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Abstract—To address the challenges of detecting 

complex surface defects in steel materials, an EBA-

YOLO object detection model is proposed. The model 

integrates the efficient channel attention (ECA) module 

into the backbone network and neck of YOLOv8, 

enhancing the network's ability to focus on critical 

features. Additionally, the bidirectional feature pyramid 

network (BiFPN) is incorporated into the neck to enable 

the detection model to capture more contextual 

information across multiple scales, enriching the feature 

representation. The adaptive spatial feature fusion 

(ASFF) module is employed to merge features at 

different scales, and it is added to the multi-scale 

detection layers in the head to improve the model's 

ability to detect fine defects in small-sample data. 

Comparative experimental studies reveal that the mAP-

50 (mean Average Precision at an IoU of 0.5) increased 

by 6.7%, precision across all classes improved by 11.5%, 

and the recall rate increased by 3.4%. Furthermore, 

EBA-YOLO maintains a detection speed of 98 frames 

per second (FPS), ensuring its feasibility for real-time 

detection applications. 

Index Terms—YOLOv8，Steel surface defect 

detection, Attention mechanism, Multi-feature fusion, 

Object detection, Visual communication technology 

I. INTRODUCTION 

Steel, as the dominant metal in terms of quantity and 

applications, plays a crucial role in industrial development. 

Its efficient production processes significantly reduce energy 

consumption compared to materials like aluminum and offer 

excellent recyclability, aligning with environmental 

protection and sustainable development goals. In 2022, 

global crude steel production reached 1.888 billion tons, 

with iron, comprising 5.6% of the Earth's crust, providing 

abundant raw materials. The strength and toughness of steel 

have driven innovations in modern architecture, such as 

skyscrapers and bridges, while also playing a pivotal role in 

transportation, energy, and machinery manufacturing. Steel 

provides both stability and flexibility to modern society. 

Quality issues in flat steel can lead to economic losses and 

damage to reputation, with surface defects posing a major 

threat to thin flat steel and wide flat steel. Defects such as 

cracks and scratches weaken load-bearing capacity, increase 

the risk of failure, and heighten susceptibility to corrosion. 

They also reduce aesthetic appeal, disrupt manufacturing 

processes, and result in higher costs and diminished 

performance. Consequently, detecting defects is critical to 

ensuring the safety, reliability, and cost-effectiveness of steel 

products [1-8]. Traditionally, the detection of surface defects 

on steel plates has been primarily carried out manually, a 

process that is both time-consuming and unreliable. To 

replace manual operations, the rapid development of 

robotics and vision technologies [9-15] has created an 

opportunity to leverage computer vision for automating the 

detection of steel surface defects.  

Technologies such as neural networks have also been 

greatly applied [16-23]. However, traditional methods still 

face challenges such as low accuracy and high labor intensity. 

In contrast, the emergence of machine learning represents a 

significant breakthrough over manual inspection. This 

approach typically begins with manual feature extraction, 

followed by inputting these features into a classifier to 

categorize defects. Yet, as previously mentioned, its reliance 

on hand-crafted feature extraction rules results in poor 

flexibility and adaptability, making it difficult to cope with 

new environments. Additionally, it is susceptible to external 

factors and noise, which can reduce detection accuracy. 

Since 2012, convolutional neural networks (CNNs) have 

become the dominant models in the field of computer vision 

[24], widely applied to various vision tasks. Object detection 

techniques are generally divided into single-stage detectors 

and region-based two-stage detectors. The YOLO family 

represents single-stage detectors, while the R-CNN family 

exemplifies two-stage detection algorithms. In recent years, 

the application of deep learning in industrial fields has grown 

due to its ability to extract latent features from data without 

requiring manually designed complex feature extraction 

rules. For instance, Luo et al. [25] proposed a YOLO-based 

surface defect detection algorithm that enhances detection 

speed through feature enhancement, although it still exhibits 

limitations in accuracy. In another study, Liu et al. [26] 

integrated attention mechanisms to develop the YOLO-SO 

model for identifying insulators and detecting defects in 

aerial images, achieving significant results. By combining 

these models, they effectively addressed the trade-off 

between detection speed and accuracy for insulator defects. 
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Furthermore, Sohan et al. [27] analyzed YOLOv8, 

highlighting its innovative features, improvements, 

applicability across different environments, and 

performance metrics compared to other versions and models, 

providing a comprehensive evaluation of YOLOv8. 

Common surface defects on steel, such as cracks and 

scratches, are characterized by inter-class feature similarities 

and significant intra-class differences. These challenges, 

compounded by variations in lighting conditions and 

material properties, make defect detection more complex. 

Models often prioritize the identification of intra-class 

defects, which can lead to reduced classification accuracy. 

