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Abstract—In multi-robot systems, the complexity and
dynamics of path planning significantly impact task allocation
efficiency and overall operational performance. This study
presents an enhanced harmony search (EHS) algorithm
designed to tackle these challenges. The EHS optimizes
critical metrics, such as minimizing path length and reducing
runtime, while generating collision-free and efficient routes in
complex, dynamic environments. By integrating strategies based
on the Lévy distribution and the best harmony attributes,
the EHS greatly improves exploration and exploitation over
traditional harmony search algorithms. Simulations show
that EHS effectively manages varied robot numbers and
environmental complexities, excelling in path length, step count,
computational efficiency, and obstacle avoidance. Comparative
tests demonstrate that EHS outperforms not only standard
harmony search (HS) algorithms but also other leading
optimization methods like grey wolf optimizer (GWO), whale
optimization algorithm (WOA), and arithmetic optimization
algorithm (AOA). These findings highlight EHS’s potential
for broader optimization challenges beyond multi-robot path
planning (MRPP).

Index Terms—multi-robot path planning, intelligent
optimization, harmony search algorithm, Lévy distribution.

I. INTRODUCTION

ADVANCEMENTS in robotics technology have
underscored the increasing importance of multi-robot

systems (MRSs), distinguished by their efficiency, flexibility,
and robustness in performing complex tasks [1]. An MRS
consists of multiple autonomous or semi-autonomous robots
designed to collaborate on goals that are beyond the reach
of single robots. At the core of these systems lies the
challenge of multi-robot path planning (MRPP) [2]–[4],
which involves generating collision-free trajectories for each
robot from initial to final positions, while simultaneously
coordinating interactions among robots.

The importance of MRPP is highlighted by its dual
focus on practical applications and the inherent technical
challenges. For example, in logistics warehouses, automated
guided vehicles (AGVs) must navigate through intricate
operational environments to ensure efficient goods transport.
Effective MRPP ensures not only operational efficiency but
also precise task execution [1]. In manufacturing sectors,
multi-robot systems are employed to perform a variety
of production tasks. By optimizing path planning, these
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systems improve both productivity and product quality.
Beyond industrial applications, MRPP plays a crucial
role in areas such as intelligent traffic management,
environmental monitoring, military reconnaissance, and
agricultural automation, among other fields.

Despite its advantages, MRPP presents several critical
challenges [5]–[9]. One primary challenge lies in
computational complexity, as increasing robot numbers
render optimal solution identification computationally
expensive. Furthermore, operating within dynamically
changing environments introduces significant difficulties, as
obstacles exhibit unpredictable movements. This necessitates
the development of adaptive algorithms capable of real-time
response to environmental changes.

The algorithms employed in MRPP can be systematically
categorized into three groups: traditional planning methods
[10], intelligent optimization methods [3]–[5], [11]–[13],
and others [14]. Traditional methods, exemplified by the
A∗ algorithm and Dijkstra’s algorithm, are particularly
suitable for static environments. These approaches typically
formulate environmental models as graphs and systematically
search for optimal paths within this framework. In
contrast, intelligent optimization methods, comprising
genetic algorithms, ant colony optimization, particle
swarm optimization, artificial bee colony algorithms,
and reinforcement learning techniques, provide adaptive
solutions. Notably, these advanced methodologies excel
in resolving complex, nonlinear optimization problems,
particularly those involving coordination and cooperation
within multi-robot systems.

The Harmony Search (HS) algorithm is a metaheuristic
optimization technique inspired by the improvisation
mechanisms musicians employ to create harmonious
compositions. First introduced in 2001 by Geem et al., this
computational framework was developed to solve complex
optimization problems across diverse domains [15]–[18].
Specifically, HS mimics the iterative refinement process
musicians use to achieve aesthetic harmonies, applying
analogous principles to discover optimal solutions within a
defined parameter space.

The HS algorithm initiates by generating a population of
random solutions, termed the Harmony Memory (HM). This
initialization process is analogous to compiling a diverse
repertoire of potential musical harmonies. The algorithm
then proceeds through iterative cycles where new candidate
solutions are constructed by manipulating optimization
parameters according to three operational principles: memory
exploitation, pitch modulation, and stochastic exploration.
During each iteration, the newly proposed solution undergoes
systematic evaluation. If it exhibits superior fitness, it
displaces the weakest candidate in the HM archive. This
iterative process continues until a predefined termination
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criterion is met, such as completing a specified number of
computational cycles.

