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Abstract—When Spark processes RDD data, it employs the
default execution mode of distributing data to cluster nodes for
processing and then aggregating results back to the Driver.
This model entails bidirectional data transmission between
cluster nodes and the Driver, resulting in two shuffle processes.
This approach not only prolongs task execution time but also
intensifies cluster resource competition and impairs system
performance. To address this problem, this paper proposes a
Data-Scale and Configuration-Aware Dynamic Execution Plan
Selection Strategy (D2CS). This strategy integrates the Driver
side into cluster computing resources and dynamically selects
the optimal execution plan by sensing and analyzing data scale
and cluster configuration, effectively avoiding resource con-
tention and shortening task completion time. The strategy com-
prises three key components: first, extending the Spark SQL
framework to enable Driver-side operator computation; second,
designing a task execution time prediction algorithm to estimate
operator execution times on both the Driver side and cluster
nodes; third, determining the optimal execution plan through a
time-cost model to ensure efficient cluster resource utilization.
Additionally, to address the frequent disk spills caused by the
serial aggregation-sorting process in Shuffle Read, this paper
proposes a Parallel Shuffle Aggregation and Sorting Strategy
(PASA), which shortens the execution pipeline and enhances
system resource utilization by parallelizing these operations.
Experimental results show that D2CS effectively alleviates clus-
ter resource competition and significantly boosts task execution
efficiency. Compared with Spark’s default mechanism, PASA
achieves performance improvements of 7.42%–39.88%, and
compared with the Cherry and DBPM strategies, it achieves
improvements of 2.95%–26%.

Index Terms—Parallel Computing, Resource Competition,
Shuffle, Execution Plan Selection.

I. INTRODUCTION

W ITH the rapid development of Internet technology, the
demand for massive real-time data processing contin-

ues to grow. The increasing data scale and computational task
complexity have imposed higher requirements on distributed
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computing frameworks. The early MapReduce [1] framework
solved the problem of large-scale data processing, but its
intermediate results were stored on disk, limited by disk I/O
performance bottlenecks, which hindered further improve-
ments in job execution efficiency. As a distributed framework
based on in-memory computing, Spark demonstrates signif-
icant advantages in iterative scenarios like data mining and
machine learning by reducing frequent external storage reads
and writes, achieving higher execution efficiency than the tra-
ditional Hadoop framework. Current mainstream distributed
frameworks (e.g., Storm [2], Spark [3], Flink [4]) support
SQL operations for unified data analysis and management.
For example, HiveSQL [5] can adapt to the underlying DAG
execution models of MapReduce or Spark, while frameworks
like Spark SQL and Flink SQL natively provide SQL inter-
faces. As shown in Figure 1, SQL operations are ultimately
converted into parallel task execution supported by these
frameworks. Therefore, optimizing the SQL execution plan
is crucial for enhancing system performance.

For Spark SQL query optimization, various strategies have
been proposed. [6] focuses on adaptive query optimization
at runtime; [7] studies the dynamic selection mechanism of
the JVM in SQL queries; [8-10] address data recomputation
and skew optimization during SQL runtime; [11-12] integrate
AI into the computing framework to enable online tuning
of SQL runtime configurations. However, most of these
optimization mechanisms overly rely on historical data or
expert systems, leading to additional computational overhead
and heavier burdens on cluster operations. To address this
issue, this paper presents a lightweight optimization strategy
that dynamically allocates computation tasks to the Driver
side, reducing resource consumption in intermediate steps to
shorten task completion time.

In distributed computing, the reasonable allocation of
resources such as CPU, network, and memory is critical.
Excessive resource allocation may lead to CPU idle time,
which impacts the scheduling of other jobs in the cluster [11].
To address this, this paper proposes offloading some tasks to
the Driver side for preprocessing, avoiding the overhead of
data distribution and result aggregation in the shuffle process,
as well as performance degradation caused by disk spills.
Specifically, for routine data tasks, directly submitting them
to the cluster for processing may incur network transmission
and task scheduling overheads that exceed the local compu-
tation overhead on the Driver side, thereby prolonging task
completion time. However, given the significant variations
in data scale and cluster configuration parameters (e.g.,
number of Executors, node computational capacity, memory
allocation), traditional fixed execution models struggle to bal-
ance efficiency and resource utilization. Therefore, this paper
introduces a Data-Scale and Configuration-Aware Dynamic
Execution Plan Selection Strategy (D2CS). By constructing a
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Fig. 1. Spark SQL Running Principles.

task execution time prediction model and a time-cost decision
model, D2CS dynamically selects the execution path with
minimal computational overhead, reducing the overheads
of data distribution, intermediate file generation, and result
aggregation during the shuffle process.

In addition, for the Shuffle Read phase in Spark’s Sort
Shuffle mechanism, the existing process employs a serial
”aggregate-then-sort” mode. Insufficient memory allocation
triggers multiple disk spills and frequent I/O operations,
severely degrading performance. To address this, this paper
proposes a Parallel Shuffle Aggregation and Sorting Strategy
(PASA). By designing a parallel execution pipeline for
sorting and aggregation, PASA optimizes the data processing
workflow, reduces the risk of memory overflow, and enhances
system resource utilization.

