global minimum. The
fundamental idea of the algorithm is that, in the initial phase,
the system is allowed to conduct a broad search at a high
temperature. As the "temperature" gradually decreases, the
search range narrows, ultimately converging to the global
optimum or an approximate global optimum. The iterative
process is as follows [20-21]:
(1) Randomly select a new solution from the

neighborhood of the current solution as a candidate solution.
(2) Calculate the energy difference between the candidate
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solution and the current solution. If the candidate solution is
better than the current solution, accept the candidate solution
as the new current solution.
(3)When the new solution performs worse than the

current one, it may still be accepted according to a
probability defined by the Metropolis criterion:

∆퐸
퐾푇
∆퐸
퐾푇 , where ∆E is the energy difference, K is a

constant, and T is the current temperature.

V. ALGORITHM IMPROVEMENT STRATEGY

A. Algorithm Description
This paper explores a method that combines the PSO and

ABC algorithms, utilizing the update mechanism of the
ABC algorithm to update the iterations of the particle swarm,
thereby avoiding getting trapped in local optima cycles. The
aim is to leverage the strengths of both algorithms, enhance
global search capability, and avoid getting stuck in local
optimal solutions.
In the initial stage, an initial swarm of particles is

randomly generated, with each particle representing a
potential solution. Based on the fitness of the particles and
the grouping strategy of the ABC algorithm, the particles are
divided into n groups, with each group consisting of scout
bees, employed bees, and onlooker bees. During the
algorithm iteration process, scout bees are responsible for
searching and updating the solution space to prevent the
algorithm from getting trapped in local optimal solutions.
Employed bees focus on exploiting known areas of the
solution space, searching locally in the domain of the
current solution for a better solution, and sharing this
information with onlooker bees. Onlooker bees conduct
optimal searches in local regions based on the information
brought by employed bees, and the ranking of particles
within the group is adjusted based on changes in fitness. As
the algorithm continues to iterate, the weight of particle
updates gradually decreases. To address this, the SA
algorithm is introduced to enhance local search
capabilities and help the algorithm escape local optimal
solutions.
The update operation for these optimal particles is as

follows：
푖,푗 푖,푗 1 1 푖,푗 푖,푗 2 2

푖,푗 푖,푗 (25)
푖,푗 min 푖,푗 max 푖,푗

min 푖,푗 (26)

푖푗

0≥,),,+1/(1 jifjif

otherwisejifabs ),,(+1
(27)

1 푖,푗 (28)
2 푖,푗 푘,푗 (29)

i,j denotes the i-th particle of the j-th group, 1 and 2
are the improved learning factors. The learning factor can be
made to decrease with the number of iterations, thus
enhancing the convergence of the algorithm. 푖,푗 is the
fitness of the current particle. 푖,푗 is the optimal
solution of ij in the j-th group, and 푖,푗 is the optimal
solution in the j-th group except 푖,푗. 푘,푗 is the fitness
of any particle in the j-th group. Each particle within the

group is updated according to the following criterion:
푖 푖 1 1 푖 푖 2 2

푖 푖 (30)
푖 푖 푖 (31)

Then, the simulated annealing algorithm is modified to
update the local search capability based on the Metropolis
criterion in the algorithm:

푖
푖

푖
(32)

(33)
When ∆f <0, it means that the particle is poorly adapted,

and it can be adjusted by equation (33). The adjustment can
avoid falling into the local optimal solution problem again,
and the other particles do not change the state. The
pseudocode of the algorithm is shown in Algorithm 1:

Algorithm 1: PSO-ABC-SA algorithm
1: Input: PopSize(number of particles in the swarm), n(population
size), T (the number of iterations), d (the problem dimension),
0( initial temperature), 푒푛푑(final temperature), w (weight),
1 and 2 (learning factors)

2: Output: Global optimal solution
3: for i=1 to PopSize do
4: Initialise the particle swarm
5: end for
6: Calculate the particle fitness, divide the particles into n groups
according to the fitness, and determine the scout bees, employed
bees, and onlooker bees in each group