To address the challenges of poor detection and 

classification performance in existing steel surface defect 

detection methods, the EBA-YOLO model is proposed. 

Specifically, an Efficient Channel Attention Network (ECA-

Net) module is integrated into the network’s neck to enhance 

attention and filtering capabilities. This enables the model to 

focus on relevant steel surface defects while reducing noise 

and interference. The ECA-Net module allows the YOLOv8 

network to effectively filter out irrelevant information and 

concentrate on identifying valuable target objects, thereby 

improving its detection performance. In addition to the 

modifications in the neck architecture, a bi-directional 

feature pyramid network (BiFPN) is introduced to enable 

bidirectional information flow. Finally, the adaptive spatial 

feature fusion (ASFF) module in the prediction head 

enhances feature fusion across different scales, enabling the 

model to better learn and identify complex patterns 

associated with steel failure. 

 
Fig. 1. Defects of different categories: (a) Cracks; (b) Inclusions; (c) 

Patches; (d) Pitted Surfaces; (e) Rolled-in Scales; (f) Scratches. 

 

In the main network architecture, this paper introduces the 

ECA attention module and BiFPN feature fusion. BiFPN is 

a component introduced in the EfficientDet object detection 

architecture [28], designed to address certain limitations of 

traditional Feature Pyramid Networks (FPN) in object 

detection models. By introducing bidirectional connections, 

BiFPN more flexibly fuses features from different levels, 

allowing information to flow up and down within the feature 

pyramid, thereby better capturing contextual information 

and details across multiple scales. In the prediction head, 

Adaptive Spatial Feature Fusion (ASFF) is introduced to 

integrate features at different scales. The NEU-DET dataset 

was used in the experiments, and the proposed algorithm was 

compared with the original YOLOv8 algorithm. By 

incorporating attention mechanisms and multi-scale feature 

fusion techniques, the model proposed in this paper 

outperforms the original YOLOv8 architecture. The 

innovations of the model are listed as follows: 

(1) Integration of the ECA Attention Module: The ECA 

module was incorporated into the backbone and neck of 

YOLOv8. By selectively enhancing channel features, the 

ECA module improves the network's ability to focus on 

critical features, thereby enhancing the detection 

performance for steel surface defects. 

(2) Combined with BiFPN: The bi-directional feature 

pyramid network (BiFPN) was implemented in the neck, 

enabling bi-directional feature flow connections and 

adaptive fusion of multi-level features. This integration 

allows BiFPN to capture richer contextual information 

across multiple scales, enhancing the model's fine-grained 

defect detection capabilities. 

(3) Adaptive spatial feature fusion (ASFF): ASFF module 

was incorporated into the multi-scale detection layers in the 

head. This module integrates features across different scales, 

further improving the model's ability to accurately detect 

fine defects in small-sample datasets.。 

The remainder of this paper is organized as follows: 

Section 2 delves into the existing work related to this study. 

Section 3 provides a detailed explanation of the 

methodology of the original YOLOv8 model and the 

proposed EBA-YOLO detection method. Section 4 

discusses in detail the experiments conducted on the NEU-

DET dataset and the results obtained, including ablation 

studies to further demonstrate the superiority of the proposed 

method. Finally, Section 5 concludes with a summary of the 

experimental findings and outlines potential directions for 

future improvements. 

II. RELATED WORK 

A. Data Augmentation 

In the fields of computer vision and object detection, data 

augmentation is a core technique for improving model 

generalization and performance. To enhance YOLOv8, a 

leading real-time object detection architecture, a systematic 

augmentation strategy was designed. First, basic 

transformations such as horizontal and vertical flipping were 

employed to enrich the training data, providing diverse 

object orientations and perspectives, enabling the model to 

better adapt to different image features. Second, Mosaic 

Augmentation was innovatively incorporated, a method that 

combines four separate images into a single new training 

image. Moreover, this augmentation strategy increases the 

diversity of the learning process, strengthening the model's 

adaptability to various changes in real-world scenarios. 

B. Object Detection 

With the continuous advancement in the field of object 

detection, both single-stage and two-stage detectors have 

achieved significant progress. Among single-stage detectors, 

the YOLO (You only look once) model stands out for its 

efficiency, enabling the simultaneous prediction of object 

classes and bounding box coordinates in a single network 

inference. This innovative approach made real-time 

detection possible and laid the foundation for subsequent 

model iterations, such as YOLOv2 and YOLOv3, which 

focused on enhancing speed and accuracy. The YOLO series 
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has evolved further to YOLOv7 and YOLOv8 [29], with 

YOLOv8 gaining significant attention due to its simplified 

architecture and notable performance improvements. 

