
 

  
Abstract—This study proposes a method for analyzing the 

factors influencing traffic efficiency at both section and lane 
levels. A traffic state differentiation index quantifies the 
variations in traffic states at the lane level. The findings indicate 
that higher traffic volumes result in greater disparities in traffic 
conditions across lanes in our study scenario. The relationship 
between traffic efficiency and its influencing factors is examined 
at the lane level, with a sensitivity analysis based on the 
elasticity coefficient to identify sensitive ranges. Multiple linear 
regression quantifies the effects of these factors, while a genetic 
algorithm-optimized backpropagation neural network and a 
gated recurrent neural network predict traffic indicators. The 
best prediction results are achieved with the traffic flow dataset, 
followed by parking vehicles and stopping time datasets, with 
the speed-limits dataset yielding the least accurate results. 
Prediction errors are more pronounced within the calculated 
sensitive intervals, warranting closer attention. The proposed 
method improves prediction accuracies for queue length, travel 
time, lane-level flow, and lane-level occupancy by 11.36%, 
12.03%, 3.80%, and 6.71%, respectively. This approach 
effectively identifies key factors and sensitivity ranges 
impacting traffic status at both section and lane levels, which 
enhances the interpretability of machine-learning methods in 
traffic prediction. 
 

Index Terms—urban traffic, data analysis, traffic simulation, 
neural network 
 

I. INTRODUCTION 
RBAN traffic is a complex network system where local 
bottlenecks form due to congestion. If not quickly 
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resolved, these bottlenecks can further spread along lines and 
surfaces, affecting the entire network [1]–[3]. Traffic flow 
characteristics refer to the patterns and relationships within a 
traffic system, describing the laws of change in traffic flow 
under different conditions through both quantitative and 
qualitative descriptions. Hence, the study of traffic flow 
characteristics is the basis for an in-depth analysis of how 
traffic problems emerge on road sections, which can guide 
the proposal of improvement strategies and the optimization 
of traffic design. Several countries (regions) have conducted 
research on traffic flow characteristics and prepared 
corresponding road access manuals for road traffic conditions. 
The most widely used manual is the US Highway Capacity 
Manual, and its latest results are published in the 2016 edition 
[4]. Scholars have continuously improved this manual, 
mainly from two perspectives: traffic data collection 
technology and calculation methods. 

Urban road traffic flow characteristics must be studied 
based on traffic flow data from actual scenarios. Thus, the 
efficient and realistic collection of traffic data and the 
construction of a simulation environment for the 
interweaving zone based on the collected data are particularly 
important. Sherief et al. [5] used video-based measurement 
techniques to collect and analyze traffic data such as flow, 
speed, and density. By collecting experimental data, Yuan et 
al. [6] analyzed forced lane-changing behaviour in the 
intertwining zones of expressway entrances and exits. Anas 
et al. [7] studied the relationship between the number of lanes, 
heavy vehicles, and saturation flow using actual data. 
However, the high cost, difficulty, and low precision of 
actual data collection caused significant difficulties in 
studying traffic characteristics. With continuous 
advancements in traffic simulation technology, the accuracy 
and diversity of computer simulation results have gradually 
improved. These simulations can be tailored to different road 
factors according to the researcher’s requirement to model 
the traffic conditions. Scholars have largely employed 
simulation technology to study and analyze various 
transportation-related issues. Bharadwaj et al. [8] used 
VISSIM to simulate traffic flow operations on a multilane 
highway, generating speed flow curves from the simulation 
data, which were then used to calibrate the capacity model 
parameters. Marczak et al. [9] used FOSIM software to 
simulate the traffic state of urban roads. Nagel and 
Schreckenberg [10] proposed a classical one-dimensional 
meta-cellular model, the Na–Sch model, which is a simple 
model that can simulate actual road traffic phenomena. 
VISSIM exhibited better accuracy and reliability. It can 
obtain accurate operational efficiency data of sections and 
lanes and simulate complex traffic flow scenarios. Therefore, 
this software is widely used by researchers. 
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Calculation methods for traffic flow characteristics 
primarily include statistical analysis and traffic forecasting. 
Statistical analysis is mainly applied to quantitative or 
qualitative analyses of traffic status. Adams [11] first 
proposed a traffic flow theory based on mathematical and 
statistical theories. Subsequently, scholars simultaneously 
focused on the traffic flow characteristics of urban roads and 
the interplay between different traffic elements and their use 
in related traffic data analysis. Traffic forecasting is primarily 
used to assess and identify future traffic states. Fedotkin et al. 
[12] proposed a numerical imitational model that not only 
allowed the user to watch the traffic at a crossing in video 
mode but also computed the basic characteristics of the 
system using the minimum average weighted waiting time in 
stationary mode. 

Qi et al. [13] used a speed-based grading method to 
identify bottlenecks, which had better bottleneck 
identification performance. To reveal the interrelationships 
between traffic flow parameters and their spatiotemporal 
patterns, they integrated difference and sensitivity analyses 
with statistics to quantitatively analyze the traffic 
characteristics of urban road sections and lanes. Variability 
analyses have been widely applied in traffic efficiency 
research. Liu et al. [14] studied the regional variability of 
road traffic efficiency in space. Karlaftis et al. [15] collected 
panel data over 11 years from 15 European cities and 
investigated the variability of different methods used to 
evaluate urban road traffic efficiency. Barnum et al. [16] 
analyzed the variability of the operational efficiency of 
public transport using the data envelopment analysis method. 
To identify the key factors and sensitive nodes influencing 
the efficiency of traffic operations on road sections, 
sensitivity analysis was used to calculate their impact on the 
evaluation of indicators. The magnitude of this impact is 
referred to as the sensitivity factor. Sensitivity analyses are 
widely employed in engineering applications. Tobin et al. [17] 
conducted a sensitivity analysis with variational inequalities 
on urban traffic-balancing network flows. Kitamura et al. [18] 
identified the main factors affecting patronage through a 
sensitivity analysis. 

Both theory and practice demonstrate that traffic 
management and control can effectively reduce traffic 
congestion and improve the operational efficiency of 
transportation systems. Jelena et al. [19] demonstrated that 
on-road parking for guidance improved resource utilization. 
Traffic management and control are generally classified into 
traffic demand and system management. The road traffic 
state supports the input parameters of the traffic control 
management system and is the basis for optimized 
decision-making. It has several applications in ramp control, 
travel time estimation, accident detection, transportation 
planning, and transport infrastructure evaluation [20], [21]. 
Research on traffic status focuses on the macroscopic grasp 
parameters (flow, speed, and density) of the traffic status of 
road sections. A few scholars have studied lane traffic status, 
which is a fine-grained traffic-status estimation problem that 
can meet the needs of fine-grained management 
decision-making. Lane-level traffic status has several 
applications in traffic control management, such as freeway 
ramp control, lane change recommendations, and 
lane-splitting speed limits [22]. 

According to this research perspective, the traffic status 
can be categorized into two levels: section and lane. This 
distinction has seldom been made in previous studies. 
However, with advances in traffic control and management, 
road-section level traffic state estimates no longer meet the 
requirements for tasks such as lane-splitting speed limit and 
flow allocation. Section-level approaches have dominated 
traffic-status-related studies. Anand et al. [23] used a Kalman 
filter algorithm to fuse video-obtained traffic with travel-time 
data from the GPS to estimate traffic density at the 
road-section level and validated the model using both field 
and simulation data. Deng et al. [24] proposed a method for 
estimating traffic density at the road-section level using a 
variety of data in a least-squares framework. Duret et al. [25] 
proposed a framework for assessing the traffic status at the 
road-section level that fits both Eulerian and Lagrangian data. 
Only a few traffic-status estimation methods have been 
explored at the lane level. Wright et al. [26] explored 
multiple traffic status estimation methods for single and 
multiple lanes and compared their effectiveness. 
Bekiaris-Liberis et al. [27] proposed a lane-level traffic-state 
estimation method that combined networked vehicles with 
fixed-coil data. 