The contributions of this paper are summarized as follows:
(1) To address the resource overhead incurred by in-

termediate steps during operator execution in the cluster,
this paper proposes a Data-Scale and Configuration-Aware
Dynamic Execution Plan Selection Strategy (D2CS). Using
the Sort operator as a case study, we illustrate its imple-
mentation, which comprises three key technical components:
first, designing an execution plan within the Spark SQL
framework to enable Driver-side computation and expand
localized processing paths for operators; second, construct-
ing a task execution time prediction model that estimates
operator execution times on both the Driver side and cluster
nodes, leveraging historical task data and cluster configura-
tion parameters; finally, dynamically selecting the optimal
execution path through a time-cost decision model. This
approach effectively reduces cluster resource contention,
significantly shortens job completion time, and eliminates the
redundant two-way shuffle overhead inherent in traditional
models—especially for small-scale data scenarios.

(2) To address frequent disk spills caused by the serial
”aggregate-then-sort” process in the Shuffle Read phase of
Spark’s Sort Shuffle mechanism under large-scale data sce-
narios, this paper proposes a Parallel Shuffle Aggregation and
Sorting Strategy (PASA). By designing a parallel execution
pipeline for aggregation and sorting, the strategy employs
ordered data structures to achieve incremental ordered ag-
gregation, thereby maximizing memory utilization and mini-
mizing disk I/O overhead. Experimental results demonstrate
that PASA significantly reduces disk I/O frequency and
system energy consumption, achieving task performance im-
provements of 7.42%–39.88% compared with Spark’s default

mechanism.
The remainder of this paper is structured as follows:

Section II introduces related research work. Section III
details the system architecture and model design. Section
IV presents experimental results and performance analysis.
Section V concludes the paper.

II. RELATED WORK

A. Spark SQL-Based Optimization Techniques
With the proliferation of large-scale datasets, traditional

SQL query processing techniques face performance bottle-
necks [13]. [14] reveals that in the early single-threaded
Volcano model, the overhead from frequent invocations of
the next() method is substantial. Vectorized execution tech-
niques mitigate such overhead by processing data in batches,
significantly enhancing CPU cache utilization.

The advancement of parallel computing models has driven
SQL execution optimization. The concurrent execution of
the SQL execution tree primarily involves intra-operator
and inter-operator parallelism: the former enables a single
operator to process multiple data partitions through data
partitioning, a common approach in stream-processing sys-
tems; the latter utilizes Pipeline technology to fuse successive
operators into execution units via Operator Fusion, reducing
function calls and accelerating query execution. In the hybrid
distributed-local parallelism scheme [15], broadcast replaces
traditional shuffle for data transfer in Exchange operators
with small output result sets, effectively minimizing com-
munication overhead.

In existing research, [11] proposes an approach for the
automatic online adjustment of Spark SQL configurations;
[16] applies the successive halving algorithm to Spark SQL
configuration optimization, demonstrating excellent perfor-
mance in machine-learning hyperparameter tuning; [17] dy-
namically loads data partitions using RDF data statistics
and user query loads to optimize Spark SQL processing.
These studies primarily enhance performance through auxil-
iary mechanisms or ”space-for-time” strategies but generally
overlook the rational use of Driver-side computing resources.
In the traditional model, operators distribute data to cluster
nodes for processing and then aggregate results back to the
Driver, creating bi-directional data transmission. This often
leads to cluster communication and scheduling overhead
exceeding the direct computation costs on the Driver side
in small-data scenarios, exacerbating cluster resource con-
tention and affecting the scheduling of other jobs.
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Different from existing work, this paper integrates the
Driver side into the distributed computing architecture and
proposes a Data-Scale and Configuration-Aware Dynamic
Execution Plan Selection Strategy (D2CS) by extending the
Spark physical execution plan. D2CS dynamically selects
execution plans by sensing data scale and cluster configu-
ration, aiming to minimize task completion time. This ap-
proach achieves efficient computing resource allocation and
overcomes the inefficiencies of traditional fixed execution
modes.

B. Spark Shuffle Read Optimization Techniques

In Spark’s Sort-based shuffle mechanism, the serial ex-
ecution of aggregation followed by sorting creates data
processing bottlenecks: when the data scale exceeds mem-
ory capacity, partial data must be spilled to disk to free
space, with frequent disk I/O significantly degrading cluster
performance. To address this, researchers have proposed
cache-aware algorithms [18-21] and efficient aggregation
algorithms [22-24]. These approaches typically split datasets
into cache-sized chunks, sort, aggregate, and cache each
chunk before merging results to reduce memory pressure.