Meanwhile, SSD (Single shot multiBox detector) [30] 

introduced a single-stage framework with multi-scale feature 

layers, improving detection precision. A further 

advancement came with RetinaNet [31], which incorporated 

the focal loss mechanism to effectively address the issue of 

class imbalance, particularly enhancing accuracy in 

scenarios with abundant background samples. 

On the other hand, two-stage detectors, exemplified by 

Faster R-CNN (Region-based convolutional neural network) 

[32], adopt a more complex multi-step approach that 

involves generating region proposals, object classification, 

and bounding box regression. To achieve higher accuracy, 

the R-CNN series evolved through various iterations, 

including R-CNN, Fast R-CNN, Faster R-CNN, and Mask 

R-CNN, continuously improving object detection 

performance. This evolution introduced the concept of 

separating region proposal generation from the detection 

process, enhancing both flexibility and precision. Cascade 

R-CNN further advanced this concept by iteratively refining 

detection quality through a cascade of detectors. Amidst 

these developments, novel approaches have also had a 

profound impact on the field of object detection. CornerNet 

[33] improves detection accuracy by directly predicting key 

points of objects, while CenterNet [34] focuses on predicting 

the center and size of objects, achieving excellent 

performance in real-time detection scenarios. DETR 

(Detection transformer) leverages the Transformer 

architecture to reformulate object detection as a set 

prediction problem, showcasing the potential of attention 

mechanisms in object detection. 

Although the interplay between single-stage and two-

stage detectors remains significant, the emergence of 

YOLOv8 and its various improved versions has introduced 

new dynamics to the field of object detection. By 

simultaneously advancing in both speed and accuracy, 

YOLOv8 and its variants have demonstrated that single-

stage detectors can achieve exceptional performance in both 

aspects, further driving research and discussions on object 

detection. 

C. Attention Mechanism 

Attention mechanisms (AMs) represent a revolutionary 

breakthrough in artificial intelligence and machine learning, 

enabling models to selectively focus on specific elements 

within datasets and significantly enhance performance. The 

pioneering work by Vaswani et al. [35] introduced self-

attention through the Transformer architecture, 

revolutionizing neural machine translation by capturing 

contextual relationships between words in sequences. 

Subsequent advancements in attention mechanisms have 

spurred innovative adaptations, such as CBAM, which 

harmoniously integrates spatial and channel attention to 

improve image classification performance. Similarly, the SE 

module recalibrates feature responses across channels, 

enhancing model flexibility. The Halo attention method has 

demonstrated its ability to effectively capture long-range 

dependencies in images. ECA [36] established an efficient 

channel attention mechanism, adept at capturing 

interdependencies among channels with minimal 

computational overhead. While other attention mechanisms, 

such as SE or non-local attention, offer similar capabilities, 

ECA stands out for its computational efficiency, granting it 

a distinct advantage. These diverse attention strategies 

collectively underscore the transformative potential of 

attention mechanisms in advancing AI solutions. 

D. Multi-feature fusion 

The pioneering paper by Lin et al. [37] introduced the 

concept of fusing multi-scale features to enhance the 

representational power of convolutional neural networks 

(CNNs). This technique aims to combine features extracted 

from different levels of the network hierarchy to effectively 

capture fine-grained and high-level contextual information. 

Multi-feature fusion addresses the limitations of traditional 

single-scale feature extraction by leveraging the advantages 

of various features, thereby improving object localization, 

scale invariance, and semantic contextual awareness. 

The field of multi-feature fusion has continuously evolved 

over the years, giving rise to technologies that have had a 

significant impact on object detection architectures. The 

FPN proposed by Lin et al., which was later integrated into 

YOLOv3 and YOLOv4, paved the way for seamless 

integration of multi-scale features. This was achieved 

through a top-down and bottom-up architecture. This 

innovation greatly enhanced object detection performance, 

enabling more accurate localization and better semantic 

understanding. The progressive attention network (PAnet) 

further optimized multi-feature fusion by dynamically 

assigning attention weights across different scales, 

improving the discriminative power of the fused features. 

Another important milestone in the field of feature fusion 

was the introduction of the BiFPN by Tan et al. This network 

innovatively incorporated a bidirectional information flow 

mechanism to address the challenges of efficient feature 

fusion. This mechanism not only improved the efficiency of 

feature fusion but also ensured high-quality integration of 

features across multiple scales, significantly enhancing the 

accuracy and robustness of object detection. Building on this 

concept, Liu et al. proposed ASFF, which provided a fresh 

approach to pyramid feature fusion. ASFF introduced a 

learnable feature fusion strategy that adaptively selects 

features from different resolutions based on task 

requirements, effectively enhancing the model's ability to 

handle diverse object scales and aspect ratios. This flexibility 

not only improved model performance but also opened new 

directions and possibilities for future object detection 

research. 