Student commuting is an important part of urban traffic 
and is characterized by high complexity, regularity, and 
short-term aggregation [28]. These factors also contribute to 
the vulnerability of school roads to traffic accidents [29]. 
Therefore, its impact on the general operational efficiency of 
urban traffic cannot be ignored. In cities of developing 
countries, increasing car ownership is making private cars the 
preferred mode of travel because of their convenience, speed, 
and other advantages. This shift has led to a profound change 
in how students commute to school. Vehicle-stopping 
behaviour is commonly observed on school roads. The 
frequent movement of vehicles into and out of parking spaces 
results in large variations in traffic conditions across lanes on 
these roads. Mouronte-López et al. [30] studied the factors 
influencing the choice of transportation mode for student 
commuting. Hu et al. [31] investigated changes in traffic flow 
status caused by temporary parking behaviour on roadways. 
Cao et al. [32] showed that on-street parking reduced the 
lateral residual width of lanes, which affected the road 
capacity, mainly in terms of the impact on parking lanes and 
their adjacent lanes. Song et al. [33] proposed a cyclic 
reservation and allocation model for improving the utilization 
efficiency of parking spaces. Their main research objective 
was to construct a simulation scenario based on the actual 
traffic flow data of school road sections. A combination of 
macro- and micro-approaches was used to investigate the 
traffic status of a school scene at the road section and lane 
levels, exploring the mechanism of traffic problems and 
proposing improvement strategies for optimizing traffic 
operation organizations. 

Intelligent transportation systems (ITS) are essential 
technologies for advancing urban traffic management. 
Consequently, traffic state prediction has emerged as a key 
development area in transportation [34]. Urban road traffic 
conditions are highly susceptible to external factors. 
Moreover, the numerous traffic parameters combined with 
complex mapping relationships, especially in 
congestion-prone areas, where the number of lanes and lane
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Fig. 1. Study framework for identification and analysis of traffic factors. 
 

 
types can increase drastically, significantly increasing the 
dimensionality and complexity of traffic predictions [35]. 
Therefore, identifying traffic parameters that strongly 
correlate with predictive indices remains a pressing 
challenge. 

Bai et al. [36] introduced a novel two-branch, 
multitemporal-resolution convolutional network with an 
adaptive graph NN to predict traffic states in urban road 
systems. This spatiotemporal resolution convolutional 
network utilized optimized Tujin frequent differential 
equations and adaptive correlation adjacency graphs to 
ensure accurate feature propagation throughout the network. 
Osorio-Arteaga et al. [37] proposed a robust identification 
and control method based on an NN using a recursive 
adaptive training algorithm. This approach optimizes a NN 
by quantifying the impacts of multiple variables on a system. 
Du et al. [38] focused on extracting and learning complex 
dynamic spatiotemporal features from raw traffic flow data 
by applying deep learning models to improve predictive 
accuracy. Papasani et al. [39] demonstrated that effective 
feature extraction can significantly enhance the operational 
efficiency and estimation accuracy of machine learning 
algorithms. Zhang et al. [40] demonstrated that optimizing 
combinations of system-related parameters could improve 
the robustness and accuracy of NNs. They began with traffic 
prediction to verify the feasibility of the proposed method for 
identifying factors affecting traffic efficiency at the lane 
level. 

In this study, starting with the traffic congestion problem  

 
of mixed and intertwined roads in urban areas, a 
comprehensive simulation model was established using 
representative school road traffic flows during school hours. 
The section-level and lane-level traffic factors affecting road 
efficiency were identified and analyzed. The proposed 
framework is shown in Fig. 1. 

The structure of the rest of the paper is as follows. In 
Section II, the school road simulation model is constructed 
based on the composition of traffic flow and the behavioural 
characteristics of traffic participants in the actual road section. 
Driving-behavior parameters were calibrated using a genetic 
algorithm (GA) considering section- and lane-level indicators. 
Section III presents the lane-level traffic state differentiation, 
describing the traffic flow distribution, speed-flow 
relationship, and capacity of each lane. Section IV proposes a 
sensitivity-analysis method for exploring the mechanisms of 
school road traffic problems. A multiple linear regression 
model is used to quantify the extent to which different factors 
influence traffic states. In Section V, GA-optimized BPNNs 
are applied to predict section- and lane-level traffic indicators 
and compare the results with those analyzed in this study. 

II. SIMULATION MODELING AND PARAMETER CALIBRATION 
Traffic microsimulation has significant advantages in 

analyzing the mechanism of the supply-demand balance of 
complex traffic networks and deducing the spatiotemporal 
operation state of traffic. Numerous parameters and models 
are embedded and fused to describe better traffic system 
operations, traffic flow characteristics, and driver behaviour. 
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PTV VISSIM is a widely used microsimulation program for 
modelling multimodal traffic processes using the Vision 
Traffic Suite software package. It enables detailed and highly 
flexible modelling of road design, vehicle performance, and 
driver behaviour. This study, PTV VISSIM 2021 was used to 
construct the simulation model, and MATLAB R2016a was 
used to calibrate the simulation parameters to ensure its 
accuracy and reliability. The computer hardware was 
equipped with an 11th Gen Intel (R) Core (TM) i7-11800H 
CPU, with 16 GB of RAM, 8 cores, and 16 logical 
processors. 

A. Simulation Modeling 
Construction of a school road-section simulation model 

requires the collection of actual geometric features, vehicle 
operating statuses, vehicle types, and traffic evaluation 
indicators of the road section. Geometric data for the 
simulation modelling were measured in situ using 
rangefinders and other devices. The operating status of 
vehicles, vehicle composition, and traffic evaluation 
indicators were collected using videos captured by unmanned 
aerial vehicles. This method has the advantages of rich data 
extraction and affordability [41], [42]. Because the 
data-collection site is in Northeast China, a region with a cold 
climate, non-motorized travel options were minimal during 
the survey period. Consequently, this study mainly 
considered the impacts of motorized vehicles. Basic data, 
such as speed, acceleration, and traffic flow, were further 
processed using TRACKER software and manual statistics. 
The basic data types and names are listed in Table I. 

TABLE I 
TYPE OF DATA COLLECTED 

Geometric data Traffic Statue Evaluation Indicator 

Lane number Velocity Queue length 

Road width Acceleration Travel time 

Lane width Car number Occupancy 

Nonmotorized lane width Number of stops Cross-section flow 

Number of parking spaces Stopping time - 

 
VISSIM provides two psychophysical healing models: 

Wiedemann (1974) and Wiedemann (1999) for longitudinal 
vehicle motion and a rule-based algorithm for lateral motion 
[43]. Wiedemann (1974) was used in this study because it 
represents urban scenarios. The modelling steps were as 
follows: First, a road was built; based on an actual scenario, a 
unidirectional three-lane roadway was built, and a pedestrian 
crosswalk was set up. Second, the traffic-operation 
organization of the road was restored. Traffic facilities, such 
as parking spaces, school buses, pedestrian entrances and 
exits, signal lights, and other traffic management measures, 
such as signs and markings, speed reduction zones, priority 

rules, and vehicle paths, were installed. Finally, traffic flow 
data were input. Additionally, the vehicle composition, 
velocity, acceleration, deceleration, headway time, distance, 
and other relevant parameters were set. 

In this study, we compared and analyzed traffic status 
differences across two dimensions: road cross-sections and 
lanes. Nine sections were selected and labelled, as shown in 
Fig. 2. 

B. Parameter Calibration 
The simulation model parameter calibration involves 

various parameters and complex combinations and requires 
an optimization algorithm to obtain the closest combination 
of driving behaviour parameters. The calibration problem in 
this study did not have a strictly mathematical analytical 
solution, and the simulation model must be called frequently 
during the calibration process. A genetic algorithm was used 
to reduce the calibration time and prevent local optimization. 

To verify the reliability of the simulation model and the 
accuracy of the calibration parameters, evaluation indicators 
that can reflect the operation of vehicles in both actual and 
simulated traffic environments must be selected. Owing to 
the uneven distribution of traffic in school section lanes 
during school days, both section-level and lane-level 
indicators were selected for this study. Travel time and queue 
length can be obtained from real-world scenarios, and driving 
behaviour parameters with which evaluation indicators are 
correlated exist; therefore, they were chosen as section-level 
indicators [44]. The main indicators of lane traffic 
distribution are lane saturation flow rate and utilization [45]. 
In VISSIM, lane-level volumes and occupancy can reflect 
these indicators and can be obtained statistically; therefore, 
they were selected as lane-level indicators. 