The HS algorithm has demonstrated significant
applicability across multidisciplinary domains, attributed
to its dual capability in managing both continuous
and discrete optimization parameters, coupled with its
computational efficiency. A primary strength of this
algorithm resides in its ability to maintain equilibrium
between exploration—the discovery of novel solution
candidates—and exploitation—the enhancement of existing
promising solutions. This equilibrium is strategically
achieved through the dynamic maintenance of a harmony
memory archive, which facilitates the generation of new
solutions via parametric adjustments. The algorithm’s
effectiveness stems from its dual focus: thoroughly
exploring the solution space while concurrently optimizing
identified promising candidates. Notably, the HS framework
requires only three critical parameters: harmony memory
size (HMS), harmony memory consideration rate (HMCR),
and pitch adjustment rate (PAR). These parameters can be
tailored to problem-specific characteristics, thereby enabling
the algorithm’s adaptability across diverse optimization
scenarios.

While the HS algorithm has proven effective across
various optimization paradigms, it manifests inherent
limitations [16] in complex, dynamic scenarios such as those
presented by the MRPP. To overcome these challenges, this
study proposes a novel HS variant specifically engineered to
address the multidimensional complexities inherent to MRPP
optimization. The algorithmic modifications presented herein
are designed to: (1) mitigate premature convergence through
adaptive parameter regulation, (2) reduce sensitivity to initial
parameter configurations via self-adaptive mechanisms, and
(3) enhance exploration efficiency through dynamic memory
management.

To validate the proposed enhancements, we conducted
comprehensive benchmarking against not only the original
HS algorithm but also three cutting-edge metaheuristic
algorithms-Grey Wolf Optimizer (GWO) [19]–[21], Whale
Optimization Algorithm (WOA) [22]–[24], and Arithmetic
Optimization Algorithm (AOA) [25]–[27]. Through rigorous
experimental evaluation, our findings demonstrate that the
modified HS formulation achieves statistically significant
performance improvements across all benchmark metrics
when solving complex MRPP instances.

II. MODELING OF MRPP PROBLEM

In the simulation model, the operational environment is
abstracted as a rectangular plane, which offers a simplified
yet comprehensive representation of the workspace. This
plane facilitates the coordinated deployment of multiple
robotic units for task execution. It encompasses both static
obstacles, defined as entities with fixed spatial coordinates,
and dynamic obstacles characterized by time-varying
positional parameters.

During task execution, robotic systems must autonomously
navigate from predefined starting coordinates to specified
target coordinates. This navigation process necessitates
circumvention of static obstacles to maintain a continuous,
unimpeded trajectory. To address dynamic operational
challenges, advanced collision-avoidance algorithms are

implemented to mitigate potential collision risks with
dynamic obstacles or other coexisting robotic units within
the shared workspace.

Figure 1 presents an illustrative example of the initial
environmental configuration for a MRPP problem. As
visualized in Figure 1, the operational workspace is modeled
as a 100 × 100 unit square grid. This standardized
experimental configuration is rigorously maintained across
all subsequent test scenarios to ensure methodological
consistency, enabling quantitative comparative analysis and
performance benchmarking of the MRPP algorithms under
examination.
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Fig. 1. Example configuration of a simulation environment for MRPP.

In this schematic representation, robotic agents are denoted
by R, static obstacles by S, and dynamic obstacles by
D, following the established color legend. Specifically, a
cyan circle incorporating a pentagram symbol denotes each
robot’s initial position, while a red pentagram connected to
this coordinate by a gray dashed line demarcates the target
destination. The gray dashed lines represent computationally
derived optimal trajectories for robotic navigation. Blue
circles indicate the origination points of dynamic obstacles,
indigo hexagons their respective target locations, and
chartreuse dashed lines their projected movement vectors.
Sienna-colored circular elements designate static obstacles
within the operational environment.

Both robotic agents and obstacles-regardless of static or
dynamic classification-are uniformly modeled as circular
entities with a characteristic radius denoted as r. This
dimensional parameter quantifies their physical extent within
the operational plane.

The kinematic behavior of the robotic agent within the
operational scenario visualized in Figure 1 is formally
described by the differential equation presented in Equation
(1). {

xt+1
k = xt

k + vkcos(αk)
yt+1
k = ytk + vksin(αk)

(1)

In Equation (1), xt
k and ytk denote the current position

coordinates of the kth robot, while xt+1
k and yt+1

k represent
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the coordinates of the next target position. The movement
speed vk and movement angle αk of robot k are constrained
within predefined intervals, i.e., vk ∈ [vmin, vmax] and αk ∈
[αmin, αmax]. In this study, we set vmin = 1, vmax = 2 and
αmin = 0, αmax = 360.