These multi-feature fusion techniques have had a 

profound impact on the design of object detection 

architectures, particularly in the widely used YOLO series of 

models. By integrating FPN, PAnet, BiFPN, and ASFF into 

the YOLO architecture, these models have not only achieved 

outstanding detection performance but have also struck the 

optimal balance between accuracy and efficiency. This 

integration has not only enhanced the model's ability to 

understand complex scenes but also improved its real-time 

performance and adaptability in practical applications, 

driving continuous advancements and widespread adoption 

of object detection technology. 
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III. Proposed methods 

A. YOLOv8 Architecture 

In recent years, YOLO object detection models have 

garnered widespread attention for their real-time capability 

and exceptional performance. YOLOv8, as the latest 

evolution in the YOLO series, represents a significant 

technological advancement, achieving remarkable 

improvements in speed and accuracy compared to its 

predecessors. The YOLOv8 architecture fully leverages 

multi-scale features, efficient components, and advanced 

fusion technologies to deliver state-of-the-art object 

detection results. By introducing a more lightweight and 

efficient design, YOLOv8 addresses some of the limitations 

of previous YOLO versions while maintaining high 

detection accuracy. YOLOv8 adopts a single-stage 

processing approach, enabling the entire image to be 

processed in one pass, making it faster than many other 

object detection methods. Its architecture utilizes a feature 

pyramid to capture key multi-scale information, effectively 

handling detection requirements for objects of various sizes, 

thus preserving impressive accuracy. The flexibility of 

YOLOv8 lies in its ability to efficiently handle real-time and 

large-scale application scenarios, including detection tasks 

in images and videos. The YOLOv8 architecture is 

composed of three main components: the backbone, neck, 

and head. The backbone serves as the main feature extraction 

network, the neck is responsible for fusing multi-scale 

features, and the head predicts the object categories and 

bounding box coordinates. The architectural design of 

YOLOv8 aims to further optimize performance, allowing it 

to achieve fast and accurate object detection across a variety 

of application scenarios. A detailed diagram of the YOLOv8 

architecture is shown in Fig. 2. 

Backbone: YOLOv8 adopts the improved CSPDarknet53 

backbone network, which further optimizes the efficiency 

and accuracy of the architecture. The CSPDarknet53 

architecture introduces Cross-stage partial (CSP) feature 

fusion, enhancing the network's ability to capture both low-

level and high-level features. This design allows the network 

to not only understand the finer details of objects but also 

preserve the integrity of contextual information, improving 

overall detection performance. Neck: YOLOv8's neck 

utilizes PANet (Path aggregation network) to fuse features 

from different stages of the backbone network. This feature 

fusion is crucial for multi-scale feature representation, 

enabling the model to accurately detect objects of varying 

sizes and contexts. PANet leverages lateral connections and 

top-down pathways to aggregate features from different 

scales, promoting powerful feature fusion and improving the 

model's ability to detect objects in diverse conditions. Head: 

YOLOv8's head consists of an anchor-based detection 

module. For each anchor box, the model predicts the object 

confidence score, class probabilities, and bounding box 

coordinates. YOLOv8 incorporates anchor boxes with aspect 

ratios specifically designed for the target objects, enhancing 

detection performance by improving the model's ability to 

handle objects of varying shapes and sizes. 

Surface defects in steel are typically characterized by 

irregular shapes, unpredictable locations, and varying sizes. 

Additionally, the number of small-scale defects is often large. 

In this context, the original YOLOv8 model struggles to fully 

meet the detection requirements. To address this issue, this 

study enhances the original YOLOv8 network model in 

several key aspects. 

Firstly, improvements were made to the neck of the 

network by integrating attention mechanisms to emphasize 

key information while minimizing the influence of irrelevant 

features. The feature fusion process at the neck was 

upgraded to enhance the model's ability to capture important 

features. Additionally, an adaptive spatial feature fusion 

(ASFF) module was added just before the detection head. 

These modifications are designed to improve the model’s 

adaptability in recognizing small defects. As a result, these 

enhancements significantly improve the model's overall 

performance in defect detection tasks. 

C. ECA attention mechanism 

Attention mechanisms play a crucial role in contemporary 

neural network architectures by enhancing the model’s 

information processing capacity and facilitating the 

connection between different parts of the network. These 

mechanisms allow the model to selectively focus on relevant 

features while ignoring irrelevant ones, mimicking the 

human attention process. Several established attention 

mechanisms, such as BAM, SE, CBAM, and ECA-Net, have 

been proven to significantly improve the performance of 

detection models. ECA-Net, with only a slight increase in 

complexity, achieves a remarkable performance boost while 

adding a very limited number of parameters.  