Parameter calibration aims to minimize the error between 
the output value of the simulation and the actual measured 
value. Based on the research requirements of this study, the 
root mean square relative error was used to construct an 
objective function [46]. 

2 2 2 2( ) ( ) ( ) ( ) ( )r s r s
r s r s ij ij ij ij ij ij

i j i j
MinF X Q Q T T O O V Vα β η ε= − + − + − + −∑∑ ∑∑  (1) 

where α , β , ijη , and ijε are the coefficients of queue 
length, travel time, occupancy rate, and cross-sectional flow; 

rQ  and sQ are the observed and simulated values of queue 
length; rT  and sT  are the observed and simulated values of 
travel time; r

ijO  and s
ijO are the observed and simulated values 

of lane i cross-section j  occupancy rate; and r
ijV s

ijV are the 
observed and simulated values of lane i cross-section j  flow, 
respectively. 

 
Fig. 2. Simulation model of a roadway by a school
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III. ANALYSIS OF LANE-LEVEL TRAFFIC STATE 
DIFFERENTIATION 

To reflect the difference in traffic status of each lane on the 
school road, we analyzed the distribution of traffic flow in the 
lanes, speed–flow relationship, and capacity of the lanes. 
First, a set of simulation scenarios was created. The 
school-road cross-section was divided into upstream, parking 
area, and downstream, with lanes divided into a, b, and c. For 
example, the parking area reflects the process of pick-up and 
drop-off vehicles pulling in and out of lane A, which provides 
parking spaces. Second, the lane traffic status characteristics 
were analyzed. The differences between lanes were discussed 
in terms of trends, intervals, and key nodes. Finally, a 
one-way analysis of variance (ANOVA) was applied to test 
lane differentiation. 

To represent the traffic flow distribution and speed–flow 
relationship of the school section lanes, the section traffic 
flow was set as a variable with a range of [100,2000], step 
size of 100 pcu/h, speed limit of 70 km/h, percentage of 
parked cars of 10%, and a stopping time of 30 s. Each set of 
simulations was repeated 10 times (10 simulation seeds). It 
had a runtime of 3600 s and a warm-up time of 600 s. When 
the traffic flow on the road reaches 1400, 1500, and 1600 
pcu/h, the upstream, parking area, and downstream lanes are 
saturated. 

Fig. 3 shows the traffic flow distributions at various 
locations. Differences in traffic flow distribution are 
observed between lanes of the same cross section, with lanes 
A and B having similar and significantly smaller flows than 
lane C, owing to the impact of the stops. In addition, 
differences in traffic flow are present at different cross 
sections of the same lane, with the downstream section 

having the highest flow and the upstream section having the 
lowest. Differences in traffic flow between the cross sections 
of the same lane are significantly smaller than those between 
lanes of the same cross section. 

Fig. 4 shows the relationship between lane-level flow and 
speed. Variation in vehicle speed was observed between 
lanes of the same cross-section, with lane A having the 
highest rate of change and lane C having the least. Variations 
were also observed between cross-sections of the same lanes. 
The upstream area showed the highest variation, with an 
interval of [70,10]. The variation interval in the parking 
section is [70,18]. The downstream section had the least 
variability and faster vehicle speeds, with an approximate 
interval of [63,23]. The variation in vehicle speed at different 
cross sections of the same lane was less than that between 
lanes of the same cross section. 

Fig. 5 presents the capacities of different locations on the 
school road. The capacity significantly varies between lanes 
of the same cross-section. Lane C has the most significant 
variation, whereas Lane A has the smallest. The variation of 
traffic flow in the cross-sections for the same lanes is slight. 
The upstream and parking sections have similar and lower 
capacities than the downstream sections. The variation of 
traffic flow between cross-sections of the same lane is 
significantly smaller than the variation in capacity between 
lanes of the same cross section. 
 
 

 
Fig. 3. Lane-level traffic flow distribution 

 

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2163-2186

 
______________________________________________________________________________________ 



 

 
Fig. 4. Lane-level flow–velocity relationship 
 

 
Fig. 5. Lane-level traffic capacity 
 
 

Variance at various locations was selected as an indicator 
of differentiation. Fig. 6 shows the relationship between 
capacity variance and traffic flow. As the traffic flow 
increased, the differentiation between lanes increased, and 
they exhibited a positive correlation. Traffic lane choice 
should be guided to rationalize right-of-way assignments 
when vehicles gather rapidly on school roads during school 
hours. 

 

 
Fig. 6. Lane-level traffic capacity 
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The results of the one-way ANOVA test showed that the 
significances between the lane cross sections were 0.00, 
except for the lane B parking area and upstream, where the 
significance was >0.05 (0.054 for traffic distribution, 0.93 for 
vehicle speed, and 0.108 for capacity). 

IV. ANALYSIS OF FACTORS AFFECTING TRAFFIC STATUS 
On-road parking is a major contributor to the variance of 

the traffic status of school-section lanes. Based on the results 
of the lane differentiation analysis and related literature [31], 
the speed limit, traffic flow, number of parked vehicles, and 
stopping time were selected as the key variables affecting the 
turnover of parking spaces and the operational efficiency of 
the road. The steps to quantitatively analyze the relationship  
between the traffic status of different road locations and the 
variables were as follows: First, a simulation experiment was 
designed. Second, the sensitivity and relations between the 
variables and evaluation indicators were analyzed. Finally, 
the key factors and sensitive nodes influencing the 
operational efficiency of school sections were identified. 

A. Experiment Design 
Four sets of experiments were designed to analyze the 

relationship between the variables and evaluation indicators. 
Based on the previous discussion, road queue length, travel 
time, lane-level flow, and occupancy were selected as the 
evaluation indicators. 
Experiment 1: Effects of road speed limits on school sections 

and lanes. 
Experiment 2: Effects of traffic flow on school sections and 

lanes. 
Experiment 3: Effect of the number of parked vehicles on 

school sections and lanes. 
Experiment 4: Impact of stopping time on school sections and 

lanes. 
Based on the results of the lane differentiation analysis, the 

road capacity was probably 1500 pcu/h. As the traffic flow 
changed, the maximum value of the vehicle speed was 
distributed above and below 70 km/h, and the minimum 
value was distributed above and below 15 km/h. At a 
stopping time of 30 s, the number of parked vehicles 
accommodated by the road section was approximately 200. 
Table II lists the specific setups of the four sets of 
experiments used to analyze their impact on the evaluation 
indicators. 

TABLE II 
EXPERIMENTAL DESIGN 

Expt. Speed 
limits Traffic flow Parking 

vehicles 
Stopping 

time Step 

1 [10,70] 1500 150 30 5 
2 30 [200,1600] 150 30 100 
3 30 1500 [100,250] 30 15 
4 30 1500 150 [10,120] 10 

B. Results Analysis 
In a school road-transport system, the road operational 

efficiency is mainly influenced by the speed limit, traffic 
flow, number of parked vehicles, and stopping time. We 
varied them within their respective ranges and analyzed the 
trends and extent of changes in the evaluation indicators. 
Sensitivity and multiple linear regression analyses were also 
performed. Calculations were performed on MATLAB 
2016a. 

In this study, based on a single-factor sensitivity analysis, 
we proposed a sensitivity function and sensitivity factor in 
dimensionless forms, which makes the multifactor sensitivity 
analysis comparable. First, the functional relationship 
between the evaluation indicators and variables was 
established. Modelling the actual scenario as closely as 
possible is crucial to an effective parameter sensitivity 
analysis. Because cubic spline interpolation is not only 
characterized by excellent stability, guaranteed convergence, 
and smooth curves but also requires only function value 
information, it can avoid the Longe phenomenon produced 
by higher interpolation. In this study, based on the simulation 
data, a cubic spline interpolation function was established, 
which is represented by solid lines in Fig. 7–15. 

The above analysis provides only an idea of the 
sensitivities of the evaluation indicators to a single factor. In 
real-world scenarios, traffic status variables are generally 
physical quantities with different units. The above analysis 
did not allow a comparison of sensitivity between the factors. 
Therefore, rendering the sensitivity function and sensitivity 
factor dimensionless is necessary. Second, a sensitivity 
function was established. By setting the cubic spline 
interpolation function established in the previous section as 
p  and the variable as ka , we defined the sensitivity function 

( )k kS a  as the rate of change in the evaluation indicators with 
respect to changes in the variable. 