7:While t<T do
8: Initialise the optimal particle 푏푒푠푡 for the group and

푏푒푠푡 for the global optimal particle
9: for i=1 to n do
10: for j=1 to d do
11: Calculate the fitness of the particles
12: if fitness[i][j] > fitness[ 푏푒푠푡]
13: 푏푒푠푡=fitness[i][j]
14: if fitness[i][j] > fitness[ 푏푒푠푡]
15: 푏푒푠푡=fitness[i][j]
16: The velocity and position of the optimal particles in

the group are updated by equations.
(25)(26)(27)(28)

17: Updating the velocity and position of the particles in
the group by equations. (30)(31)

18: end
19: end
20: Calculate the change in fitness of the particle ∆f
21: while( 0< 푒푛푑) do
22: if ( )
23: Adjustment of poorly adapted particles.
24: end
25: Recalculating comparative fitness and updating scout,

employed, onlooker bees
26: t=t+1
end

B. Algorithm Performance Evaluation in Benchmarking
Functions
In order to evaluate the optimization ability of the

PSO-ABC-SA algorithm, 10 sets of test functions were
selected for experiments, as shown in Table 1. The
algorithms PSO-SA [22], ABC-SA, QPSO [23], PSO, and
AVOA [24] are selected to compare with the PSO-ABC-SA
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algorithm. The search space range and fitness evolution
curve of the test function are shown in Fig. 2. The
three-dimensional search space can intuitively reflect the
solution value region within the range and the curve graph
clearly compares the performance of the algorithms. Table 2
shows the comparison of the test results of the ten test
functions. Comparing Fig. 2 and Table 2, it can be found
that among the nine sets of test functions, the PSO-ABC-SA
algorithm reached the optimal. In summary, The
PSO-ABC-SA algorithm demonstrates significant strengths
in both optimization performance and convergence behavior.
And a better solution can be found in a random experiment.

C. Computational Complexity Analysis
The PSO-ABC-SA algorithm integrates the

characteristics of three optimization techniques: PSO, ABC,
and SA algorithms. So its particle search process exhibits
significant nonlinearity and complexity. Consequently,
analyzing the algorithm's complexity qualitatively and
directly from a theoretical standpoint proves difficult.
Therefore, in order to quantitatively analyze the
computational complexity of an algorithm, researchers
usually evaluate the actual running time of the algorithm as
a measure. Suganthan et al. proposed an evaluation method
that enables quantitative analysis and comparison of the
computational complexity of different AI algorithms.

푇2�−푇1
푇0

(34)

Where denotes the computational complexity of the
algorithm and 2 , 1 , 0 denote the computational time
required for each mathematical operation, respectively.
According to the literature [25], 0 means that 1000000

iterations were performed for the input parameter x = 5.55.

In each iteration, a series of calculations are performed, and
the total time consumed is found, including self-increment
of x, division of x by 2, squaring of x, logarithm of x,
exponentiation of x and division of x by x. 1 denotes the
total computational time consumed by the algorithm to solve
the test function 4 in the table once when the number of
iterations is 200000. 2 denotes the average computational
time consumed by the algorithm to solve the function 4
five times for the same number of iterations. As shown in
Table 3, findings suggest that the PSO-ABC-SA algorithm
introduced in this study can substantially decrease
computational complexity, thus improving the reliability of
the search and the average convergence speed.

VI. EXPERIMENTAL SIMULATION AND RESULTS ANALYSIS

Aiming at the problem of obstacle avoidance path
planning in UAV swarms, this study designs a series of
experiments based on intelligent optimization algorithms to
evaluate its navigation capability in a complex mountain
environment and multi-habitat. To evaluate the algorithm's
obstacle avoidance capability, we examine several key
aspects. These include the smoothness of the planned path,
the degree of turning, and the spatial and temporal synergy
of multi-UAV collaborative operations. The experiment
assesses the algorithm's effectiveness from multiple
perspectives. The specific experimental parameters are as
follows: Particle group size: 3, Number of iterations: 200,
Population size: 50, Weight: 0.9, Degradation rate: 0.99,
Learning factors 1: 1.5 and 2: 1.5, Internal iterations for
the local annealing algorithm: 100, Initial temperature:
10,000, and Temperature decay coefficient: 0.99.