To address the MRPP problem, planning optimal mobile
paths for robots requires considering several critical factors,
as outlined below:

1. Travel Distance Minimization: To enhance operational
efficiency and reduce energy consumption, the total distance
traversed by the robotic systems must be minimized. This
objective is mathematically expressed by the function F1, as
defined in Equation (2).

F1 =
nR∑
k=1

(d1 + d2) (2)

d1 =
√
(xt+1

k − xt
k)

2 + (yt+1
k − ytk)

2

d2 =
√
(xg

k − xt+1
k )2 + (ygk − yt+1

k )2
(3)

In the formulation, nR denotes the total number of robots,
while xg

k and ygk represent the target coordinates of the kth
robot in the 2D plane.

2. Obstacle Avoidance: To ensure safe navigation, robotic
systems must dynamically adapt their paths to circumvent
stationary obstacles in the environment and mobile obstacles
traversing the operational zone. Specifically, this involves
avoiding collisions with static obstacles while simultaneously
responding to the movements of dynamic obstacles.

Avoiding static obstacles is represented by the function
F2, and avoiding dynamic obstacles is represented by the
function F3.

F2 =

{
P, if(dsk ≤ rR)
0, if(dsk > rR)

(4)

dsk =
nR∑
k=1

nS∑
s=1

√
(xt

k − xs)2 + (ytk − ys)2 (5)

In Equations (4) and (5), nS denotes the number of
static obstacles, rR the robot’s radius, P a penalty factor
(a relatively large positive real number), and xs and ys the
position coordinates of the sth static obstacle.

F3 =

{
P, if(ddk ≤ rR)
0, if(ddk > rR)

(6)

ddk =
nR∑
k=1

nD∑
d=1

√
(xt

k − xd)2 + (ytk − yd)2 (7)

Here, nD represents the number of dynamic obstacles, and
xd and yd denote the position coordinates of the dth dynamic
obstacle. The movement process of dynamic obstacles is
described by Equation (8).

{
xt+1
d = xt

d + vdcos(βd)
yt+1
d = ytd + vdsin(βd)

(8)

Here, vd and βd represent the speed and angle of the dth
dynamic obstacle, respectively.

3. Inter-Robot Collision Avoidance: Effective coordination
mechanisms are essential to prevent collisions during both
task execution and target navigation. This coordination is
dynamically regulated by the collision avoidance function
F4, which is formally defined in Equations (9) and (10).

F4 =

{
P, if(dok ≤ rR)
0, if(dok > rR)

(9)

dok =
nR∑
k=1

nR−1∑
o=1

√
(xt

k − xt
o)

2 + (ytk − yto)
2 (10)

Considering these factors ensures the path planning
algorithm achieves two objectives: (1) identifying
collision-free trajectories and (2) optimizing system-wide
operational efficiency through minimized energy expenditure
and travel time. The proposed solution model, which
mathematically encapsulates these optimization criteria, is
formally presented in Equation (11).

F = F1 + F2 + F3 + F4 (11)

III. ENHANCED HS ALGORITHM FOR MRPP

In this section, we introduce the HS algorithm, detailing
its algorithmic enhancements, followed by its application to
the MRPP problem.

A. Orignal HS Algorithm

The HS algorithm is a metaheuristic optimization
technique inspired by the improvisational process of
musicians adjusting harmonies during performances. In
this framework, a solution to the optimization problem
is represented as a harmony, with each decision variable
corresponding to a musical note. The objective function
is optimized by iteratively modifying the notes (i.e., the
variables) within the harmony [15]. The HS algorithm
encompasses several key steps, which are outlined below.

Step 1: HM Initialization. A population of candidate
solutions is probabilistically generated to establish the
foundational HM structure, where each solution represents
a viable harmony configuration.

HM =


X1

X2

...
Xn

 =


x11 x12 · · · x1m

x21 x22 · · · x2m

...
...

...
...

xn1 xn2 · · · xnm

 (12)

Here, xij = xmin + r · (xmax − xmin), i = 1, 2, · · · , n,
j = 1, 2, · · · ,m; r is a random decimal number within the
interval (0, 1); xmin and xmax represent the lower and upper
bounds of the decision variables, respectively.

Step 2: New Harmony Generation. Existing harmonies are
selected from the HM based on specified strategies, including
random selection and memory-based considerations. The
selected harmonies undergo systematic perturbations
governed by Equation (13), resulting in the creation of a
novel harmony configuration.