 ( ) ( ) / ( )k k
k k

k k

p a apS a
p a a p

∆ ∆ ∆
= =

∆
 (2) 

If /k ka a∆  is small, ( )k kS a  can be approximated as: 

 ( )
( ) k k k

k k
k

d a a
S a

da p
ϕ

=  (3) 

Finally, the sensitivity factor is calculated. From (2), the 
sensitivity function curve of 

ka  can be plotted, represented 
by the dotted line in Fig. 10–18. We set *

k ka a=  when the 
maximum value *

kS  is achieved. The sensitivity factor can 
be obtained from this value. The sensitivity of each variable 
is analyzed by comparing their *

kS . 

 *

*
* *

*

( )
( ) ( )

k k

k k k
k k k a a

k

d a a
S S a

da p
ϕ

=
= =  (4) 

 
Fig. 7 shows the variables as functions of the section-level 

evaluation indicators and sensitivity functions. In Experiment 
1, this indicator decreased as the speed limit increased. The 
sensitive intervals for the queue lengths were [20,30] and 
[50,70]. The travel time interval was [10,40]. In Experiment 2, 
the queue length increased with traffic flow on the road and 
had a sensitivity interval of [650,1600]. The travel time 
increased as the traffic flow increased at [800,1600]. 
[1200,1600] is its sensitive interval. In Experiments 3 and 4, 
the indicators increased with the number of parked vehicles 
and the parking time. The queue length increased more 
rapidly. The sensitive intervals for the section-level 
indicators were [100,220] and [10,40]. 
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Fig. 7. Section-level evaluation indicator variations and sensitivity curves 
 

Table III lists the section-level sensitivity factors for the 
different experiments. According to the size of the sensitivity 
coefficients, the factors are traffic flow, number of parked 
vehicles, stopping time, and speed limit. 

 
TABLE III 

SENSITIVITY FACTORS OF SECTION-LEVEL EVALUATION INDICATORS 
Indicator Expt. 1 Expt. 2 Expt. 3 Expt. 4 

Queue length 6.78 781.56 32.76 22.04 
Travel time 7.80 291.21 7.94 9.53 
 
Fig. 8 shows the speed limit as a function of the lane-level 

volumes and sensitivity curves. Table IⅤ lists the 
characteristics of the variations of these curves. The traffic 
flow intervals in the downstream section and lane C were 
more affected by the speed limit. In addition, they had 
relatively high concentrations in the sensitive intervals. Table 
V lists the flow sensitivity factors for different road locations. 
The downstream section and lane C were the most sensitive 
to road speed-limit values, whereas lanes A and B were less 
sensitive. According to the purpose of vehicle travel, lanes A 
and B were primarily for vehicles that dropped off and picked 
up students, whereas lane C was primarily for fast traffic on 
the road. Calculations showed that the speed limit had a weak 
effect on pick-up and drop-off traffic but a larger effect on 
passing traffic. Hence, when setting speed limits on school 
roads, emphasis should be placed on the traffic volume and 
speed. 

Fig. 9 illustrates the speed limit as a function of occupancy 
and sensitivity curves. Table VI lists the characteristics of the 
variations in the turns. The occupancy intervals of the 
downstream section and lane B were strongly influenced by 

this phenomenon. The downstream section and lane C 
exhibited relatively high concentrations at the sensitive 
intervals. Table VII presents the occupancy sensitivity 
factors for different locations of the road. The downstream 
section and lane C were more sensitive to this. These results 
suggest that the lane choices for both types of traffic should 
be guided in the upstream section. A varying speed limit 
affects the efficiency of traffic dissipation and should be 
divided by lanes and promptly lifted. Specifically, setting 
lower speed limits on downstream sections and higher speed 
limits on upstream sections can improve the dissipation 
efficiency of traffic flow. 

 
TABLE IV 

CHARACTERIZATION OF LANE-LEVEL FLOW VARIATIONS IN EXPERIMENT 1 

Characteristic Cross Section Lane 
D P U A B C 

Tendency It increases first, then stabilizes. 
Variation 252– 

413 
253– 
409 

259– 
419 

210– 
285 

213– 
301 

341– 
654 

Sensitive 10– 
30 

10– 
30 

10– 
20 

10– 
30 

10– 
20 

10– 
30 

Note: D = Downstream; P = Parking area; U = Upstream. 
 

TABLE V 
SENSITIVITY FACTORS FOR LANE-LEVEL FLOW IN EXPERIMENT 1 

Cross-section Lane 
A B C Average 

Downstream 3.62 3.47 6.5 4.53 
Parking area 2.39 3.00 5.05 3.48 

Upstream 2.89 4.47 3.94 3.77 
Average 2.97 3.65 5.16 3.93 
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TABLE VI 
CHARACTERIZATION OF LANE-LEVEL FLOW VARIATIONS IN EXPERIMENT 1 

Characteristic Cross-section Lane 
D P U A B C 

Tendency It increases first, then stabilizes. 
Variation 0.05– 

0.15 
0.25– 
0.35 

0.26– 
0.3 

0.2– 
0.27 

0.16– 
0.26 

0.2– 
0.29 

Sensitive 10– 
30 

15– 
45 

15– 
40 

15– 
40 

10– 
30 

15– 
30 

Note: D, Downstream; P, parking area; U, upstream. 
 

TABLE VII 
SENSITIVITY FACTORS FOR LANE-LEVEL OCCUPANCY IN EXPERIMENT 1 

Cross-section Lane 
A B C Average 

Downstream 7.12 7.38 6.79 7.10 
Parking area 4.81 4.36 3.77 4.31 

Upstream 5.49 6.69 3.92 5.37 
Average 5.81 6.14 4.83 5.59 

 

Fig. 10 shows the traffic flow as a function of the 
lane-level volume and sensitivity curves. Table VIII lists the 
characteristics of the curve variations. The traffic volume 
intervals in the upstream section and lane C were more 
affected. The parking section and lane B exhibited relatively 
high concentrations at the sensitive intervals. Table IX 
provides the different locations of the road volume sensitivity 
factors for the road. The parking section and Lane C were the 
most sensitive. The results indicated that the parking section 
had the lowest capacity. Additional signals should be 
rationalized to control the number of vehicles entering a 
section. The downstream and lane C exhibited the highest 
capacity. The traffic flow should be rationally directed 
through signage and markings to accelerate vehicle 
dissipation. 

TABLE VIII 
CHARACTERIZATION OF LANE-LEVEL FLOW VARIATIONS IN EXPERIMENT 2 

Characteristic Cross-section Lane 
D P U A B C 

Tendency It increases rapidly, then slows down. 
Variation 53– 

410 
54– 
410 

54– 
423 

72– 
298 

61– 
307 

27– 
637 

Sensitive 200– 
1500 

200– 
1400 

200– 
1600 

200– 
1600 

200– 
1300 

200– 
1500 

Note: D, Downstream; P, parking area; U, upstream. 
 

TABLE IX 
CHARACTERIZATION OF LANE-LEVEL FLOW VARIATIONS IN EXPT. 2 

Cross-section Lane 
A B C Average 

Downstream 124.06 136.92 130.40 158.27 
Parking area 130.40 123.32 244.15 165.96 

Upstream 135.19 108.00 200.68 147.96 
Average 129.88 122.75 219.56 157.40 

 
Fig. 11 shows traffic flow as a function of occupancy and 

sensitivity curves. Table X lists the characteristics of the 
curve variations. The occupancy intervals of the upstream 
section and Lane A are strongly influenced by this 
phenomenon. Downstream and lane A had relatively high 
concentrations at the sensitive intervals. Table XI lists the 
occupancy sensitivity factors for different road locations. The 
upstream and lane A were more sensitive to this. The results 
indicate that the signal timing scheme should be further 
optimized to reduce the traffic pressure of upstream and 
through traffic in lane A. 
 
 
 
 

TABLE X 
CHARACTERIZATION OF LANE-LEVEL OCCUPANCY VARIATIONS IN 

EXPERIMENT 2 

Characteristic Cross-section Lane 
D P U A B C 

Tendency It increases rapidly, then slows down. 
Variation 0.01

– 
0.08 

0.02– 
0.28 

0.09– 
0.31 

0.02– 
0.31 

0.01– 
0.19 

0.01– 
0.23 

Sensitive 200– 
1500 

200– 
1600 

200– 
1600 

200– 
1500 

200– 
1600 

200– 
1600 

Note: D = Downstream; P = Parking area; U = Upstream. 
 