[25] introduces the Spark vectorized execution engine
(VEE), which reduces random memory access frequency
through batch data reordering in memory to improve query
performance. [26] filters invalid data early to reduce shuffle
overhead in Join operations but applies only to specific sce-
narios. [27] employs a hardware offloading approach to mi-
grate tasks to dedicated hardware, yet this incurs high costs.
[28] accelerates processing by restructuring shuffle control
and data planes, though it introduces a new management
architecture and relies on specific hardware configurations.
[29] proposes a dynamic partition adjustment strategy to
optimize shuffle efficiency but adds extra decision-making
overhead. [30] designs a Reduce-phase Push optimization
strategy for small shuffle blocks, though its generalization
remains limited.

While the above methods enhance shuffle performance,
they often suffer from hardware dependencies, increased sys-
tem complexity, or narrow applicability. This paper proposes
a Parallel Shuffle Aggregation and Sorting Strategy (PASA),
which enables the parallel execution of aggregation and sort-
ing through pipeline restructuring. This eliminates multiple
disk spills during serial processing, reduces data overflow
instances via efficient memory management, and shortens I/O
time. PASA offers a lightweight solution for large-scale data
processing, improving system resource utilization without
additional hardware costs.

III. SYSTEM ARCHITECTURE AND STRATEGY
IMPLEMENTATION

During the execution of Spark operators, data is typi-
cally distributed from the Driver side to cluster nodes for
processing, with results aggregated back to the Driver. In
this model, if network transmission and cluster scheduling
overheads exceed the direct computation costs on the Driver
side, resource waste and performance degradation occur. To
address this, we propose a Data-Scale and Configuration-
Aware Dynamic Execution Plan Selection Strategy (D2CS).
D2CS constructs a time-cost decision model to dynamically

select the optimal execution path through real-time evaluation
of data scale, cluster resource configurations (e.g., number
of Executors, node computational capacity, network band-
width), and task characteristics. Additionally, to resolve the
pipeline bottleneck caused by the serial ”aggregate-then-sort”
process in the Shuffle Read phase, we introduce a Parallel
Shuffle Aggregation and Sorting Strategy (PASA). PASA
restructures the processing pipeline by enabling parallel exe-
cution of aggregation and sorting, eliminating multiple disk
spills and reducing I/O overhead through efficient memory
management. The overall architecture of the strategy is
shown in Figure 2, achieving fine-grained computing re-
source allocation and deep performance tuning of the shuffle
process through the collaborative optimization of D2CS and
PASA.

A. Data-Scale and Configuration-Aware Dynamic Execution
Plan Selection Strategy

This subsection designs the Data-Scale and Configuration-
Aware Dynamic Execution Plan Selection Strategy (D2CS)
based on a quantitative analysis of data transmission and
computation costs. By modeling the relationship between
data scale, cluster resource parameters, and task execution
time, we construct a time-cost decision model to dynamically
select optimal execution plans. This approach minimizes job
completion time while reducing cluster resource contention,
reserving hardware resources for multi-task scheduling.

When a user submits an application to a Spark cluster, the
client first creates a Driver process and registers it with the
master node. SparkContext requests resources via a cluster
manager (e.g., Mesos, Kubernetes, or Standalone) to launch
multiple Executors as distributed computing units. Spark
abstracts RDD transformation relationships into a directed
acyclic graph (DAG), which is divided into ShuffleMapStage
and ResultStage based on narrow and wide dependencies.
TaskScheduler generates TaskSet according to stage depen-
dencies and distributes them to the thread pools of Executor
nodes for execution, completing the full scheduling process
for distributed computing.

To implement D2CS, this paper extends three core com-
ponents within Spark’s native execution framework to ensure
compatibility with the existing architecture:

(1) Driver-side Execution Plan: Design a physical execu-
tion plan for driver-side computation, omitting shuffle data
distribution and result aggregation for lightweight operators
to complete computations directly on the Driver side. This
avoids network transmission and scheduling overheads be-
tween cluster nodes. The module complements the native
distributed execution plan by extending Spark’s SparkPlan
abstract class and adding localized execution nodes (e.g.,
DriverPlan).

(2) Cluster Status Collection Module: Deployed on the
Driver side to collect real-time cluster task submission infor-
mation, including configuration parameters such as the num-
ber of Executors, node computational capacity (represented
by VCPU cores), memory allocation, network bandwidth,
and historical task execution time data.

(3) Time-Cost Decision Engine: Based on collected cluster
status and task characteristics, a dual-end execution time pre-
diction model is constructed to estimate operator processing
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Fig. 2. System Architecture.

times on the Driver side and cluster nodes, including data
transmission, computation, and shuffle overhead. A time-cost
comparison model dynamically selects the execution plan
with the lowest time cost.

D2CS employs a plug-in architecture: the status collection
and decision engine modules are embedded directly in the
Driver side without altering cluster node logic. The Driver-
side execution plan is implemented by extending Spark
SQL’s physical execution plan generator, requiring only
minimal modifications to Spark’s core code to ensure system
compatibility and maintainability.