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2129-2140

 
______________________________________________________________________________________ 



xij =

{
xrj , R < HMCR

xmin + r · (xmax − xmin), R ≥ HMCR
(13)

Here, xrj denotes a value extracted from the jth dimension
of a randomly selected harmony in the HM. Let R and
r represent two independent random decimals uniformly
distributed in (0, 1). When a new variable is sampled from
HM, there exists a probability PAR (Adjustment Rate) that
the variable undergoes a perturbation to enhance solution
diversity and expand the search scope. Mathematically, this
adjustment is implemented as follows:

xrj =

{
xrj + (2 · r1 − 1) ·BW, r2 < PAR

xrj , r2 ≥ PAR
(14)

In Equation (14), BW represents the bandwidth for
fine-tuning the pitch, r1 and r2 denote two random decimal
numbers within the interval (0, 1).

Step 3: HM Update. During this phase, the newly
generated harmony undergoes evaluation. If its objective
function value surpasses that of the lowest-fitness harmony
currently residing in HM, the existing solution is replaced
by the new candidate through a competitive exclusion
mechanism.

Xworst =

{
Xnew, f(Xnew) < f(Xworst)
Xworst, f(Xnew) ≥ f(Xworst)

(15)

Step 4: Termination Condition Assessment. At this stage,
the algorithm checks if the predefined iteration termination
criterion has been met. In the event that the stopping
condition remains unsatisfied, Steps 2 and 3 must be
reiterated. Conversely, when the termination criterion is
satisfied, the iterative search process terminates, and the
algorithm reports the best-found harmony as the optimized
solution.

The orignal HS algorithm is described in Algorithm 1.

Algorithm 1 The pseudocode of the orignal HS algorithm.
Input: The parameters HMCR, PAR, BW, and Maxiter.
Output: The best harmony, i.e. the optimal solution.

1: Initialize HM with n harmonies, It = 1.
2: To evaluate harmonies using the fitness function f().
3: while (It ≤ Maxiter) do
4: Generate a new harmony using (13).
5: Update HM using (15).
6: Select the best harmony encountered so far.
7: It = It+ 1
8: end while

B. Enhanced HS Algorithm

The original HS algorithm, owing to its inherent tendency
to stagnate in local optima and other methodological
constraints, encounters difficulties in effectively identifying
globally optimal solutions when addressing MRPP problems.
This study proposes a systematic enhancement and
adaptation of the conventional HS framework to more
effectively accommodate the complex requirements of

MRPP. To achieve this goal, several improvements have been
introduced.

The proposed EHS algorithm introduces substantial
methodological advancements, particularly in Steps 2 and
3 of the original HS framework. Specifically, the harmony
generation mechanism in Step 2 has undergone fundamental
redesign to integrate two distinct probabilistic strategies.
While preserving the conventional memory-based value
selection/adjustment process, we have developed two novel
harmony generation paradigms. These innovations exploit:
(1) the Lévy flight distribution [28]–[30] and (2) dynamic
adaptation to characteristics of the current best-known
harmony. The mathematical formulations for these strategies
are presented in Equations (16) and (17), respectively.

Xnew = Xbest + k1 ·Xi · Lévy(d) (16)

Xnew = Xbest + k2 · (Xbest −Xi) (17)

In Equations (16) and (17), Xnew denotes the newly
generated harmony, Xbest represents the best harmony
identified thus far, and Xi corresponds to the ith harmony in
the current HM. The remaining variables in these equations
are defined as follows:

k1 = 1− It/Maxiter (18)

Lévy(d) =
u

|v|
1
β

[
Γ(1 + β)× sin(πβ2 )

Γ( 1+β
2 )× β × 2

β−1
2

] 1
β

(19)

k2 = s · e(It/Maxiter) (20)

In the aforementioned equations, It denotes the current
iteration number, while Maxiter is the maximum number
of iterations. The variables u, v, and s are random numbers
uniformly distributed in (0, 1). The parameter β is set to 1.5,
and Γ(·) represents the gamma function.

This study proposes an enhanced harmony update
mechanism to improve the HS algorithm. Unlike
conventional approaches that directly replace the worst
harmony, the EHS employs a two-phase refinement strategy.
In the secondary phase, EHS generates new harmonies
matching the number of replacements, integrates them into
the HM, ranks all harmonies by their objective values, and
selects the top n to update the HM. The complete EHS
workflow is detailed in Algorithm 2.

C. EHS for MRPP

To apply the EHS algorithm to the MRPP problem,
each kinematic step of the robot must be formulated
as an independent optimization subproblem. Specifically,
Equation (11) computationally determines the optimal step
size for every discrete robot movement, treating each
locomotion decision as a distinct optimization scenario with
unique constraints and objective criteria.

