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Cascaded CNNs and Transfer Learning
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Abstract—Classifying plant species is essential for ecological
monitoring and biodiversity preservation. In this paper, a
novel method is proposed for species classification that
uses ResNet50 for feature extraction, k-means clustering for
classifier selection, and cascaded pre-trained Convolutional
Neural Networks (CNNs) for classification. ResNet50 is used
to extract detailed features from plant images, which are
further grouped by k-means clustering and it is used to select
appropriate classifier. Subsequently, the extracted features
from ResNet50 are processed using transfer learning by the
cascaded pre-trained CNNs to produce a more reliable and
precise species classification. PlantCLEF 2015 dataset which
contains 1,13,205 images of different organs of 1000 species
of trees, herbs and ferns living in Western European regions,
is used to asses the performance of the proposed model.
When compared to conventional pre-trained deep learning
models namely ResNet50, Inception, MobileNet, Xception, and
EfficientNet, the proposed pre-trained CNN model has superior
performance with respect to standard performance metrics such
as accuracy, precision, recall, F1 score, training time, parameter
size, etc. A notable improvement is observed in training time
and parameter size for classification using pre-trained deep
learning models.

Index Terms—Transfer Learning, Machine Learning
Algorithms, Pre-trained Models, PlantCLEF 2015, Cascaded
Convolutional Neural Networks, Plant Species Classification.

I. INTRODUCTION

N the realm of deep learning, transfer learning has

become a potent method, especially for a complex
problem domain or little labeled data. Transfer learning
provides substantial benefit in the classification of plant
species by utilizing pre-trained models that have been created
on sizable, varied datasets, like ImageNet. Numerous feature
hierarchies and patterns are captured by these pre-trained
models, including ResNet50, Inception, MobileNet,
Xception, and EfficientNet, which can be adjusted to
the particular job of plant species identification. Transfer
learning’s capacity to manage the varied and heterogeneous
character of plant species, which frequently necessitates
the extraction of intricate features, is one of its main
advantages in the classification of plants. By utilizing
pre-trained models, the need for extensive training from
scratch is eliminated, allowing models to generalize
better even with smaller datasets. This drastically reduces
computational time and resources while still delivering
high accuracy. Moreover, transfer learning can improve
the robustness of the classification models. Pre-trained
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networks have already learned to recognize various textures,
shapes, and structures from vast image datasets, making
them more resilient to environmental variations, such as
lighting or background changes, which are common in
plant imagery. This adaptability is crucial for tasks like
ecological monitoring, where data comes from uncontrolled
and dynamic environments. As many challenges persist
with PlantCLEF 2015 dataset, it is considered for this
work. In the proposed methodology, transfer learning plays
a vital role in the classification of plant species. These
models are not only used for feature extraction, but also
provide a solid foundation that can be fine-tuned for the
specific plant species classification task. When combined
with techniques like ResNet50 for feature extraction
and k-means clustering for classifier selection, transfer
learning helps to create a highly efficient and accurate
classification system [1] [2]. In summary, transfer learning
is a key enabler for advanced plant species classification.
It accelerates model development, enhances performance,
and improves the generalization of deep learning models in
complex and diverse environments, making it an essential
tool for ecological monitoring and biodiversity conservation
initiatives. Hence, this paper uses transfer learning along
with ResNet50 and k-means clustering for classification
of more complicated PlantCLEF 2015 dataset [3]. The
rest of the paper is organized as follows: Section 2 covers
the literature review, Section 3 describes the materials
and methods, Section 4 showcases and analyzes the
experimental results, and Section 5 concludes with insights
and suggestions for future research directions.

II. LITERATURE REVIEW

Importance of research need for classifying plant species
is covered in this section. Conventional methods for
classifying plant species usually include feature extraction,
image preprocessing, and application of traditional machine
learning techniques. Despite their widespread use, Support
Vector Machines (SVMs), which rely on global form
and local texture features, have limitations because of
inconsistent feature extraction techniques and dataset
variability [4]. Similarly, traditional neural networks paired
with morphological feature extraction techniques can
achieve moderate accuracy. However, they often struggle
with small datasets and variations in plant structure,
such as differences in leaf shape and texture [5] [6].
These traditional methods, while foundational, frequently
encounter challenges related to accuracy and adaptability
in diverse environmental conditions. Recent developments
in deep learning have significantly improved plant species
classification. Convolutional Neural Networks (CNNs),
particularly architectures like ResNet and VGG16, have
shown remarkable accuracy. Studies have demonstrated that
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VGG16 can achieve classification accuracies as high
as 95.0% for plant image datasets [7]. Additionally,
more complex approaches, such as CNNs combined
with Bidirectional Long Short-Term Memory (Bi-LSTM)
networks for deep feature fusion, have further enhanced
precision and classification performance [8]. Other innovative
techniques, such as the VI-CNN model, which integrates
hyper-spectral LiDAR data with CNNs, have achieved
considerable improvements by analyzing both spectral and
biological features [9]. The D-Leaf model, leveraging CNNs,
has also outperformed traditional methods, emphasizing
the potential of deep learning for automated plant species
identification [10]. Numerous comprehensive studies and
reviews of plant classification using machine learning and
deep learning highlight the significant strides made in this
area [11] [27]. The ongoing development of deep feature
fusion techniques and advanced CNN architectures continues
to enhance classification accuracy and robustness [12] [15].
Most recently, transfer learning has emerged as a valuable
approach in plant species classification, particularly when
limited labeled data are available. Pre-trained models, such
as ResNet, Inception, and EfficientNet, which are initially
trained on large datasets like ImageNet, enable the extraction
of rich, hierarchical features that improve classification
performance in target tasks. Fine-tuning of these models
for specific plant classification challenges enhances both
accuracy and robustness, especially in complex environments
with varying conditions, such as changes in lighting
or background [23] [26]. This approach minimizes the
dependency on large labeled datasets and reduces the need
for manual feature extraction by enabling deep learning
models to automatically adapt to the unique characteristics of
plant imagery. As transfer learning has become instrumental
in improving the precision and stability of plant species
classification systems [13] [14], this research work combines