B. Algorithm Implementation of Data-Scale and
Configuration-Aware Dynamic Execution Plan Selection
Strategy

The D2CS strategy first quantifies the input data scale and
integrates real-time collected cluster resource configurations
(e.g., number of Executors, node computational capacity).
Using a Long Short-Term Memory (LSTM) network, it
constructs a time-cost prediction model to separately model
the localized computation time on the Driver side and the
distributed processing time on cluster nodes. The strategy
dynamically selects the execution path with the minimum
total execution cost: if the cluster processing time cost ex-
ceeds that of Driver-side execution, a localized physical plan
is triggered; otherwise, the traditional distributed execution
plan is adopted.

1) Task Information Statistics Algorithm
Task data size is a core parameter for estimating data trans-

mission and computation times. During program execution,
the number of data records is obtained via Spark’s DataFrame
interface, and the physical execution plan is parsed using the
Spark REST API to extract input/output data characteristics
of operators in each stage. The detailed implementation is
outlined in Algorithm 1.

As a key variable for estimating Driver-side data loading
time, localized computation time, and cluster task completion
time, the quantification of data scale directly impacts the
decision accuracy of the D2CS strategy. Cluster task execu-
tion times are influenced by nonlinear factors such as data
skew, resource contention, and network latency—complex
dependencies that traditional static models struggle to cap-
ture accurately. D2CS addresses this challenge by training
an LSTM model with historical task data extracted via
Algorithm 1, enabling precise prediction of both cluster
node processing times and Driver-side computation times.
Additionally, it estimates Driver-side data fetching time using
historical average network bandwidth, constructing a multi-
dimensional time-cost evaluation system that integrates these
metrics for holistic cost assessment.

Algorithm 1 REST API-Based Task Information Extraction
Algorithm

Input: Spark application ID: applicationId, Spark REST
API address: apiUrl.
Output: List of SQL relation information: SqlRelation-
Info[].
applicationUrl ← apiUrl + applicationId + ”/sql”
dataSize ← DataFrame.size()
applicationData ← HTTP.GET(applicationUrl)
applicationName ← applicationData.getName()
duration ← applicationData.getDuration()
nodesInfo ← parse(applicationData.getNodeArray())
planDescription ← applicationData.getPlanDescription()
edges ← applicationData.getEdges()
return SqlRelationInfo[dataSize, duration, nodesInfo,
edges, planDescription]
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Fig. 3. LSTM Neural Network Structure.

2) Task Completion Time Prediction Algorithm Based on
LSTM

Task execution times in cluster environments are influ-
enced by multi-dimensional dynamic factors—data scale,
resource configurations, network conditions, and data distri-
bution—whose complex nonlinear relationships make them
difficult for traditional statistical models to capture. To
address this, we construct an LSTM-based time prediction
model that learns from historical task data (features including
data scale, number of Executors, CPU cores, and actual exe-
cution time) to accurately predict both Driver-side localized
computation times and cluster distributed processing times.
The LSTM network architecture is tailored to our specific
data characteristics and prediction requirements, comprising
multiple layers with configurable numbers of LSTM units.
These units effectively capture long-term dependencies in
time-series data, enabling the model to leverage historical
patterns in resource allocation and task behavior. This ca-
pability enhances prediction accuracy for both localized and
distributed execution paths, providing a robust foundation for
the D2CS strategy’s dynamic decision-making.

The input layer receives raw data, while the number of
hidden layers and units per layer are tuned via experiments
for optimal performance. Each LSTM unit contains forget-
ting, input, and output gates (Figure 3), enabling the network
to determine when to retain or discard information—critical
for capturing temporal dynamics in data during prediction.
The output layer converts hidden layer outputs into final
predictions: task execution times.

To validate the accuracy of the machine learning model
for predicting task execution times, comparative experiments
were conducted with classic machine learning models. The
dataset was randomly split into a 70% training set and 30%
test set. Root Mean Square Error (RMSE, Equation (1))
served as the model evaluation criterion, where n is the
number of samples, yi denotes the observed value, and ŷi
represents the model’s predicted value:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (1)

As training progresses, RMSE on both the training and
test sets decreases, indicating high prediction accuracy and
effective model learning from the dataset. Final results for
all models are presented in Table I.

In this study, the LSTM network architecture consists of
three layers: the input layer, hidden layer, and output layer.