Starting from the input feature map containing multiple 

channels, where each channel represents a different feature, 

ECA calculates the global context for each channel to 

indicate its importance relative to other channels. This 

calculation involves a learnable parameter, typically 

represented as a 1D convolutional layer, used to compute 

channel-specific attention coefficients. These coefficients 

are learned during training, allowing the network to 

dynamically adjust the importance of each channel. The 

kernel size (denoted as M  ) plays a crucial role in this 

process, as it determines the scope and depth of information 

integration. By applying a fast 1D convolution with a 

specific kernel size, ECA effectively captures channel 

dependencies and interactions in the feature map. The 1D 

convolution with kernel size M   is applied through an 

adaptive function as shown in equation (1). 

( )
( )

odd

c b
M C

 
=  = +  (1) 

These attention weights determine the importance of each 

channel in the overall representation. By integrating the ECA 

attention module, YOLOv8 can selectively amplify the 

channels with rich information while suppressing less 

relevant channels, resulting in a more focused and 

discriminative feature representation. The integration of the 

ECA attention module brings several advantages to 

YOLOv8.  
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Fig. 2. Original YOLOv8 structure diagram 

 

It improves contextual understanding by capturing long-

range dependencies, enhancing the model's ability to 

recognize objects, especially by emphasizing important 

features without significantly increasing computational 

complexity. Fig. 3 illustrates the structural diagram of the 

ECA module. In summary, the ECA attention module 

significantly enhances YOLOv8's object detection 

performance by improving inter-channel dependencies and 

strengthening feature discrimination. The introduction of 

this module not only optimizes feature representation but 

also boosts the model's performance in complex scenarios, 

enabling YOLOv8 to more effectively identify and locate 

targets across various applications. 

D. BiFPN feature fusion 

Replacing the original PANet in the neck component with 

BiFPN has proven to be highly effective, especially when 

handling datasets containing small-sized images. BiFPN 

excels at integrating high-resolution and low-resolution 

feature data, making it particularly beneficial for detecting 

defects such as "cracks" and "entangled scales," which 

typically involve numerous small objects. While FPN 

effectively generates multi-scale feature maps for object 

detection, it faces challenges in efficiently handling fine-

grained details and maintaining information consistency 

across different scales. In contrast, BiFPN is an advanced 

architecture that optimally addresses these shortcomings. It 

introduces bidirectional connections and lateral connections 

between adjacent feature maps, enhancing the flow of 

information both top-down and bottom-up. This 

bidirectional approach better preserves semantic information 

and fine object details, ultimately improving the accuracy of 

object localization and classification. Fig. 4 illustrates the 

differences between the PANet structure used in the original 

YOLOv8 and the BiFPN structure integrated into EBA-

YOLO. By integrating BiFPN, YOLOv8 achieves more 

context-aware and fine-grained image understanding, 

leading to improved object localization and classification 

accuracy. The bidirectional nature of BiFPN enables it to 

capture both high-level semantic features and low-level 

details, providing a comprehensive perspective of the scene. 

This enhanced feature extraction directly translates to 

superior object detection performance. 
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Fig. 3. Schematic diagram of ECA module structure 

 

 
Fig. 4. Comparison of PANet (left) and BiFPN (right) 

 

C. ASFF  

Adaptive spatial feature fusion (ASFF) addresses the 

challenge of effectively integrating multi-scale features from 

different layers of a convolutional neural network (CNN). Its 

advantages are manifold [38-41]: first, it significantly 

improves detection performance by dynamically fusing 

features from various network layers, thereby achieving 

more accurate object localization and classification. Second, 

ASFF excels in handling scale variations, enabling it to adapt 

to scenarios with objects of different sizes within the same 

image. 

In the process, it maintains computational efficiency, 

reducing memory usage and computational complexity 

during training and inference, making it highly suitable for 

real-time applications. The ASFF module functions by 

applying feature re-adjustment and adaptive fusion. 