transfer learning with CNNs and k-means clustering, to
outperform traditional deep learning methods in terms
of standard performance metrics. Hence, the proposed
methodology is more effective in handling limited labeled
data, making it suitable for real-world applications.

III. MATERIALS AND METHODS
A. Experimental Setup

The tests were carried out on a high-performance
computing platform with an NVIDIA T4 GPU, which is
more suitable for deep learning model training as it has
2,560 CUDA cores, 320 Tensor cores, 16 GB of GDDR6
memory, and a memory bandwidth of 320 GB/s. The system
ran on Ubuntu OS with CUDA 11.x support and was powered
by an Intel Xeon CPU with 51 GB of RAM. TensorFlow
2.x and PyTorch 1.x/2.x frameworks were used for model
construction, training, and testing which made it possible to
handle complex CNN architectures effectively and to conduct
extensive model evaluation and experimentation quickly.

B. Datasets Utilized

The PlantCLEF 2015 dataset [30] was employed for
training and testing, which consists of 1,13,205 images
of different organs of 1000 species of trees, herbs and
ferns living in Western European regions. This dataset is
part of a citizen science initiative launched in collaboration
with Tela Botanica, which has involved a community of
botanists and plant enthusiasts over the past five years [24].
The dataset’s images reflect real-world variations, having
been captured by different users in diverse locations and
under various conditions throughout the year. The dataset
also includes metadata such as the author, date, location,
and EXIF data. Recent updates to the dataset feature vote
annotations contributed by the Tela Botanica community

Fig. 1: Sample images from the PlantCLEF 2015 dataset, showing different views and quality ratings
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through the collaborative tool Pictoflora. The images
encompass various views include photographs of “’leafscan”,
“leaf”, “flower”, fruit”, “stem”, “entire”, and the recently
added “branch” view of a plant species. Image quality is
rated by users on a scale of 1 to 5, where a higher rating
(*¥****) indicates a clear and well-focused image suitable for

identification [20] [25] as shown in Fig. 1.

C. System Architecture

The system architecture is divided into three primary
stages: feature extraction, grouping of features for selecting
classifier, and classification. Initially, augmentation is
performed for each class of plant species to increase the
number of samples for each class. Then, augmented dataset is
pre-processed in sequence one by one from quality evaluation
to normalization and resizing, further divided into two parts
namely training and testing in the ratio of 80% and 20%.
20% of training data actually used for validation. which
results in 60:20:20 ratio for training, validation and testing.
As in every deep learning system, there are training and
testing phases. In the training phase, initially features are
extracted using ResNet50. Based on these extracted features,
The clusters are formed using k-means clustering technique
with Silhouette algorithm to determine the optimal value of
k. Now each cluster is assigned to a deep learning model
which is trained using transfer learning with pre-trained
weights from the ImageNet dataset. These models consist of
non-trainable layers (frozen layers) which have weights from
the ImageNet dataset and trainable layers, allowing them
to leverage existing knowledge while learning new patterns.
Likewise, 15 CNN classifiers are trained and validated, since
Silhouette algorithm determined the optimal value of k as
15. In the testing phase, feature extraction is performed on
each testing sample. Then, k-means algorithm is employed
on extracted features to select the corresponding pre-trained
CNN model to predict the given multi-model image data.
Majority voting scheme is applied on these predicted labels
to take the final decision on plant species identification. Fig.
2 offers a visual depiction of the entire process from the
input images to the final classification of plant species. This
modular design enables efficient processing and classification
of plant images by utilizing deep transfer learning and
clustering techniques.

D. Feature Extraction using ResNet50

ResNet50, a deep convolutional neural network, is used
in the system’s first step for feature extraction. ResNet50 is
well-known for its capacity to extract intricate and significant
features, which make it appropriate for image classification
in difficult datasets [29]. To guarantee high-quality feature
extraction, pre-trained weights were used from sizable
ImageNet dataset through transfer learning. These traits
enhance the classification process by highlighting distinctive
traits of the plant species.