TABLE I
RMSE OF THE MODELS

Type RMSE
Bayesian Neural Networks 4.86

Support Vector Regression 6.86

K-nearest Neighbor 5.35

LSTM 4.69

The input layer processes the input data, xt. The hidden
layer contains one or more LSTM units, each incorporating
a forget gate, an input gate, and an output gate to control
information flow. The output layer processes the hidden
layer’s output and generates the final predicted value. The
forgetting gate formula is defined as:

ft = sigmoid (Wf [ht−1, xt] + bf ) (2)

where ft represents the forgetting gate output, wf is the
forgetting gate weight matrix, ht−1 denotes the hidden state
from the previous time step, xt is the current input at time
t, and bf is the bias term.The input gate operations involve
two key computations:

c̃t = tanh (Wc [ht−1, xt] + bc) (3)

it = sigmoid (Wi [ht−1, xt] + bi) (4)

Here, c̃t is the candidate cell state update, wc and wi are
the weight matrices for the candidate state and input gate,
respectively, bc and bi are their corresponding bias terms,
it represents the input gate output, and tanh denotes the
hyperbolic tangent function.The cell state update equation
is:

ct = ft · ct−1 + it · c̃t (5)

where ft is the forgetting gate output, ct−1 is the cell state
at the previous time step, it is the input gate value, and c̃t
is the candidate state.The output gate operations are defined
as:

ot = sigmoid (Wo [ht−1, xt] + bo) (6)

ht = ot · tanh(ct) (7)

where Wo is the output gate weight matrix, bo is the bias
term, ct is the current cell state, and ot represents the output
gate output.The final output layer maps the hidden state ht

to the predicted Sort task execution time:

ŷt = Woutht + bout (8)

where Wout and bout are the output layer weight matrix
and bias term, respectively.Experimental results show that
small training sets lead to prediction inaccuracies, while
excessively large sets increase training overhead. To balance
performance, we leverage the past ten days of historical data
as the training set, performing daily offline training. Despite
external variables impacting CPU sorting time and cluster
task completion time, the proposed model achieves robust
prediction performance through systematic evaluation.
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Experimental results show that the proposed LSTM model
achieves superior performance, validating the effectiveness of
our feature extraction approach. Among compared models,
LSTM outperforms others with an RMSE of 4.69 on the
dataset, highlighting its optimal ability to fit nonlinear time-
series data. Consequently, LSTM is selected as the task
time prediction model for D2CS, providing a high-precision
foundation for time-cost evaluation.

3) Dynamic Execution Plan Selection Algorithm Based on
Time Cost

Based on task data size estimation and dual-end (Driver
side, Cluster side) execution time forecasting, this subsection
designs a dynamic execution plan selection algorithm.

To estimate Driver-side data acquisition time, we calculate
the average bandwidth Bw as a baseline parameter by col-
lecting network bandwidth data from similar operator tasks
over the past ten days. Using the task data size Dw obtained
from Algorithm 1, the data transmission time for a single
worker node is expressed as:

twn =
Dw

Bw
(9)

The core logic of the dynamic selection algorithm is to
compare Driver-side and cluster-side time costs and select
the execution path with the minimum time cost. The algo-
rithm takes the task data size Dw and cluster configuration
parameters (e.g., number of Executors, node computational
capacity) as input and outputs the optimal execution plan.
The detailed implementation is outlined in Algorithm 2.

Algorithm 2 Dynamic Execution Plan Selection Algorithm
Input: Data size Dw, Cluster configuration parameter set:
CSinfo
Output: Optimal Execution Plan
tcloud ← LSTM (Dw, information)
tdriver fetch ← twn with eq(9)
tdriver sort ← LSTM (Dw)
tdriver ← tdriver fetch + tdriver sort

if tdriver > tcloud then
”SortExec”

else
”DriverSortExec”

end if

C. Parallel Shuffle Aggregation and Sorting Strategy

To address frequent disk spills caused by the serial
”aggregate-then-sort” processing pipeline in Spark’s Shuffle
Read phase, this subsection proposes the Parallel Shuffle Ag-
gregation and Sorting Strategy (PASA). By restructuring the
data processing pipeline, PASA achieves efficient memory
utilization, reduces I/O overhead, and enhances large-scale
data processing efficiency.

In Spark distributed computing, Shuffle is a core com-
ponent for cross-stage data redistribution, triggered by wide
dependencies in RDDs—where a single partition of a child
RDD depends on multiple partitions of the parent RDD. The
Shuffle process consists of two phases (Figure 4):

In the Shuffle Write phase, Map tasks partition intermedi-
ate data by key, reduce data volume through pre-aggregation,

Fig. 4. Two Phases of Spark Shuffle.

and write it to local disk files according to sorting rules.
During Shuffle Read, Reduce tasks fetch corresponding
partitioned data from each node and perform aggregation
(e.g., summation, deduplication) and sorting operations in
sequence. Spark’s current serial processing model operates
as follows: it first uses the ExternalAppendOnlyMap data
structure for aggregation, triggering a disk spill if memory
is insufficient. After aggregation, the result set is sorted, with
another disk spill occurring if data volume exceeds memory
thresholds. The PASA strategy advances the sorting process
to execute concurrently with aggregation. This concurrent
approach shortens the execution pipeline, reduces memory
usage, enhances cache efficiency, and minimizes disk spills
by integrating sorting and aggregation—eliminating the need
for separate spill operations during each stage.