Feature Adjustment: a bX →   represents the adjustment of 

feature maps from a   to b  , where a   and b   belong to the 

set  1, 2,3 . det lASFF ect−  is obtained by combining and 

merging the semantic information from levels 1, 2, and 3, 

represented by different weights ,  , and  . Formula (2) 

gives their definitions： 
1 2 3det l l l l l l lASFF ect X X X  → → →− =  +  +   (2) 

 

Adaptive Fusion: After feature resizing, adaptive fusion is 

applied. 
a l

ijx →
 represents the feature vector located in ( , )i j , 

where a  belongs to the set  1, 2,3 . The feature fusion at a 

specific level l  is expressed by equation (3): 
1 2 3l l l l l l l

ij ij ij ij ij ij ijy x x x  → → →=    +   (3) 

l

ijy  represents the output feature at position ( , )i j  within 

the specific channel level l . Meanwhile, 
l

ij , 
l

ij , and 
l

ij  

denote the spatial importance weights of three different 

feature mapping layers learned by the network prior to level 

l . These weights can be simple single values applied across 

all channels. The definition of each weight is provided in 

equation (4). 
l

ij

l l l

ij ij ij

l

ij

e

e e e



  



  
 =

+ +
  (4) 

The values of parameters 
l

ij , 
l

ij , and 
l

ij  are determined 

by control parameters 
ij

l

  , 
ij

l

  , and 
ij

l

   through the 

softmax function to compute these weights. The features 
1 lX →  , 2 lX →  , and 3 lX →   assist in the calculation of the 

weights l

 , 
l

 , and 
l

  through the application of the1 1 -

convolution layer. These weights are learned through the 

standard backpropagation method, similar to other neural 

networks. In the improved YOLOv8 model, the features 

from these three layers are dynamically combined at their 

respective scales, and the fused features are then input into 

the detection head for classification and detection of steel 

defects. 
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Fig. 5. Structure of EBA-YOLO 

 

This enhancement enables the model to more effectively 

utilize features from different scales, improving its ability to 

detect subtle defects. By incorporating several 

improvements into the YOLOv8 architecture, we propose 

EBA-YOLO, which stands for ECA and Feature Fusion 

YOLOv8. The final network structure is shown in Fig. 5. 

IV. Experiments and Results 

This paper uses the NEU-DET dataset to evaluate the 

improved YOLOv8 model, and the results show that it 

achieved 87.4% on the mAP-50 metric. 

A. Experimental setup 

The code runs in a Windows 11 system environment, 

using an NVIDIA GeForce RTX 3060 Laptop GPU. During 

the experimental training, the SGD optimizer was used with 

an initial learning rate of 0.01 and a weight decay coefficient 

of 0.0005. The confidence thresholds were set to 0.5 for 

mAP-50 and 0.95 for mAP-95. The model was trained for 

300 epochs per run, with a batch size of 32 and an image 

input size of 640×640. 

The initial dataset used is the NEU-DET steel surface 

defect dataset, released by Northeastern University. This 

dataset was first introduced by He et al. in their paper [4], 

and contains 1,800 images across six defect categories: 

cracks, inclusions, patches, pitting surfaces, rolled surfaces, 

and scratches, with 300 images per category. All images in 

the dataset have a size of 200×200 pixels. After carefully 

studying the impact of preprocessing and data augmentation 

techniques on model performance, the dataset was expanded 

through horizontal flipping, vertical flipping, and Mosaic 

augmentation. Each image was resized to 640×640 pixels. 

After augmentation, the total number of images increased to 

4,144, and the dataset was divided into approximately 86:7:7 

ratios for training, testing, and validation sets, i.e., 3,544 

images for training, 300 for testing, and 300 for validation. 

Figure 1 shows examples of various defects in the baseline 

dataset. The grayscale images demonstrate that even within 

the same defect category, significant variations in 

appearance can exist. For instance, in the scratch defect 

images, there are both horizontal and vertical scratch 

patterns. 

This paper uses precision, recall, mean average precision 

(mAP), and frames per second (FPS) as key performance 

metrics. Precision measures the accuracy of positive sample 

predictions and reflects the proportion of correct 

identifications among all positive predictions. Recall, on the 

other hand, measures the model's ability to capture all 

relevant instances, indicating the proportion of correct 

identifications among all actual positive samples. mAP, as a 

composite metric, evaluates the overall performance of a 

target detection or recognition system by calculating the 
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average precision across multiple categories, providing a 

comprehensive assessment of the model's quality. Lastly, 

FPS indicates the model's processing speed, which is crucial 

for real-time applications. 

These metrics together provide a comprehensive 

evaluation of the model's effectiveness, balancing accuracy, 

efficiency, and comprehensiveness, making them suitable 

for a wide range of applications from autonomous driving to 

medical image analysis. The mathematical representations of 

these metrics are as follows: 

TP
precision

TP FP
=

+
 (5) 

TP
recall

TP FN
=

+
 (6) 

TP TN
accuracy

TP FN FP TN

+
=

+ + +
 (7) 

1( )n n n

n

AP R R P−= −  (8) 

In the text, TP, FP, FN, and TN represent the numbers of 

true positives, false positives, false negatives, and true 

negatives, respectively. Precision and Recall are defined by 

formulas (5) and (6). A detection is considered accurate 

when the predicted defect category is correct and the 

Intersection over Union (IoU) exceeds a certain threshold 

(set to 0.5 in our experiments). Accuracy can be calculated 

based on TP, TN, FN, and FP, as shown in formula (7). 