Clustering for Feature Grouping: The features extracted
from ResNet50 are grouped using k-means clustering
algorithm. The iterative process of k-means organizes the
features into groups according to their principal similarities,
improving the representation of the input dataset. By dividing
the feature space into meaningful groups, k-means clustering

helps to eliminate redundant information in the dataset.
Furthermore, k-means clustering helps in the discovery of
hidden patterns in the features extracted, which may not
be easily discernible in their raw form. Such patterns help
in enhancing the discriminative ability of the classification
model by providing a feature representation that is
semantically richer. Moreover, by clustering similar features,
k-means reduces noise and outliers, thereby providing a more
refined and robust feature set. The application of k-means
clustering [16] [17] enhances the robustness and reliability
of the output classification results while aligning feature
space with data intrinsic structure and thus focusing on the
most important and informative information for the CNNs.
In this compact format of data presentation, the features
extracted by ResNet50 has been further processed through
the application of k-means clustering, arranging the data
into clusters as conferred in [16]. The Silhouette Score is
15 for the PlantCLEF 2015 dataset. Therefore, the optimum
number of clusters is 15 that are separated well and can
be defined precisely. Finally, the dataset has been classified
into 15 clusters with different kinds of plants belonging to
different classes based on the visual features of the plants.

E. Cascaded Pre-trained CNNs for Species Classification

In the final stage, cascaded pre-trained CNNs are
employed to classify the plant species. The cascading of
pre-trained CNNs allows for a multi-layer analysis of the
features [28], progressively refining the classification as the
features pass through each layer. This method minimizes the
risk of misclassification by relying on deeper representations
of the plant characteristics [18]. Fig. 2 illustrates the
process of applying cascaded pre-trained CNNs for final
classification. This feature-based clustering groups the image
into one of several categories, ranging from cluster-1 to
cluster-15, by determining its similarity to other data points.
After image assigned to a specific cluster, such as cluster-4,
the system selects the corresponding classifier for that cluster,
for example, classifier-4. By processing the image through
this specialized classifier, the system increases the likelihood
of accurate classification. Once the classifier has processed
the image, the final classification result is produced as
output class. This method effectively combines the use
of unsupervised learning through k-means clustering with
selected classifiers, aiming to enhance both efficiency and
accuracy [19]. Likewise, all the input images which represent
different views or modality (leaf, flower, fruit, stem, entire
and branch) of a single plant are processed and the output
class for each modality has been obtained. These obtained
classes are taken into account by majority voting scheme to
finalize the class of the plant species out of 1000 classes.

F. Proposed Transfer Learning Model Architecture

Fig. 3 illustrates the concept of transfer learning, a
technique in deep learning where a model pre-trained on a
large dataset is adapted for a new, related task. The left side
of the diagram represents a CNN trained on the ImageNet
dataset, which contains 1000 classes. This model consists of
several layers, including an input layer, three convolutional
layers, corresponding three max-pooling layers, one flatten
layer, two fully connected layers and one softmax layer. The
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Fig. 2: System Architecture for Plant Species Classification
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model starts with an input layer that handles images
with 224 x 224 pixels size in RGB channels. Then, the
convolutional layer, labelled as conv_1, employs 32 filters
in order to extract edges and corners and followed up by
a ReLU activation function to handle non-linearity. Next, a
max-pooling layer is used to reduce the spatial dimensions
to 111 x 111 x 32. Then the second convolutional layer,
conv_2, uses 64 filters to detect more complex features
and a max-pooling layer is employed to reduce the spatial
dimensions to 54 x 54 x 64. The third convolutional layer,
conv_3, uses 128 filters to focus on higher-level features
like shapes or structures and a max-pooling layer is applied
to reduce the spatial dimensions to 26 x 26 x 128. The
convolution filter of size 3 x 3 and 2 x 2 max-pooling are used
in this work. After each convolutional layer, max pooling
is applied to down sample the feature maps, retaining only
the most important features while reducing computational
complexity and increasing robustness to variations [31]. The
output of last max-pooling layer is fed into a flattening layer,
which converts the multi-dimensional feature maps into a
one-dimensional vector with a size of 1 x 1 x 86528. This
feature vector is then forwarded to fully connected layers
for high-level reasoning. The first fully connected layer (FC
Layer 8) consists of 128 neurons, which combine learned
features to identify the relationship relevant to the target
classes. After this, the fully connected terminal layer (FC
Layer 9) produces a vector whose size is equivalent to the
number of classes i.e. 1000, where each element is a raw
score or logit, associated with each class. The softmax layer
then converts these logits into probabilities, thus allowing
the model to assign a confidence score to each class. The
class that has the highest probability is then considered as
the output class. The complete transformation, starting from

input image to feature maps and culminating the final
classification of plant species is illustrated in Fig. 4. With
this model architecture, training is performed with ImageNet
dataset. After training on ImageNet, this model has learned
meaningful feature representations that can be transferred to
a different task.