To determine each robot’s optimal path from its initial to
target position, multiple optimization rounds are required.
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Algorithm 2 The pseudocode of the EHS algorithm.
Input: The parameters HMCR, PAR, BW, and Maxiter.
Output: The best harmony, i.e. the optimal solution.

1: Initialize HM with n harmonies, It = 1.
2: To evaluate harmonies using the fitness function f().
3: while (It ≤ Maxiter) do
4: oldHM = HM
5: newHM = HM
6: for i = 0 to n do
7: Ps = rand() /*Strategy selection probability*/
8: if (Ps < 1/3) then
9: Generate a new harmony using (13).

10: else
11: if (Ps > 2/3) then
12: Generate a new harmony using (16).
13: else
14: Generate a new harmony using (17).
15: end if
16: end if
17: Replace the ith harmony in newHM with this
18: new harmony.
19: end for
20: Evaluate the harmonies in newHM.
21: Merge oldHM and newHM into tHM.
22: Sort tHM based on the values of the fitness function.
23: Select the top n harmonies from tHM to form the
24: new HM.
25: Select the best harmony encountered so far.
26: It = It+ 1
27: end while

The process involves iterative applications of the EHS
algorithm to evaluate and select optimal movements at each
trajectory step. Given the dynamic nature of the MRPP
problem - where robots must navigate around each other and
avoid obstacles while reaching their destinations - the number
of required optimization steps may grow exponentially.
Consequently, solving MRPP with EHS requires not a single
optimization but rather a series of optimizations, making it
a significantly complex computational challenge.

The methodology for solving the MRPP problem with the
EHS algorithm consists of the following steps:

Step 1: Initialize the start and target positions for all robots
and dynamic obstacles, specify the coordinates of static
obstacles, and define the kinematic parameters (including
velocities and dimensions) for all entities (robots, static
obstacles, and dynamic obstacles).

Step 2: Initialize the HM for the MRPP problem. Each
harmony in HM encodes a potential solution, representing
robots’ travel distances as harmony vector components. The
mathematical structure of the harmony vector is formally
defined in Equation (21).

Xi = [xi1, xi2, · · · , xim, yi1, yi2, · · · , yim] (21)

In Equation (21), Xi represents the ith harmony in the
current HM, m denotes the number of robots, and (xi1, yi1)
denotes the displacement of the first robot in the x- and
y-directions within the coordinate system.

Step 3: Determine optimal displacements for all robots
using Algorithm 2. During EHS execution, Equation (11)

serves as the fitness function for harmony evaluation.
Step 4: Update the position coordinates of robots and

dynamic obstacles according to Equations (1) and (8),
thereby adjusting each robot’s movement trajectory.

Step 5: Check if all robots have reached their designated
target positions. If not, iterate Steps 2-4 until convergence.
Upon completion, output the optimal trajectories for all
robots.

IV. EXPERIMENTS AND ANALYSIS

To evaluate the performance of the EHS algorithm for
MRPP, we designed two distinct test scenarios. The proposed
EHS was compared with: (1) the original HS algorithm;
and (2) three state-of-the-art metaheuristics - the Grey Wolf
Optimizer (GWO), Whale Optimization Algorithm (WOA),
and Arithmetic Optimization Algorithm (AOA) - all of
which have demonstrated excellent performance in various
optimization domains.

All algorithms were implemented in Python 3.12 and
executed on a laptop with the following configuration: 13th
Gen Intel® Core™ i9-13900H processor (2.60 GHz), 32GB
RAM, and Windows 11 (version 24H2). The development
environment utilized Visual Studio Code (v1.96.3).

A. Algorithm Parameter Settings

To ensure fair and consistent algorithm comparisons, we
maintained identical stopping criteria and population sizes
across all methods, with a maximum of 1,000 iterations and a
population size of 30 for each algorithm. Algorithm-specific
parameters were configured according to the reference values
provided in Table I.

TABLE I
SPECIFIC PARAMETER SETTINGS FOR EACH ALGORITHM.

Algorithm Specific parameters

EHS HMCR = 0.9, PAR = 0.1, BW = 1
HS HMCR = 0.9, PAR = 0.1, BW = 1

GWO Parameter a linearly decreases from 2 to 0.
WOA Parameter a linearly decreases from 2 to 0.
AOA MOA max = 1, MOA min = 0.2, α = 5, µ = 0.499

B. Performance Evaluation Metrics

To ensure an unbiased comparison of algorithms, we
assess performance through (1) visual representations of
path-planning results and (2) quantitative metrics defined in
Equations (22)–(25).