TABLE I
TEST FUNCTION

Function Dim Range Minnum

푓1 푥 = 푚푎푥푖 푥푖 , 1 ≤ 푖 ≤ 푛 30 [-100,100] 0

푓2 푥 =
푖=1

11
푎푖 −

푥1(푏푖
2 + 푏푖푥2)

푏푖
2 + 푏푖푥3 + 푥4

2

� 4 [-5,5] 0.1484

푓3 푥 = 0.5 +
푠푖푛2 푥12 − 푥22 − 0.5
[1 + 0.001(푥12 + 푥22)]2

2 [-100,100] 0

푓4 푥 = 푥2 −
5.1
4휋2
5.1
4휋2
푥12 +

5
휋
5
휋
푥1 − 6

2
+ 10 1 − 1

8휋
1
8휋

cos 푥1 + 10 2 [-5,5] 0.3

푓5 푥 =−
푖=1

4
푐푖푒푥푝 −

푗=1

6
푎푖푗(푥푗 − 푝푖푗)2�� 6 [0,1] -3

푓6 푥 =− 푥2 + 47 sin 푥2 +
푥1
2
+ 47 −푥1sin ( 푥1 − (푥2 + 47) ) 2 [-512,512] -959.6407

푓7 푥 =
푖=1

푑
푥푖2

4000
−

푖=1

푑

cos (
푥푖
푖
)�� +1 d [-600,600] 0

푓8 푥 = 푠푖푛2 3휋푥1 + (푥1 − 1)2 1 + 푠푖푛2 3휋푥2 + (푥2 − 1)2[1 + 푠푖푛2(2휋푥2)] 2 [-10,10] 0

푓9 푥 = 100(푥12 − 푥2)2 + (푥1 − 1)2 + (푥3 − 1)2 + 90(푥32 − 푥4)2 + 10.1((푥2 − 1)2
+ (푥4 − 1)2) + 19.8(푥2 − 1)(푥4 − 1) 4 [-10,10] 0
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(a) 푓1 푥 (b) 푓2 푥 (c) 푓3 푥

(d) 푓4 푥 (e) 푓5 푥 (f) 푓6 푥

(g) 푓7 푥 (h) 푓8 푥 (i) 푓9 푥
Fig. 2. Average function curves comparison

A. Obstacle Avoidance Performance Validation in
Single-domain Environment
1) Two-dimensional Scene Simulation
i) Experiments in Sparse Obstacle Environments
In this study, in order to comprehensively verify the

effectiveness and feasibility of the PSO-ABC-SA algorithm,
a 2D terrain simulation environment based on a
two-dimensional grid method[26] is constructed. This
method can provide an intuitive view of path planning. As

shown in Fig. 3, by designing comparative experiments, the
path planning performance of the Particle Swarm
Optimization (PSO), the Genetic Algorithm (GA)[27], Grey
Wolf Optimization (GWO)[28], Sparrow Search Algorithm
(SSA)[29], and the PSO-ABC-SA hybrid algorithm
proposed in this study is evaluated under a unified terrain
environment. The results show that the PSO-ABC-SA
algorithm not only has excellent obstacle avoidance
capability but also demonstrates significant advantages in
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path optimization efficiency.
ii) Experiments in Intensive Obstacle Environments
To further assess how well the PSO-ABC-SA algorithm

performs in handling obstacle avoidance within more
challenging environments. The simulated terrain was
enhanced with an increased number of obstacles and
irregular distribution patterns, thereby elevating the
difficulty of the test scenarios. As shown in Fig. 4, even
with a higher obstacle density and more complex terrain
conditions, the PSO-ABC-SA algorithm consistently
identifies the global optimal path. Its fitness value reaches
the lowest point, demonstrating excellent path planning

capabilities. The outcome illustrates that the algorithm
remains both robust and efficient, even in highly complex
environments.
2) Three-Dimensional Mountain Environment Simulation
i) Map Construction
To assess the feasibility of applying the PSO-ABC-SA

algorithm in real-world scenarios[30]. This study conducts
experimental simulations of obstacle avoidance paths for
UAV swarms. The simulation environment was modeled
using two-dimensional cubic convolution interpolation ,
with the size set to 400 m× 800 m× 3000 m, as shown in Fig.
5.