The right side of the diagram shows how the pre-trained
model is fine-tuned for a new dataset, the PlantCLEF 2015
dataset, which focuses on plant classification. Instead of
training the entire network from scratch, the convolutional
and max-pooling layers are frozen (i.e., their weights remain
unchanged) and labeled as non-trainable layers. These layers
continue to function as feature extractors, leveraging their
learned representations. However, the remaining layers are
trainable, meaning its weights will be updated to learn
task-specific features for classifying 1000 plant classes
instead of the original 1000 natural images. The transfer
learning approach also enhances the model’s adaptability by
allowing it to generalize well across different plant species
with minimal modifications. Therefore, by using this transfer
learning approach, the model benefits from pre-existing
knowledge, reducing computational costs, training time,
and the need for large amounts of labeled data. This
technique is especially useful in scenarios where collecting
and annotating large datasets are challenging, allowing
researchers to achieve high performance even with limited
data.

G. Training and Testing Procedure

Initially, performance measurements were used to
fine-tune hyper-parameters such learning rate, batch size, and
number of epochs. To enhance model generalization, data
augmentation methods such as flips, random rotations, and

Fig. 4: Tllustration of Feature Map Transformation on Each Layer of Proposed CNN Model
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color changes were used. Strategies like balanced batch
sampling and oversampling minority classes were used to
overcome the possible class imbalance. Eighty percent of
the images is utilized for training(20% for validation), while
the remaining twenty percent is used for testing. This is
performed by utilizing 60%-20%-20% split. For each sample,
n number of images of same plant is feed into ResNet50
to extract features from each image. k-means clustering is
then used to aggregate the features which help to select
classifier appropriately. Next, cascaded pre-trained CNNs are
used to learn classification task on PlantCLEF 2015 dataset
with the help of knowledge gained from ImageNet dataset. In
the testing phase, one among 15 pre-trained CNNs models
is employed to classify the feature extracted by ResNet50
from plant images based on likelihood of k-means clustering.
Likewise, model predicts classes for all the view (image)
of the same plant which is considered as a single sample.
the final class is obtained by making use of majority voting
scheme from predicted classes of plant views.

H. Evaluation Metrics

A number of important criteria are used to assess the
effectiveness of the suggested plant species classification
system. By dividing the number of correctly categorized
cases (both positive and negative) by the total number
of instances, accuracy quantifies the model’s overall
correctness. While recall, sometimes referred to as sensitivity
or true positive rate, indicates the model’s capacity to
locate all pertinent occurrences in the dataset, precision
measures the model’s capacity to accurately identify positive
examples. The F1 score serves as a harmonic mean
between precision and recall, providing a single metric
that balances both. This metric is particularly valuable in
scenarios where class distribution is uneven or when both
precision and recall are critical. By employing these metrics,
a comprehensive evaluation of the model’s performance
was achieved, highlighting its effectiveness in classifying
different plant species.

IV. RESULTS AND ANALYSIS

The proposed plant species classification system,
combining ResNet50, k-means clustering, and transfer
learning, is extensively tested using the PlantCLEF 2015
dataset. This section provides a detailed analysis of the
experimental results, covering classification performance.

A. Classification Accuracy

The transfer learning based CNN architecture
demonstrated remarkable performance in classifying 1000
plant species. By leveraging ResNet50 for feature extraction
and transfer learning, the model achieved an overall
accuracy of 97.8% on the validation set. This accuracy is
significantly higher than traditional deep learning approaches
such as ResNet50, Inception, MobileNet, Xception, and
EfficientNet. Even it outperforms several standalone
CNN-based architectures. To further validate the model’s
effectiveness, the Fl-score, precision, and recall metrics
were computed. These metrics are particularly important for
ensuring that the model performs well across all classes,
especially when dealing with imbalanced datasets. To

understand the performance metrics calculation, 20 classes
have been considered for better representation. From the
testing process, predicted classes have been obtained for
every classifier. Similarly, confusion matrix is calculated
using predicted and actual classes for every classifier.
The two confusion matrices of proposed model shown
in Fig. 5 and Fig. 6 illustrate the impact of transfer
learning on a plant species classification model. Fig. 5
represents the confusion matrix for without pre-trained
model. Some classes, such as Abies alba and Achillea
millefolium, exhibit high true positive values with 8§ and
9 correct predictions, respectively. However, several other
species show lower accuracy, indicating that the model
struggles to differentiate between them effectively. To
enhance the model’s performance transfer learning is applied,
its confusion matrix is shown in Fig. 5. In Fig. 6, the
red annotations highlight specific cases where true positive
values have increased as compared to the baseline model. For
instance, Allium triquetrum plant species has a significant
improvement, with correctly classified samples increasing
from 2 to 6. Similarly, other species show better classification
results due to the refined feature extraction capabilities of
transfer learning. From confusion matrix, TP, TN, FP, and
FN were calculated for each classes. Accuracy, precision,
recall and F1 score were computed using TP, TN, FP and
FN. The result of computation is tabulated and presented in
Table I. The results demonstrate the robustness and reliability
of the system, with a high Fl-score indicating balanced
performance across all species.