TABLE XI 
THE SENSITIVITY FACTORS FOR LANE-LEVEL OCCUPANCY IN EXPERIMENT 2 

Cross-section Lane 
A B C Average 

Downstream 309.92 354.93 231.00 298.62 
Parking area 179.80 271.13 395.18 282.04 

Upstream 647.00 501.46 200.68 449.71 
Average 378.91 375.84 275.62 343.46 

 
Fig. 12 shows the number of parked vehicles as a function 

of the lane-level volume and sensitivity curves. Table XII 
lists the characteristics of the curve variations. The traffic 
volume intervals in the parking section and lane A are 
affected. The parking section and lane B exhibited relatively 
high concentrations at the sensitive intervals. Table XIII lists 
the volume sensitivity factors for the different road locations. 
The parking section and Lane B were the most sensitive. The 
results indicate that parking should be rationalized in terms of 
time and space. 

 
TABLE XII 

CHARACTERIZATION OF LANE-LEVEL FLOW VARIATIONS IN EXPERIMENT 3 

Characteristic Cross-section Lane 
D P U A B C 

Tendency S D – D D I 
Variation 383– 

400 
375– 
413 

379– 
425 

255– 
293 

274– 
306 

608– 
640 

Sensitive 145– 
235 

155– 
235 

130– 
175 

115– 
235 

145– 
235 

115– 
235 

Note: D = Downstream; P = Parking area; U = Upstream; S = Stabilize; D 
= Decrease; I = Increase. 

 
TABLE XIII 

SENSITIVITY FACTORS FOR LANE-LEVEL FLOW IN EXPERIMENT 3 

Cross-section Lane 
A B C Average 

Downstream 5.22 8.48 1.79 5.16 
Parking area 10.13 7.78 5.32 7.74 

Upstream 4.23 6.23 5.15 5.20 
Average 6.53 7.50 4.09 6.03 

 
Fig. 13 shows the number of parked vehicles as a function 

of occupancy and sensitivity curves. Table XIV lists the 
characteristics of variations in the curves. The occupancy 
intervals of the upstream area and lane C were strongly 
influenced by the number of parked vehicles. The parking 
section and lane B exhibited relatively high concentrations at 
the sensitive intervals. Table XV lists the occupancy 
sensitivity factors for different road locations. The parking 
section and lane B were the most sensitive. The results show 
that frequent vehicle movements into and out of parking 
spaces can severely affect the traffic operating conditions in 
lane B. Vehicle priorities should be rationalized to achieve 
orderly operation. For example, school buses and private cars 
jointly complete students' commuting tasks, which can 
effectively reduce this phenomenon. 
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TABLE XIV 
CHARACTERIZATION OF LANE-LEVEL OCCUPANCY VARIATIONS IN 

EXPERIMENT. 3 

Characteristic Cross-section Lane 
D P U A B C 

Tendency S I I I S I 
Variation 0.07- 

0.08 
0.26- 
0.3 

0.25- 
0.32 

0.21- 
0.26 

0.17- 
0.19 

0.2- 
0.24 

Sensitive 175- 
235 

130- 
235 

115- 
250 

115- 
235 

160- 
220 

115- 
195 

Note: D, Downstream; P, parking area; U, Upstream; S, stabilized; D, 
decreased; I, increased. 

 
TABLE XV 

SENSITIVITY FACTORS FOR LANE-LEVEL OCCUPANCY IN EXPERIMENT 3 

Cross-section Lane 
A B C Average 

Downstream 50.42 51.64 14.49 38.85 
Parking area 18.63 19.23 11.01 16.29 

Upstream 14.44 10.45 11.72 12.20 
Average 27.83 27.11 12.41 22.45 

 
Fig. 14 shows the stopping time as a function of the 

lane-level flow and sensitivity curves. Table XVI lists the 
characteristics of variations of the curves. The traffic volume 
intervals in the parking section and Lane A were strongly 
affected. Lane C exhibited a relatively high concentration 
during the sensitive interval. Table XVII lists the volume 
sensitivity factors for the different road locations. The 
parking section and Lane A were the most sensitive. The 
results show that the stopping time can significantly impact 
both the aggregation and dissipation of pick-up and drop-off 
traffic. 

TABLE XVI 
CHARACTERIZATION OF LANE-LEVEL FLOW VARIATIONS IN EXPT. 4 

Characteristic Cross-section Lane 
D P U A B C 

Tendency - - - D D I 
Variation 289- 

433 
245- 
461 

269- 
453 

122- 
340 

169- 
364 

511- 
643 

Sensitive 50- 
110 

50- 
110 

50- 
110 

50- 
120 

50- 
120 

10- 
30 

Note: D, Downstream; P, parking area; U, Upstream; S, stabilized; D, 
decreased; I, increased. 
 

TABLE XVII 
SENSITIVITY FACTORS FOR LANE-LEVEL FLOW IN EXPT. 4 

Cross-section Lane 
A B C Average 

Downstream 9.16 11.01 3.09 7.75 
Parking area 26.45 10.54 4.07 13.69 

Upstream 8.50 9.05 2.47 6.67 
Average 14.70 10.20 3.21 9.37 

 
Fig. 15 shows the stopping time as a function of the 

occupancy and sensitivity curves. Table XVIII lists the 
characteristics of variations in the curves. The parked 
sections and lane-A intervals were significantly affected. The 
parking section and lane B exhibited relatively high 
concentrations at the sensitive intervals. Table XIX lists the 
occupancy sensitivity factors for the different road locations. 
The parking section and lane B were the most sensitive. The 
results show that the longer the stopping time, the fewer 
parking spaces lane A can provide, and the higher the parking 
section occupancy. Hence, restrictions should be imposed on 
the duration of vehicle parking based on the supply and 
demand of parking spaces to improve the turnover efficiency 
of parking spaces. 

 
 

TABLE XVIII 
CHARACTERIZATION OF LANE-LEVEL OCCUPANCY VARIATIONS IN 

EXPERIMENT 4 

Characteristic Cross Section Lane 
D P U A B C 

Tendency D I I I I I 
Variation 0.05- 

0.08 
0.16- 
0.36 

0.1- 
0.3 

0.11- 
0.3 

0.1- 
0.21 

0.1- 
0.26 

Sensitive 10- 
110 

10- 
40 

10- 
40 

10- 
40 

10- 
30 

0- 
30 

Note: D = Downstream; P = Parking area; U = Upstream; S = Stabilize; D = 
Decrease; I = Increase. 
 

TABLE XIX 
SENSITIVITY FACTORS FOR LANE-LEVEL OCCUPANCY IN EXPERIMENT 4 

Cross Section Lane 
A B C Average 

Downstream 8.87 10.21 3.51 7.53 
Parking area 10.46 21.06 5.33 12.28 

Upstream 12.76 9.98 13.72 12.15 
Average 10.70 13.75 7.52 10.65 

 
Multiple linear regression analysis is a mathematical 

method based on the correlation between the independent and 
dependent variables. In this study, the research variables 
were used as independent variables, and the evaluation 
indicators were used as dependent variables. The 
independent variables are not of the same order of magnitude 
and can significantly impact the dependent variable. Hence, 
the data for the independent variables are dimensionless, 
according to (5). 

 min

max min

' x xx
x x

−
=

−
 (5) 

where 'x  is the normalized data, x  is the original data, 
and minx  and maxx  are the minimum and maximum values of 
the original data, respectively. 

If the dependent variable y  correlates with the m  
variables, the generalized form of the multiple regression 
model is shown in Equation (6). 

 0 1 1 2 2 3 3 i my x x x xβ β β β β ε= + + + + +
 (6) 

where 1 2, mx x x  is an independent variable, 

0 1 2, , mβ β β β  is a regression coefficient, and ε  is a 

random error that follows the normal distribution ( )20,N σ . 