TABLE II
OPTIMIZATION RESULTS FOR DIFFERENT FUNCTIONS

Function
Optimization Result Value

Minnum
PSO-SA ABC-SA QPSO PSO AVOA PSO-ABC-SA

푓1 푥 0.4637 0.3536 1.623 0.3387 0.7828 0.2928 0

푓2 푥 0.001336 0.0005548 0.003095 0.00124 0.01231 0.0003075 0.1484

푓3 푥 0.39286 5.8706e-07 0.0026845 7.4979e-06 2.7764e-05 4.4917e-10 0

푓4 푥 3.004 3 3.487 3 4.114 3 0.3

푓5 푥 -3.102 -0.4034 -0.4034 -3.203 -0.5078 -3.32 -3

푓6 푥 -959.6403 -959.5563 -885.7882 -959.6407 -786.5241 -959.6407 -959.6407

푓7 푥 5.3721 2.4601 79.7525 5.4311 1.2067 0.0054575 0

푓8 푥 0.75412 0.0020573 0.00075313 0.0014425 5.0308e-06 1.8316e-07 0

푓9 푥 18.6828 2.51 11.3647 2.118 0.50424 0.0051871 0

TABLE III
COMPUTATIONAL TIME (IN SECONDS) CONSUMED BY THEMULTI-ALGORITHM TO SOLVE THE MULTIMODAL BENCHMARK FUNCTION 푓4

Formula
mode

Algorithm
Minnum

PSO-GA PSO-SA GRO SWO COA PSO-ABC-SA

푇0 1.8103E-01 1.8103E-01 1.8103E-01 1.8103E-01 1.8103E-01 1.8103E-01 1.8103E-01

푇1 1.2006E+02 1.2530E+02 4.6861E+03 4.4315E+02 4.4413E+04 8.5129E+02 1.2006E+02

푇2� 1.4763E+05 1.7291E+04 4.9739E+04 4.6720E+02 4.8064E+03 8.7443E+02 1.4763E+05

퐶퐵 1.4898E+01 2.6299E+01 1.5897E+01 1.3285E+01 2.0167E+01 1.2782 E+01 1.4898E+01

(a) Obstacle avoidance path planning
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(a) Obstacle avoidance path planning
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Fig. 4. Complex 2D Obstacle Avoidance

Fig. 5. Simulation map Fig. 6. Obstacle distribution map

To additionally confirm the algorithm’s ability to avoid
obstacles effectively, this study established 11 obstacles of
varying sizes on the designated map. These obstacles are
represented by blue bars in Fig. 6. The two-dimensional
coordinates and radii of the obstacles are as follows: (10, 35,
5), (100, 150, 10), (150, 360, 10), (210, 100, 10), (300, 160,
20), (390, 200, 15), (390, 350, 15), (460, 400, 30), (500, 350,
20), (600, 400, 20), and (400, 250, 20). Additionally, the
starting and ending points of the UAV inspection path were
defined at coordinates (100, 20, 1500) and (600, 450, 2000),
respectively. The UAV swarm is required to depart from the
starting point and navigate to the endpoint following the
obstacle avoidance paths planned by the respective
algorithms. To evaluate the algorithm's obstacle avoidance
capabilities and the spatial and temporal coordination of
multi-UAV operations, five obstacle avoidance paths were
designed for testing. The objective is to assess the safety and
reliability of the planned paths in actual UAV cluster flight
missions. Six algorithms—PSO-ABC-SA, PSO-SA,
ABC-SA, QPSO, PSO, and AVOA—were employed to
optimize the obstacle avoidance paths for the UAV swarm
within the simulation environment.
ii) Multi-Algorithm Obstacle Avoidance Comparison
In the 3D view, this study compares and analyzes the

reliability of the PSO-ABC-SA algorithm with the other five
algorithms in terms of obstacle avoidance capability. The