Table II presents a comparative analysis of traditional
deep learning models and the proposed model without
pre-trained weights. The comparison is based on key
performance metrics, including total parameters, trainable
parameters, average accuracy, average loss, and average
training time per epoch (in seconds). Among the traditional
models, MobileNet achieves the highest accuracy (0.8839)
with the lowest number of parameters (35.85 million),
making it a relatively efficient model. Inception (0.8824) and
Xception (0.882) also perform well, but have significantly
higher parameter counts, leading to longer training times.
EfficientNet achieves a slightly lower accuracy (0.8773),
but has a significantly reduced training time (50.5 seconds
per epoch), indicating better computational efficiency. The
proposed model outperforms all traditional models, achieving
the highest accuracy (0.98) and the lowest average loss
(0.0615). Notably, it does so with only 2,40,719 total
parameters, which is significantly smaller than all the
traditional models. This drastic reduction in parameter
count leads to improved efficiency, requiring only 61.5
seconds per epoch, which is much faster than most other
models except for EfficientNet. Overall, the results highlight
that the proposed model achieves superior accuracy while
being significantly lighter and computationally efficient,
making it a promising alternative to traditional deep
learning architectures, especially in resource-constrained
environments.

A comparative analysis of different deep learning models
with pre-trained weights is presented in Table III. This
comparison highlights the efficiency and effectiveness of the
proposed model in contrast to widely used architectures.
Among the traditional models, MobileNet demonstrates the
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Fig. 5: Confusion Matrix of Proposed CNN Model without Pre-training

Fig. 6: Confusion Matrix of Proposed Pre-trained CNN Model
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TABLE I: Classification Report of Proposed Model with Pre-Trained Weights

SNo Class TP FP TN FN  Accuracy Precision Recall F1-Score
1 Abies alba 8 1 520 0 1.00 0.89 1.00 0.94
2 Achillea millefolium 9 0 520 0 1.00 1.00 1.00 1.00
3 Agrimonia eupatoria 4 0 525 0 1.00 1.00 1.00 1.00
4 Ajuga iva 7 0 522 0 1.00 1.00 1.00 1.00
5 Allium polyanthum 4 0 523 2 1.00 1.00 0.67 0.80
6 Allium triquetrum 6 1 522 0 1.00 0.86 1.00 0.92
7 Ambrosia artemisiifolia 3 1 525 0 1.00 0.75 1.00 0.86
8 Anchusa italica 3 0 526 0 1.00 1.00 1.00 1.00
9 Anemone coronaria 4 3 522 0 0.99 0.57 1.00 0.73
10 Anthyllis vulneraria 5 0 524 0 1.00 1.00 1.00 1.00
11 Antirrhinum majus 1 0 528 0 1.00 1.00 1.00 1.00
12 Armeria arenaria 6 0 522 1 1.00 1.00 0.86 0.92
13 Asphodelus ramosus 0 0 528 1 1.00 0.00 0.00 0.00
14 Asplenium scolopendrium 2 0 527 0 1.00 1.00 1.00 1.00
15 Astrantia major 5 1 523 0 1.00 0.83 1.00 0.91
16 Bellevalia romana 2 0 527 0 1.0 1.0 1.0 1.0
17 Betula pubescens 2 2 525 0 1.00 0.50 1.00 0.67
18 Bistorta officinalis 3 1 525 0 1.00 0.75 1.00 0.86
19 Buglossoides purpurocaerulea 5 0 523 1 1.00 1.00 0.83 0.91
20 Calendula arvensis 5 0 524 0 1.00 1.00 1.00 1.00

TABLE II: Comparison of Parameter Size, Average Accuracy, Loss and Time of Various Models without Pre-Trained Weights

Model Total Parameters  Trainable Parameters  Average Accuracy  Average Loss  Average Time (s)
ResNet50 2,57,01,263 2,57,01,263 0.8649 0.1351 196.5
Inception 2,39,16,335 2,39,16,335 0.8824 0.1176 208.5
MobileNet 35,85,103 35,85,103 0.8839 0.1161 167.3
Xception 2,29,75,031 2,29,75,031 0.882 0.118 241.2
EfficientNet 1,95,25,230 1,95,25,230 0.8773 0.1227 50.5
Proposed Model 2,40,719 2,40,719 0.98 0.0615 61.5
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TABLE III: Comparison of Parameter Size, Average Accuracy, Loss and Time of Various Models with Pre-Trained Weights