According to the sensitivity analysis, the variables and 
evaluation indicators were approximately linear within the 
sensitive intervals. Therefore, these data were used for 
analysis. In this study, 35 instances were designed as the 
dataset, and each instance contained four attributes: speed 
limits ( 1x ), traffic flow ( 2x ), number of parked vehicles ( 3x ), 
and stopping time ( 4x ). The multiple linear regression 
equations can be judged as significant by testing the 
regression coefficients and Equation (7). 

 
( ) ( )/ ~ , 1

/ 1
SSR pF F p n p

SSE n p
= − −

− −
 (7) 

Where 
2^

1

n

i
i

SSR y y
−

=

 = − 
 

∑  and 
^

2

1
(

n

i i
i

SSE y y
=

= −∑ ）  are 

the regression and residual sums of squares, respectively. 
To verify how well the multiple linear regression equation 

reflected the original data. The values in Tables XX and XXI 
are greater than 0.6, indicating a favourable level of response. 
The significance F values in Tables XX and XXII are less 
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than 0.05, and the parameter constants are not zero. This 
shows that the regression equation is significant, and that it is 
credible to analyze the research variables and evaluation 
indicators using linear regression. 

 
TABLE XX 

ADJUSTED R SQUARE AND SIGNIFICANCE F AT THE SECTION LEVEL 
Indicator Adjusted R Square Significance F 

Queue length 0.874 0.000 
Travel time 0.804 0.000 

 
TABLE XXI 

ADJUSTED R SQUARE AND SIGNIFICANCE F OF THE SQUARE OF LANE-LEVEL 
FLOW 

Position Adjusted R Square Significance F 
Cross-section 0.931 0.000 

Lane A 0.737 0.000 
Lane B 0.792 0.000 
Lane C 0.721 0.000 

 
TABLE XXII 

ADJUSTED R SQUARE AND SIGNIFICANCE F FOR LANE-LEVEL OCCUPANCY 
Position Adjusted R Square Significance F 

Downstream 0.641 0.002 
Parking area 0.725 0.000 

Upstream 0.830 0.000 
Lane A 0.806 0.000 
Lane B 0.602 0.048 
Lane C 0.810 0.000 

 
Table XXIII shows the parameters of the multiple linear 

regression model for the section-level evaluation indicators. 
Queue length, except for 1x  the other variables, are 
significantly and linearly correlated. 2x  and 4x  have a large 
effect on it. For travel time, the variables are all significantly 
and linearly related to it. Parking on-road is one of the 
significant factors contributing to vehicle delays on this road. 
The ranking based on the impact on the section-level 
evaluation indicators are 2x , 3x , 4x , and 1x . This is 
consistent with the results of the sensitivity analysis. It 
illustrates the plausibility of the multiple linear regression 
equation. Controlling traffic volumes and optimizing the 
traffic organization of parking spaces can effectively enhance 
the efficiency of traffic operation on this road section. 

 
TABLE XXIII 

MULTIPLE LINEAR REGRESSION MODEL PARAMETERS AT THE SECTION LEVEL 
Indicator Variable Regression 

coefficient 
Standard 

error 
t Stat P-value 

Queue 
length 

1x  –24.184 12.509 –1.93 0.077 
2x  68.960 13.985 4.93 0.000 
3x  27.149 12.381 2.19 0.05 
4x  26.573 12.509 2.12 0.050 

C –20.410 22.175 0.92 0.375 
Travel 
time 

1x  –15.261 5.806 –2.68 0.022 
2x  32.939 8.335 3.95 0.002 
3x  28.432 5.747 4.98 0.000 
4x  23.447 5.806 4.04 0.001 

C 37.827 10.293 3.68 0.003 
Note: P-value is used to determine the level of significance; C = constant. 
 
Table XXIV lists the parameters of the multiple linear 

regression model for lane-level flow. For the road cross 
section, except for 3x , the other variables were significantly 
and linearly related to lane volumes. For lanes A and B, 
except for 1x , the remaining variables were significantly and 
linearly related to the lane flow. 2x and 4x  have the greatest 

impacts. This indicates that vehicle parking significantly 
affects traffic efficiency. For Lane C, except for 3x , all the 
other variables were significantly and linearly correlated. 3x  
and 4x  were positively correlated with volume. This 
indicates that the traffic efficiency is less affected by on-road 
parking. Increasing the speed limit can improve the traffic 
efficiency. Lane C has a higher capacity and traffic efficiency. 
Lanes A and B were affected more by vehicle parking. 
Traffic guidance and lane-splitting speed limits are effective 
means of improving traffic efficiency. 

 
TABLE XXIV 

MULTIPLE LINEAR REGRESSION MODEL PARAMETERS FOR LANE-LEVEL 
FLOW 

Position Variable Regression 
coefficient 

Standard 
error 

t Stat P-value 

Cross-section 1x  7.615 3.229 2.36 0.036 
2x  64.811 4.636 13.98 0.000 
3x  –5.806 3.229 –1.80 0.097 
4x  –7.326 3.196 –2.29 0.041 

C 349.782 5.725 61.10 0.000 
Lane A 1x  2.362 9.588 0.25 0.810 

2x  41.656 13.764 3.03 0.011 
3x  –37.020 9.588 –3.86 0.009 
4x  –47.243 9.489 –4.98 0.000 

C 296.461 16.996 17.44 0.000 
Lane B 1x  1.858 8.671 0.21 0.834 

2x  57.724 8.582 6.73 0.000 
3x  –20.231 8.671 –2.33 0.036 
4x  –26.834 12.448 –2.96 0.034 

C 333.103 15.371 21.67 0.000 
Lane C 1x  27.816 18.338 1.52 0.155 

2x  128.755 26.326 4.89 0.000 
3x  29.957 18.338 1.63 0.097 
4x  82.647 18.150 4.55 0.001 

C 429.199 32.508 13.20 0.000 
Note: P-value is used to determine the level of significance; C = constant. 
 
Table XXV lists the parameters of the multiple linear 

regression model for lane-level occupancy. Downstream, 1x  
and 2x  are significantly and linearly related to lane 
occupancy. This indicates that on-road parking has less 
impact. Increasing the speed limit can accelerate the 
dissipation rate of the traffic flow. For the parking area and 
upstream, except for 1x , the variables were significantly and 
linearly correlated. 3x  has the greatest impact. The spatial and 
temporal rationalization of the number of parked vehicles can 
alleviate congestion. For lanes A and B, except 1x , the 
remaining variables were significantly and linearly related to 
occupancy. Although vehicle parking had a significant 
impact on occupancy, the impact on Lane A was greater. For 
Lane C, the variables were significantly and linearly 
correlated with occupancy. On-road parking has a significant 
impact on occupancy; however, increasing the speed limit 
can reduce congestion. In summary, different key factors 
affect the congestion levels at different locations. Vehicle 
parking has a large impact on lanes A and B but has minimal 
impacts downstream. Optimizing the traffic organization of 
parking spaces and timely release of speed limits can 
effectively reduce traffic congestion. 
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TABLE XXV 
MULTIPLE LINEAR REGRESSION MODEL PARAMETERS FOR LANE-LEVEL 

OCCUPANCY 
Position Variable Regression 

coefficient 
S-error t Stat P-value 

Downstream 1x  –0.024 0.005 –5.10 0.000 
2x  0.030 0.007 4.45 0.000 
3x  0.003 0.005 0.68 0.508 
4x  0.006 0.005 1.29 0.221 

C 0.093 0.008 11.00 0.000 
Parking area 1x  –0.029 0.017 –1.72 0.110 

2x  0.071 0.024 2.98 0.012 
3x  0.090 0.017 5.44 0.000 
4x  0.080 0.016 4.85 0.000 

C 0.172 0.029 5.87 0.000 
Upstream 1x  –0.045 0.025 –1.79 0.098 

2x  0.216 0.036 6.00 0.000 

 
3x  0.149 0.025 5.92 0.000 
4x  0.124 0.025 4.98 0.000 

C 0.050 0.045 1.13 0.282 
Lane A 1x  –0.018 0.015 –1.22 0.248 

2x  0.100 0.021 4.81 0.000 
3x  0.052 0.015 3.59 0.001 
4x  0.081 0.014 5.64 0.000 

C 0.099 0.026 3.85 0.002 
Lane B 1x  –0.002 0.015 –0.15 0.885 

2x  0.075 0.021 3.52 0.004 
3x  0.040 0.015 2.70 0.021 
4x  0.039 0.015 2.65 0.021 

C 0.082 0.026 3.10 0.009 
Lane C 1x  –0.045 0.016 –2.80 0.016 

2x  0.118 0.023 5.11 0.000 
3x  0.072 0.016 4.51 0.001 
4x  0.087 0.016 5.42 0.000 

C 0.105 0.028 3.70 0.003 
Note: P-value is used to determine the level of significance; C = constant; 

S-error = Standard error. 