TL =
m∑
i=1

Li (22)

TS =
m∑
i=1

Si (23)

In Equations (22) and (23), m denotes the robot count,
Li the ith robot’s path length, and TL the total path length.
Similarly, Si represents the ith robot’s step count, with TS
being the cumulative steps.
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TC =
T∑

t=1

Ct (24)

In Equation (24), T denotes the total number of iterations,
Ct represents the fitness value computed by Equation (11)
at iteration t, and TC corresponds to the total cost.

AT =
1

mR

mR∑
i=1

Ti (25)

In Equation (25), mR denotes the number of independent
runs, Ti indicates the computational time of run i (1 ≤ i ≤
mR), and AT corresponds to the average time across all
runs. The parameter mR was set to 40 in this study.

For all four metrics, smaller values indicate better
algorithm performance.

C. Scenario 1 for MRPP

Figure 1 illustrates the initial configuration for Scenario
1, which consists of 3 robots (R1-R3), 5 static obstacles
(S1-S5), and 3 dynamic obstacles (D1-D3).

The robots’ initial positions are R1(15,85), R2(10,30), and
R3(86,76), with corresponding target positions at (80,20),
(70,90), and (22,12) respectively.

The five static obstacles are positioned at: S1(25,50),
S2(75,50), S3(50,50), S4(50,75), and S5(50,25).

The three dynamic obstacles have initial positions
D1(25,85), D2(10,35), and D3(80,75), with corresponding
target positions at (60,15), (86,71), and (35,20) respectively.

All robots (R1-R3) have a radius of 1 unit. Static obstacles
S1, S2, S4 and S5 have a 3-unit radius, while S3 has a
4-unit radius. Dynamic obstacles (D1-D3) share a 1.25-unit
radius, with velocities of 1.5 units/time step (D1, D3) and
1.8 units/time step (D2).
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Fig. 2. Convergence curve of fitness function for MRPP of Scenario 1.

Figure 2 illustrates the convergence curve of the fitness
function for five different algorithms operating under the
conditions outlined in Scenario 1. From Figure 2, we can
observe that the EHS algorithm achieves convergence within
approximately 70 iterations. The WOA algorithm requires
nearly 80 iterations, while the GWO algorithm requires
approximately 80 iterations, the HS algorithm requires

slightly more than 80 iterations, and the AOA requires
more than 100 iterations to converge. Therefore, in terms
of the convergence performance of the fitness function, the
proposed EHS algorithm exhibits the fastest convergence
rate.

Figure 3 demonstrates an example of paths generated by
employing various algorithms for multi-robot path planning
in Scenario 1.

Path planning results in Figure 3 indicate the EHS
algorithm produces smoother trajectories and shorter paths
than comparative algorithms. While GWO and WOA
generate moderately jagged paths, HS shows intermediate
performance. AOA yields the longest paths with least optimal
trajectories.

Figure 4 displays boxplots comparing the total path
lengths (TL) obtained by each algorithm over 40 independent
executions.

The boxplots in Figure 4 demonstrate tightly clustered TL
distributions with few outliers for EHS, GWO and WOA
algorithms, among which EHS achieves the lowest mean total
path length.

In contrast, the HS and AOA exhibit significantly poorer
performance characteristics. Specifically, the AOA algorithm
manifests a considerably greater variability in path lengths
and produces a substantially higher mean path length relative
to the other algorithms.

Figure 4 provides evidence that the proposed EHS
algorithm surpasses the HS, GWO, WOA, and AOA with
respect to the TL metric. Specifically, the EHS algorithm not
only yields shorter mean path lengths but also demonstrates
greater performance consistency compared to the other
algorithms.

Figure 5 presents boxplots illustrating the distribution of
step counts for individual robot movements and total step
counts for all robots, following 40 independent runs of each
algorithm used to solve the MRPP problem in Scenario 1.

As illustrated in Figure 5, the EHS algorithm yields a
lower median for both individual robot step counts and
the aggregate step count across all robots compared to
alternative algorithms. Furthermore, the EHS algorithm’s
data distribution is significantly more compact, with fewer
outliers. Consequently, with respect to the movement
efficiency metric—defined as the number of steps—the EHS
algorithm exhibits superior performance relative to the other
evaluated algorithms.

Table II presents the statistical results derived from
the total cost (TC) of the fitness function following
40 independent executions of each algorithm. Figure 6
visualizes the boxplots for TC.