Model Total Parameters  Trainable Parameters  Non-trainable Parameters =~ Average Accuracy  Average Loss  Average Time (s)
ResNet50 2,57,01,263 21,13,551 2,35,87,712 0.8546 0.1652 98.5
Inception 2,39,16,335 21,13,551 2,18,02,784 0.8925 0.1156 99.5
MobileNet 35,85,103 13,27,119 22,57,984 0.9826 0.0354 383
Xception 2,29,75,031 21,13,551 2,08,61,480 0.802 0.1081 40.2
EfficientNet 1,95,25,230 18,51,407 1,76,73,823 0.8817 0.0191 50.5
Proposed Model 2,40,719 1,47,471 93,248 0.9826 0.0076 375

highest average accuracy of (0.9826) while maintaining
a significantly lower parameter count as (35 Million) as
compared to deeper architectures like ResNet50 as (257
Million) and Xception as (229 Million). Additionally,
MobileNet achieves this performance with a relatively low
training time of 38.3 seconds per epoch. In contrast,
Xception has the lowest accuracy of (0.802), despite
having a large number of trainable parameters, indicating
that its performance might not be optimal in this
setting. EfficientNet, on the other hand, achieves a strong
accuracy of 0.8817 with the lowest loss as 0.0191,
highlighting its efficiency in balancing performance and
parameter count, whereas the proposed model significantly
outperforms all traditional models in terms of efficiency
and accuracy. It achieves an accuracy of 0.9826, matching
with MobileNet, while having only 2,40,719 total parameters
a drastic reduction as compared to all other models. The
number of trainable parameters is also only 1,47,471,
with a minimal number of non-trainable parameters
ie. 93,248. Additionally, it achieves the lowest average
loss as 0.0076 and the fastest training time as 37.5
seconds per epoch, making it the most efficient model
in comparison. Overall, the results demonstrate that the
proposed model maintains state-of-the-art accuracy while
being computationally lightweight and highly efficient.
This makes it a promising alternative for deployment in
environments with limited computational resources, where
both accuracy and speed are critical factors.

B. Comparison of Training and Validation Accuracy vs Loss

Fig. 7 illustrates training and validation accuracy vs loss
performance of a proposed deep learning model trained from
scratch, without using pre-trained weights, over multiple
epochs for all 1000 classes of PlantCLEF 2015. The x-axis
represents the number of epochs, while the y-axes display
two critical metrics: loss on the primary axis (left) and
accuracy on the secondary axis (right). These metrics are
evaluated for both training and validation datasets, with four
distinct curves providing insights into the model’s learning
behavior. The training loss, represented by the red line, starts
at a high value, but decreases steadily as the model learns,
indicating effective optimization of parameters. Similarly, the
validation loss, shown in blue, follows a declining trend,
albeit with fluctuations in the initial epochs. These

fluctuations suggest early instability as the model adjusts
its weights, but the loss eventually stabilizes at a low
value, indicating improved generalization. The training
accuracy, depicted by the purple line, increases rapidly and
eventually plateaus close to 1.0, demonstrating that the
model has effectively learned to classify the training data.
Mean while, the validation accuracy, represented by the
green line, exhibits some fluctuations in the early epochs
before stabilizing at a high level. These fluctuations are
common during the initial training phase as the model
fine-tunes its internal parameters, but the convergence of
validation accuracy with training accuracy suggests strong
generalization capability. The model does not appear to
suffer from significant over-fitting, as evidenced by the
minimal gap between training and validation accuracy. If
over-fitting were an issue, the validation loss would increase,
and validation accuracy would stagnate or decline, diverging
from the training metrics. Similarly, if the model were
under-fitting, both training and validation accuracy would
remain low, indicating inadequate learning. During the
early learning phase, spanning the first 20 to 30 epochs,
both training and validation loss decrease significantly
while accuracy increases, demonstrating effective learning.
In the mid-to-late training phase, beyond 50 epochs, the
training loss stabilizes, suggesting that the model has nearly
reached an optimal configuration of weights. Validation
accuracy also remains stable, further confirming the model’s
ability to generalize well to unseen data. Given the
observed trends, further fine-tuning could be beneficial to
enhance stability and performance. Overall, the graph in
Fig. 7 demonstrates that the model, despite being trained
from scratch without pre-trained weights, has successfully
learned patterns from the dataset while maintaining strong
generalization capabilities.

Fig. 8 represents the training and validation accuracy
vs loss performance of the proposed deep learning model
utilizing pre-trained weights. The x-axis denotes the number
of epochs, while the primary y-axis (left) measures the
loss, and the secondary y-axis (right) tracks the accuracy.
Four distinct curves illustrate the model’s learning behavior:
training loss (red), validation loss (blue), training accuracy
(purple), and validation accuracy (green). The use of
pre-trained weights accelerates convergence, as seen in the
rapid decline in both training and validation loss within the
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Fig. 7: Comparison of Training and Validation Accuracy vs Loss of Proposed Model without Pre-Trained Weights

Fig. 8: Comparison of Training and Validation Accuracy vs Loss of Proposed Model with Pre-Trained Weights