D. Algorithm Implementation of the Parallel Shuffle Aggre-
gation and Sorting Strategy

As depicted in Figure 5, Reduce tasks continuously fetch
data from Map task partition files, using fagg() for in-
cremental aggregation as data is received—a process that
aggregates while fetching. Once aggregation is complete, the
data is loaded into an array, sorted by key, and the sorted
results are either output or passed to subsequent operations.

In the traditional Shuffle Read phase—where aggregation
precedes sorting—intermediate data may spill to disk if
memory is insufficient during computation. When memory
cannot store all data, part of it is written to disk to free space,
which increases task completion time due to slower disk
access compared to memory. Critically, because aggregation
and sorting are performed sequentially, this serial pipeline
often triggers two separate disk spills: one during aggregation
when memory is exhausted, and another during sorting when
the result set exceeds memory capacity.

The entire aggregation-and-sorting process can be modeled
as follows:

(1) Amount of Overwritten Data
In the serial aggregation-then-sorting pipeline, when the

aggregated data volume D exceeds available memory M , the
spilled data volume during aggregation is:

S′ = D −M (10)
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Fig. 5. Optimized Shuffle Read Process.

Subsequently, the sorting process operates on the aggre-
gated results. Since sorting requires additional memory for
intermediate results, a second spill occurs if the sorted data
also exceeds M . The total spilled data volume from both
stages is:

S = 2× S′ (11)

(2) Number of Spill Events
Spill events occur when available memory is insufficient

to store data. Spark writes to separate disk files in units of
10,000 data records, where the average size of 10,000 records
is B. The number of spills during aggregation is:

N ′ =
S

B
=

D −M

B
(12)

Here, N ′ represents both the number of spill events and the
count of generated spill files. During the subsequent sorting
phase, the same memory constraint applies, leading to a total
spill count of:

N = 2×N ′ (13)

(3) Task Completion Time Calculation
The task completion time for the aggregation-sorting pro-

cess includes both memory processing time and disk I/O
time.

The memory processing time Tm depends mainly on the
rate of data processing in memory Rmem and the number of
spill events to be processed. The specific calculations are as
follows:

Tm =
M

Rmem
× (N + 2) (14)

Where N is the total spill count, the plus 2 in this count
accounts for the final in-memory processing without spills in
both the aggregation and sorting phases. The disk spill time
of the process can be expressed as:

Tw
d =

B

Rdisk
×N =

S

Rdisk
(15)

For each spill of data S′ during aggregation, the sorting
phase requires reading these spills from disk, incurring
additional disk read overhead:

T r
d =

S′

Rdisk
×N ′ (16)

Combining memory processing and disk I/O times, the
total task completion time is:

Ttotal = Tm + Tw
d + T r

d (17)

=
S′

Rdisk
×N ′ +

S

Rdisk
+

M

Rmem
× (N + 2) (18)

The goal of PASA is to minimize the total time by
reducing the spill count N , spilled data volume S, and
disk read overhead, achieving comprehensive optimization
of computation time, memory usage, and disk I/O efficiency.
As outlined in Algorithm 3, PASA’s core innovation is inte-
grating sorting with aggregation: using the TimSort algorithm
[31] to perform in-memory local aggregation for tuples with
the same key during sorting. For ordered segments that
exceed the memory threshold and spill to disk, a multi-way
merge algorithm is applied for final sorting and aggregation,
thus streamlining the pipeline to avoid full data redistribution.

IV. EXPERIMENT

A. Experiment Setting

We extend Spark 3.0.0’s physical execution plan generator
and ShuffleReader interface, embedding the D2CS and PASA
strategies as plug-ins into the native framework to ensure
compatibility with existing cluster scheduling mechanisms.
Experiments are conducted on a distributed cluster com-
prising 6 physical servers: 1 Master node (responsible for
resource scheduling) and 5 Worker nodes (handling compu-
tation tasks). Cluster hardware configurations are listed in
Table II. Spark uses the Standalone deployment mode, with
core parameters shown in Table III, ensuring a controlled
experimental environment through uniform configuration.

B. D2CS Experimental Validation

To validate the dynamic optimization performance of the
D2CS strategy, we integrate it into the Spark 3.0.0 framework
and design comparative experiments for the Sort operator.
Experiments employ different application submission con-
figurations (Table III), covering small-scale (100 records) to
large-scale (2.5 million records) data scenarios. Datasets in
Parquet format are generated in 10,000-record increments.
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Fig. 6. Execution Time Comparison of Execution Plans Under Different Configurations.