results show that all five paths planned based on the
PSO-ABC-SA algorithm successfully avoid obstacles and
reach the endpoint smoothly, as shown in Fig. 7(a). These
five paths comprehensively consider the synergy of time and
space, effectively avoiding the collision problem between
multiple UAVs. The superiority of the algorithm in path
planning is demonstrated. However, two of the paths
planned using the PSO-SA algorithm failed to achieve
effective obstacle avoidance and directly passed through the
blue obstacle, as shown in Fig. 7(b). Similarly, one path was
found to have failed to achieve successful obstacle
avoidance in Fig. 7(c). Among the five paths planned based
on the PSO algorithm, there are some overlapping paths,
which do not meet the requirements of cooperative UAV
flight, as shown in Fig. 7(e). Fig. 7(d) and Fig. 7(f), on the
other hand, show that in the paths planned by the QPSO and
AVOA algorithms, there are the same cases of failing to
avoid obstacles, and there are crossings between the paths.
In addition, the distribution of the five paths in the start and
end positions is too concentrated, which may lead to
collision accidents during actual UAV cluster flights. In
summary, the PSO-ABC-SA algorithm shows high
reliability in obstacle avoidance and can provide safe and
efficient flight paths for UAV swarms, while the other
algorithms have some limitations in obstacle avoidance.
This result provides important theoretical support for UAV
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swarms for power inspections in complex environments.

B. Collaborative Obstacle Avoidance Validation in
Multi-domain Environment
1) Multi-domain experimental scenario construction
In this study, parametric modeling and spatial overlay are

mainly used to randomly generate core features of mountain
peaks, including location, height, and extent. And ensure
that these features are uniformly distributed in a
predetermined area. Subsequently, a Gaussian function
model was used to calculate the height value for each
ground point, taking into account the mutual influence of
multiple peaks, thereby forming a height dataset. Finally, the
interpolation technique is utilized to construct a continuous
peak surface for realistic peak simulation. In this 3D terrain
model, we also set up the marine environment and radar
distribution area to increase the diversity of the simulation
experiment environment. This design provides a
high-confidence experimental basis for validating the
cross-domain adaptability and real-time decision-making
capability of multi-UAV cooperative obstacle avoidance
algorithms. As shown in Fig. 8, the multi-domain simulation
experimental environment contains multiple mountain peaks
representing land terrain. The bottom of the terrain model
represents the ocean area, shown in a blue plane. Meanwhile,
red squares and blue diamonds indicate threat areas in the
ocean and sky, respectively, and dark and light blue
hemispheres indicate two radar areas. With the above
diverse simulation setups, this study aims to provide an
effective testing platform for the multi-UAV cooperative
obstacle avoidance algorithm to evaluate its performance in
complex environments.
2) Experimental Results in a Multi-domain Environment

To evaluate the proposed algorithm ’ s capability in
obstacle avoidance. The study will extend the application
scenario to the multi-domain environment of land, sea, and
air. The start and end points were set in the experiment, and
the red dotted line indicated the flight path of the UAV. As
shown in Fig. 8, the UAV successfully avoided all threat
areas and obstacles during its flight, skillfully bypassing
mountain peaks and radar areas. In the end, it selected a safe
and smooth flight path. In addition, combined with the
application of path smoothing algorithms, the planned paths
are not only safe but also suitable for the flight
characteristics of UAVs. As shown in Figs. 8(a) and 8(b),
the 3D view and top-down view clearly show the ability of
the PSO-ABC-SA algorithm to effectively plan obstacle
avoidance paths for UAVs in a multi-domain environment.
Comparing Fig. 9 and Fig. 10, the routes planned based on
the PSO algorithm and QPSO algorithm have routes that do
not successfully avoid mountain peaks or radar areas. This
does not fulfill the condition of multi-UAV cooperative
work. In addition, the fitness curve shown in Fig. 11(a)
further demonstrates the optimization ability of the
PSO-ABC-SA algorithm during the iterative process. This
rapid improvement in fitness values implies that the
algorithm can identify optimal directions early in the search
process. The subsequent stabilization of fitness values
shows the algorithm's good convergence. It can find the
optimal solution within a limited number of iterations.
Additionally, comparing Figs. 11(b) and 11(c), it has the
smallest fitness value. In summary, results from the
experiments provide strong evidence that the PSO-ABC-SA
algorithm has good application prospects in multi-domain
environments and provides an effective solution for UAV
obstacle avoidance path planning.
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(e)PSO (f)AVOA