Fig. 9: Training and Validation Performance of the Proposed Deep Transfer Learning Model for Cluster-3

first few epochs. Unlike training from scratch, where the
model takes longer to learn meaningful features, pre-trained
weights provide a strong initialization, allowing the model
to achieve high accuracy more quickly. At the beginning
of training, the training loss starts at a higher value,
but decreases sharply, indicating effective optimization.
Similarly, the validation loss follows a step downward

trajectory before stabilizing at a low value, demonstrating
strong generalization capabilities. The early fluctuations in
validation loss are expected, as the model fine-tunes itself to
the PlantCLEF 2015 dataset. These fluctuations diminish as
training progresses, suggesting that the model has adapted
well to the new task without significant over-fitting. The
training accuracy rises rapidly, reaching near 1.0 within a
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few epochs, confirming that the model quickly learns
to classify the training data with high confidence. The
validation accuracy follows a similar trend, showing a
consistent increase before plateauing at a high level. The
close alignment between training and validation accuracy
indicates minimal over-fitting and effective knowledge
transfer from the pre-trained model. Compared to the
proposed model trained from scratch, this transfer learning
approach achieves optimal performance in a fewer epochs.
The rapid stabilization of both accuracy and loss highlights
the advantages of transfer learning, where the model
leverages previously learned features from large-scale
ImageNet dataset to improve performance on a new, domain
specific dataset ie. PlantCLEF 2015. Since pre-trained
models already capture essential low-level and high-level
representations, only the final layers need fine-tuning for
the new plant classification task. This results in faster
convergence, reduced computational cost, and improved
generalization. Overall, the graph represented in Fig. 8
suggests that the proposed model with pre-trained weights
outperforms the non-pre-trained counterpart in terms of
training efficiency and accuracy. The lack of significant
divergence between training and validation metrics further
indicates that the model generalizes well to unseen data.

C. Performance of Classifier for Cluster 1-15

A detailed class-wise analysis revealed that the model
performed exceptionally well across most plant species, with
precision and recall values exceeding 95% for the majority
of classes. However, a few species with subtle morphological
differences, such as variations in leaf texture or flower shape,
exhibited slightly lower performance. Misclassification were
analyzed for 15 clusters using the confusion matrix, which
highlighted these challenging cases. It revels that collecting
more diverse samples of these challenging species could
improve performance. For sample, to show the training and
validation performance of the proposed deep learning model
across multiple epochs for cluster number 3 is illustrated in
Fig. 9. The x-axis represents the number of epochs, while
the y-axis on the left denotes the primary loss values, and
the y-axis on the right represents accuracy. The training loss
(red) and validation loss (blue) exhibit a declining trend over
time, indicating that the model is progressively learning and
reducing errors. In contrast, the training accuracy (purple)
and validation accuracy (green) depict an increasing trend,
showcasing the model’s ability to generalize well over the
PlantCLEF 2015 dataset. However, fluctuations in validation
accuracy suggest some level of variance, possibly due to class
imbalance or complexity in the PlantCLEF 2015 dataset. The
eventual stabilization of both accuracy and loss towards the
later epochs signifies convergence, implying that the model
has learned meaningful patterns. This visualization provides
insights into the learning dynamics of the proposed deep
transfer learning classifier for cluster number 3 within the
broader classification task involving 15 distinct clusters.

D. Performance Comparison of Deep Learning Models with
and without Pre-trained Weights with Respect to Accuracy

Fig. 10 illustrates the training accuracy progress over
epochs for six different deep learning models such as
ResNet50, Xception, Inception, EfficientNet, MobileNet, and

the Proposed pre-trained Model with and without pre-trained
weights. Each model is trained under two conditions: without
pre-trained weights (red curve) and with pre-trained weights
(blue curve). The x-axis represents the number of training
epochs, while the y-axis denotes accuracy. From the Fig.
10, it is evident that utilizing pre-trained weights (blue
curves) significantly accelerates convergence for all models.
This effect is noticeable in all deep learning models,
where the pre-trained models reach near-perfect accuracy
much faster than their non-pre-trained counterparts. The
Inception model, while benefiting from pre-trained weights,
exhibits a slower convergence rate when compared to other
architectures. The proposed pre-trained model demonstrates
exceptional efficiency, achieving rapid convergence in
fewer epochs than all other models. Even when trained
without pre-trained weights, the proposed pre-trained model
reaches high accuracy significantly faster than traditional
architectures. This suggests that the model is inherently
well-optimized for the classification of PlantCLEF 2015
dataset, requiring fewer training iterations to achieve optimal
performance. Furthermore, the gap between red and blue
curves in models like MobileNet and ResNet50 highlights
that pre-training provides a crucial advantage in early
training stages, enabling faster feature learning and improved
accuracy. In contrast, for the proposed pre-trained model, the
difference between pre-trained and non-pre-trained versions
is minimal after a certain number of epochs, suggesting
that it is highly effective even without external knowledge
transfer. Overall, these results emphasize the importance
of pre-training in deep learning models, as it significantly
boosts convergence speed and final accuracy. Moreover, the
exceptional performance of the proposed model in both
conditions showcases its superiority in terms of learning
efficiency and generalization capability.