V. TRAFFIC INDICATOR PROJECTIONS 
To verify the reliability of the analysis of factors 

influencing traffic status, we applied BP and gated recurrent 
NNs to predict school road section-level and lane-level traffic 
indicators. We analyzed the results by applying different 
variables for the prediction based on the calculations above. 

A. Genetic Algorithm (GA)-Optimized Backpropagation 
(BP) NN 
Typically, the weights and thresholds of the BPNN are 

initialized with random values, as the initialization 
parameters significantly influence network training. 
However, this can restrict the consistency and generalization 
of the training results. The GA, a global search-optimization 
algorithm based on the population, uses individual fitness as 
a criterion and includes a variation factor. This gives it strong 
global search capabilities while also enhancing local search. 
Hence, the GA is used to optimize the initial weights and 
thresholds of the BPNN to improve the network performance. 

The GA–BP algorithm has three main components: (1) 
BPNN structure determination. The structure of the network 
includes nodes of the input and output layers, as well as a 
hidden layer and its nodes. The number of input and output 
nodes are assigned according to the specific problem. The 
number of hidden layer nodes is determined by (8); (2) The 
GA optimizes the weights and thresholds. The selection 
operator uses a roulette-wheel selection strategy. The 
crossover and variation operators are determined adaptively, 
i.e., the crossover and variation rates change automatically 
with the fitness of the population; (3) BPNN training and 
prediction. Network training is a process of constantly 

correcting the weights and thresholds to reduce output errors. 
Fig. 16 illustrates the flow of the GA-BP algorithm. 

 k q p a= + +  (8) 

where k  is the number of hidden layer nodes, and q  and 
p  are the numbers of input and output nodes, respectively; 

and a  usually ranges from 1 to 10. 
 

 
Fig. 16. GA–BP flowchart 
 

B. Gated Recurrent Unit (GRU) NN 
Recurrent neural networks (RNNs) are also suitable for 

traffic flow [47]. However, RNNs suffer from gradient 
vanishing or explosion, making their application in practical 
scenarios more challenging. The long short-term memory 
(LSTM) network addresses the gradient-explosion problem 
of the original RNN. However, compared to the LSTM, the 
gated recurrent unit (GRU) simplifies the model by merging 
the internal self-loop cell and hidden layer, reorganizing the 
input and forget gates into a single update gate, and 
introducing a new reset gate, rt . This modification allows for 
a more straightforward computation of the hidden state, 
thereby effectively reducing the model’s prediction time. 
Therefore, GRU was adopted in this study. 

The update and reset gates in the GRU combine the inputs 
of the current time step with the hidden state 1th −  from the 
previous time step. The output values are computed using a 
fully connected layer with sigmoid activation functions. Here, 

zW  and rW  represent the weights of the update and reset gates, 
respectively. The update process is as follows: 
Step 1: Update the gate tz : Determine the influence of the 

previous state on the current state. 
 [ ]1( ,t z t tz W h xσ −= ⋅  (9) 

Step 2: Reset gate: tr determines the extent to which the 
previous state is ignored. 

 [ ]1( ,t r t tr W h xσ −= ⋅  (10) 

Step 3: Update hidden state: th
−

 represents the candidate 
hidden state, whereas th  is the updated hidden state. 
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 [ ]1tanh( , )
t

t t t t
h

h W r h x−

−

−= ⋅ ∗  (11) 

 1(1 )t t t t th z h z h
−

−= − ∗ + ∗  (12) 
When the value of the parameter in the reset gate 

approaches zero, the hidden state from the previous time step 
should be discarded, whereas a value close to 1 indicates that 
it should be retained. The candidate hidden state formula 
shows that the reset gate uses the hidden state of the previous 
time step to update the candidate hidden state of the current 
time step, thereby effectively discarding irrelevant historical 
information. Meanwhile, the update gate controls the update 
pattern of the hidden state, allowing the capture of 
dependencies within the time series. 

C. Traffic Indicator Projections 
In this study, we established a simulation environment to 

gather data for predicting section-level and lane-level traffic 
indicators. The simulations were iterated 10 times (10 
simulation seeds) to ensure an adequate number of training 
samples. The average of these ten runs was predicted, and the 
discrepancy between the expected and predicted values 
served as the predictive effectiveness measure (error). We 
used BPNNs and a GRU to compare and analyze the 
predictive impact of various variables, juxtaposing them with 
the regression analysis results to validate the viability of the 
proposed method. 

Table XXVI lists the average errors in predicting queue 
length for each influencing factor. The results from both 
methods consistently demonstrated that the smallest 
prediction error occurred when traffic flow was used as the 
input parameter, whereas the largest error arose when the 
road-section speed limit was used. This aligns with the 
findings that the traffic state influences the factor 
identification method proposed in this study. Consequently, 
incorporating traffic factors that significantly affect the queue 
length can enhance the prediction accuracy. 

Fig. 17 and 18 illustrate the queue length-prediction results 
obtained using the two methods. For the GA–BPNN, the 
prediction errors using the traffic flow, parked vehicles, 
stopping time, and speed limit datasets were 6.21%, 15.99%, 
16.75%, and 17.57%, respectively. These values reflect 
reductions of 9.78%, 10.54%, and 11.36%, respectively, 
compared with the other methods. For the GRU, the 
prediction errors using the same datasets were 10.37%, 
11.58%, 13.36%, and 16.41%, reflecting reductions of 
1.20 %, 2.98 %, and 6.03 %, respectively. These findings 
further indicate that larger prediction errors occur when data 
fluctuations are significant, particularly within the sensitivity 
intervals of each influencing factor. Therefore, minimizing 
errors within these sensitive intervals should be a key focus 
for improving prediction accuracy. 
 

TABLE XXVI 
AVERAGE ERRORS OF QUEUE LENGTH PREDICTION FOR DIFFERENT TRAINING 

SETS 

Method 
Training set 

Traffic 
flow  

Parking 
vehicles 

Stopping 
time  

Speed 
limits  

GA–BP 1.96 5.05 5.29 5.55 
GRU 12.24 13.66 15.76 19.36 

 

 
Fig. 17. Queue-length prediction errors when using the BPNN 

 

 
Fig. 18. Queue-length prediction error results when using the GRU 
 

TABLE XXVII 
AVERAGE ERRORS IN TRAVEL-TIME PREDICTION FOR DIFFERENT TRAINING 

SETS 

Method 
Training set 

Traffic 
flow 

Parking 
vehicles 

Stopping 
time 

Speed 
limits 

GA–BP 0.84 1.04 1.83 2.00 
GRU 4.01 6.57 10.33 13.73 

 
Table XXVII presents the average error in predicting 

travel time for each influencing factor. The effectiveness of 
the predictions was ranked as follows: traffic flow, parked 
vehicles, stopping time, and speed limits. This ranking aligns 
with the findings of the traffic state-influencing factor 
identification method proposed in this study. Therefore, 
utilizing the traffic factors that most significantly affect travel 
time can improve prediction accuracy. 

Fig. 19 and 20 illustrate the travel-time prediction results 
of the two methods. For the GA–BP NN, the prediction errors 
using traffic flow, parked vehicles, stopping time, and speed 
limit datasets were 1.60%, 1.98%, 3.48%, and 3.81%, 
respectively, reflecting reductions of 0.38%, 1.88%, and 
2.21%, respectively. For the GRU, the prediction errors using 
the same datasets were 5.08%, 8.32%, 13.08%, and 17.38%, 
with corresponding reductions of 3.24%, 8.00%, and 12.03%, 
respectively. The results also indicate that larger prediction 
errors occurred when there were significant data fluctuations, 
particularly within the sensitivity intervals of each 
influencing factor. Therefore, reducing errors within these 
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sensitive intervals can significantly enhance the accuracy of 
travel-time predictions. 