As illustrated in Table II, the EHS algorithm demonstrates
significantly lower statistical values compared to alternative
algorithms. This advantage is further corroborated by the
graphical analysis in Figure 6. Consequently, with respect
to the TC metric, the EHS algorithm demonstrates superior
performance over the other evaluated algorithms.

Figure 7 illustrates the average computation time (AT)
demanded by each algorithm during the resolution of the
MRPP problem in Scenario 1, following 40 independent
executions of each algorithm.

As shown in Figure 7, the EHS algorithm demands less
computational time compared to the GWO, WOA, and AOA.
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Fig. 3. Example paths derived from different algorithms applied to Scenario 1 MRPP.
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Fig. 4. Boxplots of total path length (TL) for MRPP in Scenario 1.
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Fig. 5. Boxplots of steps for different MRPP algorithms in Scenario 1.

TABLE II
COMPARISON OF TOTAL COST (TC) STATISTICAL RESULTS FOR

SCENARIO 1 ACROSS DIFFERENT ALGORITHMS.

Measure EHS HS GWO WOA AOA

Best 8.48E+03 9.19E+03 9.10E+03 8.58E+03 1.04E+04

Worst 8.89E+03 9.95E+03 9.54E+03 9.29E+03 1.27E+04

Median 8.72E+03 9.58E+03 9.27E+03 8.98E+03 1.11E+04

Mean 8.72E+03 9.60E+03 9.28E+03 8.97E+03 1.12E+04

Std 1.00E+02 1.83E+02 1.04E+02 1.64E+02 4.56E+02
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Fig. 6. Boxplots of total cost (TC) for MRPP of Scenario 1.
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Fig. 7. Average computation time for MRPP in Scenario 1.

The value is only slightly higher than that of the standard
HS algorithm. These results indicate that with respect
to computational efficiency, the proposed EHS algorithm
demonstrates competitive performance.

D. Scenario 2 for MRPP

The initial configuration for Scenario 2 of the MRPP
problem is visualized in Figure 8. This scenario comprises 5
robots (R1-R5), 9 static obstacles (S1-S9), and 5 dynamic
obstacles (D1-D5). Specifically, nine static obstacles are
positioned within the environment, while five dynamic
obstacles with time-varying positions are present. The robots
are designated as R1 through R5.

The initial positions of the robots are as follows: R1 is
located at coordinates (65,20), R2 at (15,85), R3 at (10,30),
R4 at (86,76), and R5 at (85,35). Their respective target
positions are set to be: for R1 (55,85), R2 (80,20), R3
(70,90), R4 (22,12), and R5 (10,50).

Static obstacles occupy fixed locations within the scene.
These are positioned at coordinates: S1 (25,50), S2 (25,75),
S3 (25,25), S4 (75,50), S5 (50,50), S6 (50,75), S7 (50,25),
S8 (75,25), and S9 (75,75).

Dynamic obstacles start at specific locations and move
towards designated targets. The initial positions of these
dynamic obstacles are: D1 at (45,15), D2 at (25,85), D3 at
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Fig. 8. Initial configuration for Scenario 2 of the MRPP.

(10,35), D4 at (80,75), and D5 at (80,60). They are expected
to reach the following target positions: for D1 (35,90), D2
(60,15), D3 (86,71), D4 (35,20), and D5 (15,70).

All robots have a radius size of 1. For the static obstacles,
the radius size is 3 except for S5, which has a larger radius
of 4. Each dynamic obstacle has a radius size of 1.25 and
moves with varying speeds: D1 moves at a speed of 1.25,
D2 at 1.5, D3 at 1.8, D4 also at 1.5, and D5 at 1.25.

Figure 9 illustrates the convergence curves of the fitness
function (as defined by Equation (11)) for the MRPP problem
under the conditions of Scenario 2 for various algorithms.
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Fig. 9. Convergence curve of fitness function for MRPP of Scenario 2.

As illustrated in Figure 9, the EHS algorithm achieves
a satisfactory convergence result with a notably reduced
number of iterations. It is also evident from Figure 9 that the
EHS algorithm requires fewer iterations compared to other
algorithms, reaching convergence at approximately the 75th
iteration. In comparison, the HS, GWO, and WOA require
between 90 to 100 iterations for convergence, whereas the
AOA demands over 130 iterations. From this, it can be
inferred that when using function convergence performance

as an evaluation criterion, the proposed EHS algorithm
exhibits superior performance.

Figure 10 demonstrates the results obtained by applying
various algorithms to solve the MRPP problem in Scenario
2.