E. Performance Comparison of Deep Learning Models with
and without Pre-trained Weights with Respect to Loss

Fig. 11 illustrates the comparative training loss curves
of six different deep learning models considered in this
research which are evaluated with and without using
pretrained weights from ImageNet dataset with 1000
classes. Across all models, it is evident that the use of
pretrained networks significantly accelerates the convergence
of loss and enhances overall training efficiency. Specifically,
models initialized with pretrained weights (depicted in
blue) demonstrate a steeper and more consistent decline
in loss during the early epochs, achieving convergence
well before their non-pretrained counterparts (depicted in
red). This trend is particularly prominent in architectures
such as EfficientNet, Xception, MobileNet, and proposed
model where pretrained models reach near-zero loss within
the first 50 to 75 epochs, whereas non-pretrained models
require more epochs and show relatively slower learning
behavior. Notably, the proposed model outperforms all
other architectures in both scenarios, achieving rapid
convergence and maintaining minimal loss throughout the
training process. The pretrained version of the proposed
model exhibits the best overall performance, validating the
effectiveness of its architectural design and the benefits
of leveraging transfer learning. These results clearly
demonstrate that the integration of pretrained weights not
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only reduces training time but also improves model
generalization and stability, making it a highly advantageous
strategy in deep learning-based classification tasks.

F. Comparative Analysis of Deep Transfer Learning Models

The comparative analysis of deep learning models
with and without pre-trained weights is presented in
Fig. 12, illustrating key performance metrics such as
accuracy, precision, recall, loss, Fl-score, and training time.
The models included in this evaluation are ResNet50,
InceptionV3, Xception, EfficientNet, MobileNet, and the
Proposed Model. The results highlight the efficiency and
effectiveness of different architectures under various training
conditions. The accuracy comparison in Fig. 12(a) indicates
that models with pre-trained weights generally perform little
better than those trained from scratch. Among them,

MobileNet and the proposed model achieve the highest
accuracy, demonstrating their ability to generalize well to the
PlantCLEF 2015 dataset. The proposed deep transfer learning
model, in particular, exhibits a strong performance even
without pre-trained weights, emphasizing its robustness in
learning feature representations. In terms of precision shown
in Fig. 12(b), pre-trained models tend to show slightly higher
values than their non-pre-trained counterparts. MobileNet
and the proposed deep transfer learning model achieve
the highest precision, indicating their ability to reduce
false positives while maintaining correct classifications.
This suggests that these models are particularly effective
in distinguishing between different classes with minimal
misclassification errors. The recall values shown in Fig. 12(c)
follow a similar trend, with pre-trained models consistently
achieving higher recall scores. The proposed deep transfer
learning model maintains a strong recall score, demonstrating

Fig. 12: Performance Comparison of Deep Transfer Learning Models with Respect to Accuracy, Precision, Recall, F1 Score,

Loss, and Training Time per Epochs
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its capability to correctly identify relevant instances with
minimal false negatives. The Fl-score given in Fig. 12(d),
which balances precision and recall, further reinforces the
trends observed in previous metrics. The proposed deep
transfer learning model consistently achieves the highest
Fl-score, making it a well-balanced and robust choice
for classification tasks. The improvements in Fl-score for
pre-trained models highlight the effectiveness of transfer
learning in refining predictions. When evaluating average
loss shown in Fig. 12(e), it is evident that the proposed
deep transfer learning model achieves the lowest loss
value, outperforming other models significantly, especially
when using pre-trained weights. A lower loss indicates
better generalization, meaning the model has effectively
learned useful patterns in the PlantCLEF 2015 dataset
without over-fitting. MobileNet also exhibits competitive
performance, with lower loss values compared to more
complex architectures like ResNet50 and Xception. As
training efficiency is more crucial one, average training
time per epoch is used for comparison and is shown in
Fig. 12(f). Heavier models like ResNet50, InceptionV3,
and EfficientNet require significantly longer training times,
making them computationally expensive. In contrast, the
proposed pre-trained model demonstrates the shortest
training time while maintaining high accuracy, precision, and
recall, making it the most computationally efficient model in
this comparison. This efficiency makes it particularly suitable
for applications requiring real-time or resource-constrained
deployment. While pre-trained models generally exhibit
better results, the proposed deep learning model achieves
competitive performance even without pre-trained weights.

V. CONCLUSION AND FUTURE WORK

In this work, a unique method for classifying plant
species by combining ResNet50, k-means clustering, and
transfer learning using cascaded CNN architecture has
been crafted. PlantCLEF 2015 dataset has been used
to asses the performance of the proposed model. When
compared to conventional pre-trained deep learning models
such as ResNet50, Inception, MobileNet, Xception, and
EfficientNet, the proposed pre-trained CNN model has
superior performance with respect to standard performance
metrics. Particularly, the experimental findings show that
the suggested model performs noticeably better than
conventional pre-trained techniques with an average accuracy
of 98.26%, average time of 37.5 seconds, average loss
of 0.0076, and less number of trainable and non-trainable
parameters. A notable improvement is observed in training
time, parameter size and stability on pre-trained deep
learning models when compared with non-pre-trained one.
To conclude, it can be stated that the comparative evaluation
emphasize the superior performance of the proposed deep
transfer learning model, which achieves high accuracy, low
loss, and fast training times as compared to traditional
deep transfer learning models. To improve the model’s
performance, other data modalities such as environmental
metadata and hyper-spectral photography can be incorporated
in further work. Future studies could also examine methods
for real-time classification in mobile applications, which
would allow for greater accessibility and useful applications
in conservation and agriculture.
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