 

 
Fig. 19. Travel time prediction error results when using the BPNN 
 

 
Fig. 20. Travel-time prediction error results when using the GRU 

 
TABLE XXVIII 

AVERAGE ERRORS IN LANE-LEVEL FLOW PREDICTION FOR DIFFERENT 
TRAINING SETS 

Method 
Training set 

Traffic 
flow 

Parking 
vehicles 

Stopping 
time 

Speed 
limits 

GA-BP 2.73 2.78 4.76 8.01 
GRU 16.29 17.99 21.60 22.67 

 
Table XXVIII presents the average error in predicting 

lane-level flow for each influencing factor. The smallest 
prediction error was observed for traffic flow, whereas the 
largest error was associated with speed limits. This finding is 
consistent with the results of the traffic state influencing the 
factor identification method proposed in this study. Therefore, 
incorporating traffic factors that significantly impact 
lane-level flow can improve prediction accuracy. 

Fig. 21 and 22 show the lane-level flow prediction results 
obtained using the two methods. For the GA-BP NN, the 
prediction errors with traffic flow, parking vehicles, stopping 
time, and speed limit datasets were 1.29%, 1.32%, 2.26%, 
and 3.80%, respectively, representing reductions of 0.02%, 
0.96%, and 2.50%, respectively. For the GRU, the prediction 
errors with the same datasets were 5.42%, 5.99%, 7.19%, and 
7.55%, with corresponding reductions of 0.57 %, 1.77 %, and 
2.12 %, respectively. The results indicated that larger errors 

occurred when data fluctuations were significant, particularly 
within the sensitivity intervals of each influencing factor. 
Therefore, minimizing errors within these sensitive intervals 
is crucial for improving prediction accuracy. 
 

 
Fig. 21. Lane-level flow prediction error results when using the BPNN 

 

 
Fig. 22. Lane-level flow prediction error results when using the GRU 

 
Table XXIX presents the mean error in predicting the 

lane-level occupancy for each influencing factor. The 
effectiveness of the predictions was ranked as follows: 
Traffic flow > Parking vehicles > Stopping time > Speed 
limits. This ranking aligns with the findings of the traffic 
state-influencing factor identification method proposed in 
this study. Therefore, incorporating the most significant 
traffic factors influencing lane-level occupancy can improve 
the prediction accuracy. 

Fig. 23 and 24 display the lane-level occupancy prediction 
results obtained using the two methods. For the GA–BPNN, 
the prediction errors for the traffic flow, parking vehicles, 
stopping time, and speed limit datasets were 19.66%, 50.44%, 
52.38%, and 62.88%, with reductions of 30.79%, 32.72%, 
and 43.22%, respectively. For the GRU, the prediction errors 
using the same datasets were 15.95%, 17.01%, 20.86%, and 
22.66%, with reductions of 1.06%, 4.91%, and 6.71%, 
respectively. The results indicated that greater data 
fluctuations led to larger prediction errors, particularly within 
the sensitivity intervals of each influencing factor. Thus, 
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minimizing the errors within these sensitive intervals is 
crucial for improving the accuracy of lane-level occupancy 
predictions. 

 

 
Fig. 23. Lane-level occupancy prediction error results when using the BPNN 
 

 
Fig. 24. Lane-level occupancy prediction error results when using the GRU 
 

TABLE XXIX 
AVERAGE ERRORS IN LANE-LEVEL OCCUPANCY PREDICTION FOR DIFFERENT 

TRAINING SETS 

Method 
Training set 

Traffic 
flow  

Parking 
vehicles 

Stopping 
time  

Speed 
limits  

GA–BP 5.58% 14.32% 14.87% 17.85% 
GRU 1.95% 2.08% 2.55% 2.77% 

VI. CONCLUSIONS 
This study proposed an analytical methodology that can 

identify the key factors and sensitive ranges affecting traffic 
status at the section and lane levels. Consequently, 
optimization strategies for improving traffic efficiency were 
designed. We applied these findings to traffic forecasting. 
The predicted effects were generally consistent with the 
analysis results. This enhances the precision of the 
improvement strategy and improves interpretability in 
machine learning, such as traffic prediction. The main 
findings of the study are as follows: 

Differentiation analysis compared the traffic conditions 
across the lanes in the model. Lane differentiation was 
demonstrated in terms of traffic distribution, speed–flow 
relationship, and capacity. The analysis results show that, 

except for the upstream area and parking area of lane B, they 
all show significant differences. In particular, the differences 
between lane C and downstream and other locations are more 
evident. At the same time, we also found that the higher the 
volume of traffic, the greater the variation among the lanes, 
and the less efficiently they operate on the road. In our study 
scenario, on-road parking is the main reason for the 
differentiation of traffic conditions among different lanes, 
which can be further interpreted as the impact of 
infrastructure on the surrounding traffic flow. 

The sensitivity analysis method was used to obtain the 
overall trend between the sensitive factors affecting the 
traffic efficiency at the section level and lane level and the 
evaluation index. This study proposed a dimensionless 
sensitivity function and a sensitivity factor to enable a 
comparable multifactor sensitivity analysis. Secondly, we 
also use a multiple linear regression model to quantify the 
relationship between factors and evaluation indicators. The 
results show that the sensitive interval of the same factor is 
different in different road locations. In the sensitive interval, 
the relationship between factors and indexes is approximately 
linear. The key factors affecting the traffic conditions are 
different in each location. For example, the key factors 
affecting the flow of lane A and lane B are parking time and 
traffic flow, respectively. These results provide optimization 
directions for us to improve the traffic efficiency of the road 
section around the school. In response to this, we have also 
put forward some traffic control measures for different 
sections. For example, you can consider guiding the 
separation of commuter traffic from pick-up and drop-off 
traffic in the upstream section. 

The GA–BPNN and GRU were employed to forecast the 
section-level and lane-level traffic indicators. Various 
variables were used to predict these indicators and were 
ranked based on their predictive effectiveness. Traffic flow 
was the most accurately predicted factor, followed by parking 
vehicles and stopping time, whereas speed limits showed the 
least accuracy, exhibiting a large prediction error within the 
calculated sensitivity interval of the traffic-influencing 
factors. Using the proposed methodology, the prediction 
accuracies for the queue length, travel time, lane-level flow, 
and lane-level occupancy improved by 11.36%, 12.03%, 
3.80%, and 6.71%, respectively. These results are consistent 
with those of the proposed method, enhancing the 
interpretability of machine learning in transportation. This 
approach is beneficial not only for forecasting but also for 
establishing a scientific foundation for identifying traffic 
issues and developing optimization strategies. 

The research method we proposed in this paper is not only 
applicable to the sections where infrastructure facilities (such 
as schools, hospitals, shopping malls, etc.) have a large 
impact on the surrounding traffic flow but also to the sections 
where there are obvious differences in lane-level traffic status 
due to road construction, traffic accidents, landslides and 
other factors. This method has certain portability. In addition, 
the influencing factors and evaluation indicators selected in 
this paper are suitable for the urban road scene around the 
school. In the future, other factors such as construction period 
and traffic accident grade can be added to other scenes for 
research. Therefore, the research method in this paper has a 
certain scalability. 
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This can be further examined through the following 
avenues: (1) Examining more intricate heterogeneous traffic 
patterns, such as the proportion of nonmotorized vehicles and 
pedestrians and analyzing the impact of variables on traffic 
efficiency; (2) Verifying the relevance of research findings in 

areas such as traffic safety within the proposed research 
framework. (3) Employing various deep learning algorithms 
to scrutinize the prediction errors based on the study results 
and exploring additional machine learning prediction 
methods for increased applicability. 

 
Fig. 8. Lane-level flow variations and sensitivity curves for Expt. 1 
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Fig. 9. Lane-level occupancy variations and sensitivity curves for Expt. 1 
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Fig. 10. Lane-level flow variations and sensitivity curves for Expt. 2 
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Fig. 11. Lane-level occupancy variations and sensitivity curves for Exp. 2 
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Fig. 12. Lane-level flow variations and sensitivity curves for Expt. 3 
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Fig. 13. Lane-level occupancy variations and sensitivity curves for Expt. 3 
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Fig. 14. Lane-level flow variations and sensitivity curves for Exp. 4 
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Fig. 15. Lane-level occupancy variations and sensitivity curves for Exp. 4 
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