As illustrated in Figure 10, the movement trajectories
generated by the EHS algorithm for robots are smoother and
more direct compared to those produced by other methods. In
contrast, the routes derived from the alternative approaches
exhibit greater curvature and complexity. This comparison
visually demonstrates the efficiency and optimality of the
EHS algorithm in addressing the MRPP problem presented
in Scenario 2.

Figure 11 presents a boxplot depicting the total travel
distances of robots solving the MRPP problem in Scenario
2, based on 40 independent runs of each algorithm.

Similar to Scenario 1, Figure 11 shows that the EHS
algorithm produces a tightly clustered data distribution with
minimal outliers, and its median is notably lower than those
of other algorithms. Algorithm performances are consistent
with those observed in Scenario 1. The EHS algorithm
outperforms other algorithms in terms of the TL metric in
Scenario 2.

Figure 12 presents boxplots of the steps taken by each
robot in Scenario 2 of the MRPP problem, along with the
total number of steps taken by all robots. The data shown
in Figure 12 are derived from 40 independent runs for each
algorithm.

Each robot using the EHS algorithm generally reaches
its target position within 100 steps, requiring fewer steps
compared to the other algorithms. In terms of median
values, the EHS algorithm outperforms others in efficiency.
Conversely, the AOA algorithm involves more movement by
the robots, with the median number of steps for each robot
exceeding 100. Additionally, across the 40 independent trials,
the data distribution from the EHS algorithm shows a notably
tighter cluster with fewer outliers when compared to other
algorithms.

Table III presents the statistical results of the total cost
(TC) incurred by the fitness functions of each algorithm,
obtained over 40 independent runs. Figure 13 provides a
boxplot illustrating the distribution of these total costs across
the different algorithms.

TABLE III
COMPARISON OF TOTAL COST (TC) STATISTICAL RESULTS FOR

SCENARIO 2 ACROSS DIFFERENT ALGORITHMS.

Measure EHS HS GWO WOA AOA

Best 1.33E+04 1.63E+04 1.53E+04 1.44E+04 2.04E+04

Worst 3.47E+04 3.74E+04 9.64E+04 1.37E+05 4.33E+04

Median 1.49E+04 1.76E+04 1.67E+04 1.69E+04 2.30E+04

Mean 1.86E+04 1.89E+04 1.88E+04 2.33E+04 2.44E+04

Std 7.40E+03 4.48E+03 1.25E+04 2.07E+04 4.42E+03

As indicated in Table III, the EHS algorithm produces
lower values than the other algorithms for all statistical
metrics, with the exception of the standard deviation. This
observation is further supported by the boxplot presented in
Figure 13.
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Fig. 10. Example paths derived from different algorithms applied to Scenario 2 MRPP.
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Fig. 11. Boxplots of TL for MRPP of Scenario 2.
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Fig. 12. Boxplots of steps for different MRPP algorithms in Scenario 2.

Figure 14 depicts the average computation time (AT)
needed for each algorithm to solve the MRPP problem in
Scenario 2, based on 40 independent runs of each algorithm.

Figure 14 shows that the EHS algorithm requires less
computation time compared to other algorithms. Thus,
in terms of computational efficiency, the proposed EHS
algorithm exhibits competitive performance, consistent with
the findings from Scenario 1.
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Fig. 13. Boxplots of TC for MRPP of Scenario 2.
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Fig. 14. Average computation time for MRPP of Scenario 2.

V. CONCLUSION

In this study, we propose an enhanced harmony search
(EHS) algorithm to overcome the limitations inherent in the
traditional harmony search (HS) method. Additionally, we
apply this enhanced algorithm to the problem of multi-robot
path planning (MRPP), thereby illustrating its efficacy in
addressing complex nonlinear optimization challenges.

The simulation results presented in this paper across two
scenarios demonstrate that the EHS algorithm generates
paths for robots which are not only smoother and more direct
but also exhibit superior performance metrics compared
to those generated by other algorithms. Specifically, the
EHS algorithm outperforms several widely-used optimization
algorithms, such as the original harmony search algorithm,
grey wolf optimizer (GWO), arithmetic optimization
algorithm (AOA), and whale optimization algorithm (WOA),
in various critical aspects. The EHS demonstrates enhanced
performance through: fewer steps taken by the robots to reach
their destinations; shorter total travel distances; lower overall
cost of the fitness function; and reduced computational time.

This paper presents a preliminary investigation into the
effectiveness of the proposed EHS algorithm for the MRPP
problem. Future research will delve deeper into the practical
application of the EHS algorithm, specifically within the
MRPP domain. Additionally, there are plans to extend the
application of the EHS algorithm to other fields where path
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planning and optimization are critical.
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