Average Precision (AP) is defined by formula (8), where 
nR  

and 
nP   represent the recall and precision at the n  -th 

threshold, respectively. The mean Average Precision (mAP) 

is the average of the AP values for all instances. AP 

corresponds to the area under the Precision-Recall (P-R) 

curve. 

B. Comparative experiments on NEU-DET dataset 

In this study, the EBA-YOLO model was compared with 

the original YOLOv8s model. The main comparison 

indicators included precision, recall, and mAP to evaluate 

the accuracy of the model, and frames per second (FPS) to 

evaluate the inference speed. 

 

 

Table Ⅰ Quantitative comparison between original YOLOv8 and EBA-YOLO 

Model Class Precision (%) Recall (%) Map-50 (%) Map50-95 (%) 

YOLOv8 

crazing 50.3 50.2 48.6 21.4 

inclusion 71.9 90.5 86.8 46.3 

patches 85.1 91.3 94.4 60.8 

pitted_surface 75.3 72.4 81.2 47.5 

rolled-in_scale 65.3 63.5 68.3 39.6 

scratches 89.6 92.1 95.4 73.2 

EBA-YOLO 

crazing 68.2 67.3 67.2 31.6 

inclusion 84.1 91.2 85.1 53.7 

patches 90.3 95.1 97.6 64.2 

pitted_surface 89.5 77.2 88.2 52.9 

rolled-in_scale 83.4 72.1 76.4 50.8 

scratches 94.7 91.4 96.3 77.2 

 

 
(a) 

 
(b) 
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(c) 

   
(d) 

   
(e) 

   
(f) 

Fig. 6. Performance comparison of the models on the test dataset. (Left) Original dataset, (Middle) YOLOv8 reasoning, (Right) EBA-YOLO reasoning. 

(a)Crazing; (b) Inclusion; (c) Patches; (d) Pitted_surface; (e) Rolled-in_scale; (f) Scratches 

 

After multiple rounds of rigorous testing and training, the 

final improved YOLOv8 model was applied to the test image 

set, and its detection results were compared with those of the 

original YOLOv8 model. To better illustrate the performance 

improvements of EBA-YOLO across various categories, the 

test images were specifically selected from each category. 

Fig. 6 presents this visual analysis, with one example 

chosen per category. By incorporating feature fusion and 

attention mechanisms into the neck and head components of 

the EBA-YOLO model, the model demonstrated superior 

detection capabilities for defects of varying scales (e.g., 

crazing, patches, rolled-in scale, and scratches in Fig. 6) and 

different orientations (e.g., inclusion and rolled-in scale in 

Fig. 6), outperforming the original YOLOv8 model. 

Moreover, EBA-YOLO also exhibited enhanced overall 

detection performance (e.g., pitted surface in Fig. 6). Table 

1 provides the quantitative analysis results of these two 

models. As shown in the table, EBA-YOLO outperformed 

the original YOLOv8 model in terms of mAP for every 

category. The total mAP-50% across all categories improved 

by 6.7%, with an 11.5% increase in precision and a 3.4% 

improvement in recall. 

C. Ablation experiment 

In computer vision models, when enhancing model 

performance by introducing new modules, ablation studies 
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are employed to systematically evaluate the specific 

contributions of these modules to the overall model 

performance. In these studies, individual modules or 

components in the model are gradually removed and their 

impact on model accuracy, robustness, and efficiency is 

observed. Through these rigorous experiments, we can gain 

an in-depth understanding of the relative importance of each 

module, thereby guiding us to further optimize the model 

architecture and improve the model's capabilities. Therefore, 

ablation research is an indispensable tool in the process of 

iterative model development to ensure that the addition of 

new modules indeed makes a significant contribution to 

performance improvement in the field of computer vision. 

These experiments were also performed on the NEU-DET 

data set. 

This paper uses 7 different variants, each of which 

represents an improvement on the YOLOv8 architecture, as 

shown in Table Ⅱ: 
Table II List of changes proposed by ablation studies 

Variation 
ECA 

module 
BiFPN 

ASFF 

detection 

1 ☐ ☐ ☐ 

2 ☑ ☐ ☐ 

3 ☐ ☑ ☐ 

4 ☐ ☐ ☑ 

5 ☑ ☐ ☑ 

6 ☑ ☑ ☐ 

7 ☑ ☑ ☑ 

 

As shown in Table Ⅱ, the ECA module refers to the ECA 

attention mechanism added to the neck portion of the 

architecture. BiFPN represents the BiFPN connection 

module implemented in the neck for feature fusion. ASFF 

detection indicates the ASFF detection head added prior to 

the prediction module in the head of the architecture. The 

improvements are summarized as follows: 

(1) Variant 1: The original YOLOv8 model with no 

modifications. 