Fig. 7. Obstacle avoidance algorithms comparison

(a)3D view (b)Top view

Fig. 8. PSO-ABC-SA

(a)3D view (b)Top view
Fig. 9. PSO

(a)3D view (b)Top view
Fig. 10. QPSO
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(a)PSO-ABC-SA (B)PSO (C)QPSO

Fig. 11. Comparison of fitness curves

C. Safety Assessment of Obstacle Avoidance Paths
1) Comparison of Pitch Angles
In studying path planning with obstacle avoidance for

UAV swarms, the perspective can be adjusted by varying
the pitch angle to study how to avoid simulated mountains.
In this analysis, the PSO-ABC-SA approach is compared
with five existing algorithms for obstacle avoidance path
planning in UAV applications. By controlling the pitch
angle during the UAV flight using equations (7) and (8), the
five obstacle avoidance paths planned by the PSO-ABC-SA
algorithm show relatively small fluctuations, as shown in
Fig. 12. This indicates that the algorithm has a low
requirement for attitude adjustments during flight, which
helps maintain the balance of the UAV's body. However, the
paths planned using the PSO and PSO-SA algorithms have

issues with being too high relative to the ground, which is
not beneficial for actual UAV flight, as shown in Figs. 12(b)
and 12(e). In contrast, the paths planned using the AVOA
algorithm are smoother and have smaller fluctuations. The
UAV does not need to make frequent attitude adjustments
during flight, as shown in Fig. 12(f). However, it is
noteworthy that not all five paths in this algorithm
successfully avoided obstacles, failing to achieve the
expected results.Furthermore, the paths planned using the
ABC-SA and QPSO algorithms generally have too large a
fluctuation angle, as shown in Figs. 12(c) and 12(d). This
may require the UAV to make more frequent and larger
attitude adjustments during flight. Such significant pitch
angle changes increase the complexity of UAV control and
may affect flight stability and safety.
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(e)PSO (f)AVOA

Fig. 12. Multi-algorithm pitch angle comparison

2) Comparison of Algorithmic Path Smoothness
The superiority of the PSO-ABC-SA algorithm in UAV

obstacle avoidance path planning is evaluated from the
perspective of path smoothness, as shown in Fig. 13. The
results indicate that the five paths planned by the
PSO-ABC-SA algorithm successfully avoid all obstacles
(represented by blue circles) and exhibit smoothness. This
characteristic significantly reduces the turning angles of the
UAV during flight, minimizing its impact and effectively
maintaining flight stability. Moreover, it reduces energy
consumption and structural load due to large-angle turns. In
contrast, path planning based on the PSO-SA and ABC-SA
algorithms (shown in Figs. 13(b) and 13(c)) strives for both
the shortest path and smoothness. However, some routes in
these algorithms fail to avoid all obstacles, resulting in
suboptimal experimental outcomes. Furthermore, as shown
in Fig. 13(d), although this algorithm successfully avoids
obstacles, it features intersecting paths, which may lead to
potential collisions among UAVs. This makes it unsuitable
for collective flight tasks, and the excessive turning angles
do not meet the practical flight conditions. The algorithms
presented in Figs. 13(e) and 13(f) also fail to achieve
effective collective obstacle avoidance for UAV swarms.
Additionally, they exhibit issues such as large turning angles,
insufficient path smoothness, and intersecting routes. These
shortcomings further highlight the superior performance of
the PSO-ABC-SA algorithm to UAV path planning with
obstacle avoidance.

D. Analysis of the Performance Advantages of the
Algorithm
Under the same experimental conditions, 51 simulations

were conducted for the PSO-SA, ABC-SA, QPSO, PSO,
AVOA, and PSO-ABC-SA algorithms, as shown in Fig. 14.
The results indicate that the PSO-ABC-SA algorithm
achieved the optimal fitness value of 182. This is better than
the PSO-SA algorithm, which had the worst performance
with an optimal solution of 221.2. Statistical results in six
areas (optimal cost, worst cost, average cost, average
computation time, total flight distance, and flight time) are
presented in Table 5. In terms of optimal cost, worst cost,
and average cost, the PSO-ABC-SA algorithm outperformed
the other five algorithms and exhibited higher convergence.
However, in terms of average computation time, the
PSO-ABC-SA algorithm was not optimal. This is due to