Algorithm 3 Shuffle Read Optimization Algorithm Based on
Parallel Sorting Aggregation

Input: Cross-node data block collection: B, Aggregation
function: fagg : (V1, V2)→ V3, Sorting rule: O : K×K →
{−1, 0, 1}, Memory threshold: θ
Output: Global ordered aggregation result: R{(k, c)},
where c = fagg(V1, V2, . . . , Vm)
stream← OpenShuffleBlockStream(B) // Fetch data
deserialized iter← DeserializeToKeyValue(stream)
sorter← CreateExternalSorter(fagg, O) // Initialize
while there exists (k, v) in deserialized iter do

sorter.insert(k, v) // Insert data into sorter
if sorter.memory usage > θ then

sorter.spill() // Spill blocks to disk
end if

end while
R← sorter.merge() // Merge all spilled blocks
return R // Return the global result
Function sorter.insert(k, v):
buffer← DynamicArray < (K,C) > // Initialize buffer
// Find insertion position via binary search based on so-
rting rule O

pos← BinarySearch(buffer, k, O)
if buffer[pos].key == k then // Existing key

buffer[pos].value← fagg(buffer[pos].value, v)
else // New key: insert while maintaining sorted order

buffer.insert(pos, (k, v)) // Insert new key-value pair
end if
if buffer.size > TimSort.RunLength then

Run← TimSort.StableSort(buffer) //Create sorted run
Spill(Run) // Spill the sorted run to disk
buffer.clear() // Clear buffer

end if
Function sorter.merge():
MinHeap← PriorityQueue < (K,C) > (compare = O)
for each spilled run Ri do // Load the first record

MinHeap.push(Ri.next())
end for
while MinHeap is not empty do // Merge all spilled runs

(kcurrent, ccurrent)← MinHeap.pop()
while MinHeap.top().key == kcurrent do

ccurrent ← fagg(ccurrent,MinHeap.pop().value)
end while

end while

TABLE II
CLUSTER CONFIGURATION

Type Configuration
CPU Intel ® Xeon ® Platinum8160 CPU ® 2.10GHz

RAM 80GB

Hard disk 500GB

Environment Centos7.0, Spark3.0.0, Hadoop 2.6.0

Digital meter 2500W, 10A

JDK JDK 1.8

TABLE III
CONFIGURATION OF SPARK PARAMETERS

Type Configuration
Executor cores 4, 2, 1

Executor memory 8GB, 4GB, 2GB

Executor number 6

TABLE IV
CONFIGURATION OF SPARK PARAMETERS

Type Configuration
Executor cores 4

Executor memory 8GB

Executor number 6

Each experiment is run 10 times, with the average execution
time serving as the performance metric.

The effectiveness of the D2CS dynamic selection strategy
is validated by comparing the execution times of the Sort
operator under the Driver-side execution plan (DriverSort)
and cluster-side execution plan (CloudSort). To account
for heterogeneous node hardware configurations in different
cluster environments, we test D2CS adaptability by varying
Executor CPU cores and memory capacity. Experimental
results are shown in Figure 6.As indicated, DriverSort signif-
icantly outperforms CloudSort when data scale is below 2.3
million records; CloudSort becomes more efficient beyond
this threshold. This is because small-scale data processing in
the cluster incurs two Shuffle processes—data distribution to
Executors and result aggregation back to the Driver—where
network and scheduling overheads exceed the CPU cost
of Driver-side local sorting. Conversely, when data scale
surpasses 2.3 million records, Driver-side computational re-
sources become a bottleneck. Here, the parallel computing
advantages of the distributed cluster outweigh Shuffle over-
heads, making CloudSort more efficient.

Unlike Spark’s default cluster and Driver-side execution,
the D2CS strategy dynamically selects the optimal execu-
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Fig. 7. Execution Time of Different Strategies for Various Operators.

Fig. 8. GC Time Share of Different Strategies.

Fig. 9. Server Energy Consumption of Different Strategies.

tion path by real-time sensing of data scale and cluster
configuration parameters: directly enabling localized Driver-
side execution to avoid shuffle overhead when the data
volume is small, and taking advantage of the cluster parallel
computing capability when the data volume is large. The task
completion time comparison under different configurations
is shown in Table V. Compared with Spark’s default cluster
execution mechanism, D2CS reduces the computation time
from 865 s to 63 s with 1 core and 2 GB memory per
Executor (a performance improvement of 92.7%), reduces
the computation time from 573 s to 93 s with 2 cores
and 4 GB memory per Executor (an 83.8% improvement),
and reduces the computation time from 444 s to 109 s
with 4 cores and 8 GB memory per Executor (a 75.5%
improvement).

C. PASA Experimental Validation
To validate the optimization effect of the PASA strategy

in the Shuffle Read phase, this study selects three represen-
tative strategies—Spark native mechanism, Cherry [30], and
DBPM [29]—for systematic comparison. The experiments
use the HiBench benchmark suite to generate WordCount
datasets with multi-level data sizes (60 GB, 80 GB, 100 GB,