(2) Variant 2: Improved solely by introducing the ECA 

module. 

(3) Variant 3: Improved solely by incorporating BiFPN 

connections, implemented in the neck portion of the 

architecture. 

(4) Variant 4: Improved solely by adding an ASFF 

detection head before the prediction head in the 

architecture's head section. 

(5) Variant 5: Improved through the combination of 

introducing the ECA module (in the neck section) and the 

ASFF detection module (in the head section). 

(6) Variant 6: Improved through the combination of 

introducing the ECA module (in the neck section) and the 

BiFPN connection (also in the neck section). 

(7) Variant 7: Further improved by introducing the BiFPN 

connection into the architecture of Variant 5, achieving the 

final enhancement. 

Table 3 presents the specific improvement results in terms 

of Precision, Recall, and mean Average Precision (mAP) 

across all six variants. Each category is represented by the 

letters a to g, denoting all categories, crazing, inclusion, 

patches, pitted_surfaces, rolled-in_scale, and scratches, 

respectively. By analyzing Table 3, several observations can 

be drawn. Each individual component contributes to better 

model learning and performance improvement, except for 

the BiFPN connection module. This module demonstrates its 

effectiveness when paired with the ECA attention 

mechanism or the ASFF module, further enhancing their 

performance. As shown in the table, the addition of the ECA 

module and the ASFF module increased the mAP of the 

baseline model by 3.2% and 3.3%, respectively. However, 

when the BiFPN connection module was integrated into 

Variants 2 and 4, it further improved the mAP by 2.6% and 

1.5%, respectively, compared to the baseline model. By 

combining all three modules into the baseline model, the 

overall mAP increased by 7.1%. This demonstrates that the 

EBA-YOLO model exhibits superior performance and 

enhanced learning capabilities. 

V. Conclusion 

Aiming at the problem of complex surface defect 

detection of steel, an EBA-YOLO target detection model is 

proposed. 

(1) By introducing the ECA mechanism module into the 

neck part of the network, the dynamic weighting strategy is 

used to improve the inter-channel feature expression ability 

and optimize the channel attention mechanism of the 

detection model. Compared with traditional attention 

mechanisms, the detection model enhances small target 

detection and target discrimination capabilities in complex 

scenes without significantly increasing computational costs. 

(2) By leveraging BiFPN's hierarchical information 

integration capability and ASFF's dynamic adjustment 

ability, the efficient fusion of BiFPN and ASFF enables 

complementary optimization of multi-scale features. This 

enhances the detection model's precision and robustness 

across various scenarios. 

(3) Through comparative experimental studies, it was 

found that the mAP-50 (mean average precision at an IoU 

threshold of 0.5) increased by 6.7%, overall precision 

improved by 11.5%, and recall rose by 3.4%. Meanwhile, 

EBA-YOLO maintained a detection speed of 98 frames per 

second (FPS), ensuring its feasibility for real-time detection 

applications. 

 

Table Ⅲ Quantitative comparison of different proposed changes in ablation experiments 

Variation 
Precision (%) Recall (%) mAP 

(all) a b c d e f g a b c d e f g 

1 72.4 50.9 74.1 84.3 76.3 62.7 87.5 77.6 52.1 93.1 91.4 71.2 65.8 94.2 78.5 

2 75.6 62.1 76.4 81.9 83.5 69.7 85.9 81.4 62.9 91.7 94.2 77.4 65.8 94.8 82.1 

3 73.3 47.8 74.9 84.3 87.1 63.4 87.4 78.2 47.3 91.4 92.4 70.7 70.1 90.6 79.1 

4 78.1 60.2 76.2 87.4 89.3 71.2 90.5 81.6 59.1 91.4 95.8 74.5 68.8 96.0 82.5 

5 81.1 65.3 79.2 88.5 85.1 75.1 90.3 82.1 71.1 91.8 97.6 73.5 72.6 91.9 84.4 

6 77.4 63.2 76.5 85.1 88.6 71.0 87.1 78.9 55.4 90.9 95.2 75.6 68.5 92.1 83.3 

7 84.5 68.2 82.6 88.5 89.1 81.0 92.9 80.9 66.7 87.9 95.1 78.2 72.5 91.8 85.5 
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Therefore, the significant improvements of EBA-YOLO 

highlight its effectiveness in enhancing detection capabilities 

while ensuring high efficiency in real-world applications. 
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