repeated calculations during position updates and fitness
adjustments, leading to longer average times. Additionally,
in optimal path length, the PSO-ABC-SA algorithm
shortened the distance by 251 kilometers compared to the
PSO algorithm, which had the worst performance. It also
reduced the distance by 29 kilometers compared to the
QPSO algorithm, which had the second worst performance,
and shortened the average path by 130 kilometers.
Regarding obstacle avoidance rate, the PSO-ABC-SA
algorithm achieved 94.2%. This is an increase of 0.9%
compared to the QPSO algorithm and an increase of 11.1%
compared to the ABC-SA algorithm. The average obstacle
avoidance rate improved by 5.7%. These results indicate
that the PSO-ABC-SA algorithm has significant advantages
in UAV intelligent obstacle avoidance and lowering power
consumption.

VII. CONCLUSION
To address the issues of poor obstacle avoidance and low

work efficiency in UAV power inspection in complex areas,
this study proposes a new hybrid algorithm that integrates
PSO, ABC, and SA algorithms. Based on the PSO-ABC-SA
algorithm, a multi-UAV collaborative obstacle avoidance
model with temporal and spatial coordination is introduced.
The algorithm also considers constraints such as UAV flight
height, turning range, and pitch angle. Experiments were
conducted in simulated terrain to validate the superior
performance of the PSO-ABC-SA algorithm in obstacle
avoidance and inspection efficiency in complex
mountainous environments and multi-domain environments.
Additionally, the algorithm demonstrated effective path
smoothing and spatial-temporal coordination in multi-UAV
collaborative operations.
(1) By integrating the PSO, ABC, and SA algorithms,

significant advantages have been demonstrated in
multi-UAV collaborative intelligent obstacle avoidance,
obstacle path smoothness processing, and improved
inspection efficiency. This provides an efficient and reliable
path planning strategy for power inspection tasks in
complex terrains. The combination of the three algorithms
effectively avoids local optimal solutions and enhances
global search capabilities.
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(a)PSO-ABC-SA (b)PSO -SA

(c) ABC-SA (d)QPSO

(e)PSO (f)AVOA

Fig. 13. Multi-algorithm path smoothness comparison

(2) This study used a two-dimensional grid method to
conduct simulation experiments on simple and complex
terrains. In both experiments, the PSO-ABC-SA algorithm
outperformed other comparison algorithms in terms of
obstacle avoidance performance, shortest path, and fitness
metrics. In addition, comparative experiments conducted in
a 3D simulation environment further validate the superior
performance of the proposed algorithm in obstacle
avoidance and smoothness processing. Extending the

application scenario to a multi-domain environment, three
sets of comparative experiments further proved its excellent
performance.
(3) This study evaluated the algorithm's performance

across six aspects. Results showed that the PSO-ABC-SA
algorithm shortened the average path by 130 km and
achieved a 94.2% obstacle avoidance rate, improving by
5.7%. It also outperformed in optimal, worst, and average
costs, confirming its reliability.
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TABLE IV
ANALYSIS OF EXPERIMENTAL RESULTS

Algorithm Optimal cost Worst cost Average cost Average
operation time

Optimal path
length Avoidance rate

PSO-SA 182.1 221.2 182.9 46.36s 1816km 85.9%

ABC-SA 189.2 201.4 190.9 41.31s 1703km 83.1%

QPSO 183.3 191.7 185.4 36.23s 1653km 93.3%

PSO 182.7 193.9 185.1 32.18s 1875km 89.7%

AVOA 188.5 209.8 189.1 32.87s 1723km 90.5%

PSO-ABC-SA 181.1 190.6 182 40.32s 1624km 94.2%

(4) Future work will aim to enhance the computational
efficiency of the algorithm and exploring its adaptability to
dynamic environmental changes. Additionally, we will
integrate reinforcement learning algorithms to enhance
obstacle recognition and detection capabilities. The goal is
to achieve more efficient and intelligent multi-UAV
collaborative obstacle avoidance path planning.

Fig. 14. Algorithm adaptation comparison
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