TABLE V
TASK COMPLETION TIME COMPARISON UNDER DIFFERENT EXECUTOR

CONFIGURATIONS

Executor Configuration Spark
Default

D2CS Performance
Improvement
Rate

Each executor has 1 core
and 2GB memory

865s 63s 92.7%

Each executor has 2 cores
and 4GB memory

573s 93s 83.8%

Each executor has 4 cores
and 8GB memory

444s 109s 75.5%

150 GB, 200 GB) ranging from 60 GB to 200 GB. Spark
cluster parameters are configured as shown in Table IV.

The experimental scheme covers Spark’s three core ag-
gregation operators (ReduceByKey, AggregateByKey, Com-
bineByKey) with dictionary-order sorting. Results in Figure 7
show that compared with Spark’s native strategy, PASA
achieves execution time improvements of 7.42%–39.88%.
When compared with Cherry and DBPM, PASA reduces
execution time by 2.95%–15.19% and 4.89%–26%, respec-
tively. As data scale increases, PASA’s advantages intensify,
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Fig. 10. CPU Usage, Memory Dirty Pages, and Disk I/O Status of Different Strategies.

reflecting its efficiency and stability in large-scale scenarios.
The Cherry strategy restructures network exchange for Shuf-
fle blocks but retains the serial aggregation-sorting pipeline
in Shuffle Read, leading to high latency for massive data.
DBPM balances data partitions to avoid stragglers but in-
curs overhead from sampling and partitioning decisions. By
contrast, PASA leverages Spark’s native Shuffle framework,
shortening the pipeline through parallelized aggregation and
sorting without introducing complex mechanisms—ensuring
compatibility while achieving lightweight optimization.

To deeply analyze the performance improvement mech-
anism, we integrated node exporter and graphite exporter
with Prometheus to build a multi-dimensional monitoring
system for collecting node resource utilization and energy
consumption metrics.

Figure 8 illustrates the trend of garbage collection (GC)
time share as data size increases. As data scale grows,
the GC ratio and elapsed time increase for all strategies.
The DBPM strategy incurs higher memory overhead due to
additional data structure maintenance, leading to a significant
surge in GC time share. Although Cherry uses a push-based
data prefetching mechanism to achieve interleaved memory
utilization, its efficiency declines with larger datasets, caus-
ing a steep rise in GC ratio. By contrast, PASA employs
ordered data structures for incremental aggregation, reducing
memory fragmentation and invalid data storage. Under high
load, PASA’s GC ratio increase is only 48%–77.7% of the
native strategy, significantly optimizing memory utilization
efficiency.

Energy consumption is also a key concern for large-scale
data centers, and Figure 9 shows the energy consumption
of each strategy under different data scales. Compared with
the Spark default strategy, PASA achieves global energy
savings of 7.42%–29.44%; when compared with DBPM and
Cherry strategies, PASA reduces energy consumption by
4.94%–15.15% and 4.8%–25.6%, respectively. This benefit
stems from PASA’s control over disk I/O and efficient utiliza-
tion of CPU resources, which shortens task completion time
while reducing overall system energy consumption—thereby
lowering operating costs and environmental impact, and
demonstrating its significant advantages in green computing
and cost optimization.

Figure 10 shows the comparison of key system metrics
collected. By integrating user-defined aggregation functions

during sorting, PASA increases average CPU utilization by
5.33%–6.74%. Additionally, by merging the aggregation and
sorting processes, PASA significantly reduces data written
to disk, decreasing memory dirty page size by 33.2%–55.3%
and disk I/O usage by 19.86%–34.76%. These improvements
effectively mitigate resource contention issues in multi-
tasking environments.

The above experiments demonstrate that the PASA strat-
egy, by restructuring the Shuffle processing pipeline, achieves
synergistic optimization of computational efficiency, memory
management, energy consumption control, and system stabil-
ity—all without increasing system complexity. This approach
provides an efficient and sustainable solution for large-scale
data processing.

V. CONCLUSION

In Spark distributed computing, the traditional fixed ex-
ecution model lacks dynamic awareness of data size and
cluster resource configuration, leading to computational inef-
ficiency for small-data tasks due to double Shuffle overhead
and frequent disk spills caused by the serial aggregation-
sorting pipeline in the Shuffle Read phase for large datasets.
To address these challenges, this paper proposes a Data-
size and Cluster-configuration-aware dynamic execution plan
Selection strategy (D2CS) and a Parallel Aggregation-Sorting
Optimization strategy (PASA). Specifically, D2CS extends
Spark’s physical execution plan to design a lightweight exe-
cution path adapted to the Driver-side, dynamically predicts
the execution time for both Driver-side and cluster-side
via an LSTM model, and selects the execution plan with
minimal total overhead using a time-cost model. Taking the
Sort operator as an example, this strategy avoids redundant
cluster transmission and scheduling overhead in small-data
scenarios, significantly reducing resource contention and exe-
cution time. The PASA strategy restructures the Shuffle Read
processing pipeline by executing aggregation and sorting
operations in parallel, transforming the serial model into
incremental ordered aggregation to achieve efficient mem-
ory utilization through ordered data structures—particularly
enhancing data processing efficiency in large-scale scenarios.
Based on Spark 3.0.0, we implement D2CS and PASA, and
experimental results demonstrate that our strategies effec-
tively shorten task completion time and significantly improve
system resource utilization.
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DATA AND CODE AVAILABILITY

The data and code supporting this study are available in the
GitHub repository at https://github.com/wcy666103/spark-
paper
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