
XGBoost-Driven Intrusion Detection Method:

Integrating SMOTE-Based Class Imbalance

Mitigation and Multi-Phase Learning

Wanzhi Chen*, Diawara Faysal Almamy

Abstract - The emergence of complex cyberattacks presents

considerable difficulties to network security, necessitating

innovative and adaptable solutions. Intrusion Detection Systems

(IDS) play a vital role in cybersecurity by monitoring network

traffic for malicious behavior and preventing potential threats.

However, traditional IDS methods often suffer from high false-

positive rates and struggle to adapt to evolving attack

landscapes. This study explores the application of the XGBoost

algorithm, an advanced gradient-boosting machine learning

model for enhancing IDS performance using two widely

recognized datasets: NSL-KDD and UNSW-NB15. A

comprehensive data preprocessing pipeline was developed,

including feature engineering, hyperparameter tuning, and

synthetic data generation using the SMOTE technique to

address class imbalance. The XGBoost model demonstrated

superior performance, achieving 96.77% accuracy on the NSL-

KDD dataset and 99.85% on the UNSW-NB15 dataset, with high

precision, recall, and F1-scores. Cross-validation confirmed the

model’s ability to generalize effectively to unseen data, including

novel attack types. The results of this study underscore

XGBoost’s potential as a scalable and robust solution for

modern IDS, capable of handling high-dimensional data and

complex attack scenarios. This research lays the groundwork for

further integrating ensemble learning techniques with anomaly

detection approaches to increase network security in dynamic

contexts.

Index Terms - Class Imbalance Handling, Intrusion Detection,

SMOTE, XGBoost.

I. INTRODUCTION

 ETWORK security has become a key issue in the

contemporary digital environment, as the rapid increase

in cyberattacks presents significant dangers to organizational

infrastructure and personal information. Cyberattacks such as

Distributed Denial of Service (DDoS), phishing, and

advanced persistent threats (APTs) have increased in

frequency and complexity, making it crucial to develop robust

defense mechanisms [1]. Intrusion Detection Systems (IDS)

represent one of the most effective mechanisms for detecting

and mitigating security threats, as they continuously monitor

network traffic to identify anomalies that may indicate

malicious intent [2].

Manuscript received November 11, 2024; revised May 26, 2025
This research was supported by the General Project of scientific research

funds of the Liaoning Provincial Department of Education (Grant

No.2021LJKZ0327) and the GPU Resource Support Project of Liaoning
Technical University (2024-02).

Wanzhi Chen is an associate professor of the School of Software at

Liaoning Technical University, Huludao, 125105, China (Corresponding
author, phone: +8613591996866, E-mail: chenwanzhi@lntu.edu.cn).

Diawara Faysal Almamy is a postgraduate student at Liaoning Technical

University, Huludao, 125105, China

 (E-mail: faysalalmamydiawara@gmail.com).

Traditional Intrusion Detection Systems (IDS) methods,

such as signature-based and anomaly-based detection, often

struggle with high false-positive rates and limited adaptability

to the rapidly evolving nature of cyberattacks [3].

In recent years, machine learning techniques have proven

to be powerful approaches for improving the accuracy,

adaptability, and overall efficiency of IDS [4]. These

algorithms can identify intricate network traffic data patterns,

effectively detecting known and undiscovered (zero-day)

threats [5].One method that has garnered considerable

attention is Extreme Gradient Boosting (XGBoost).

XGBoost, a sophisticated variant of gradient-boosted

decision trees, is optimized for both speed and precision,

making it particularly effective for analyzing high-

dimensional and complex datasets like network traffic

records [6] . Additionally, its ability to handle missing data,

anomalies, and imbalanced datasets further enhances its

effectiveness in IDS [2]. This research explores the

application of XGBoost for intrusion detection using two

prominent datasets: NSL-KDD and UNSW-NB15. The NSL-

KDD dataset is an enhanced version of the original KDD Cup

1999 dataset, designed to address issues of duplication and

complexity, thereby providing a more reliable baseline for

evaluating IDS performance [7]. On the other hand, the

UNSW-NB15 dataset, developed by the Australian Centre for

Cyber Security, offers a modern and extensive array of

attributes, covering a wide range of contemporary attack

types and reflecting the current threat landscape [8].

This study enhances the XGBoost model through rigorous

data preparation methods, feature engineering, and

hyperparameter optimization. The results demonstrate the

model’s superior accuracy, precision, recall, and F1-Scores

across both datasets, underscoring XGBoost’s potential as a

resilient and scalable solution for modern IDS deployments.

II. RELATED WORKS

Intrusion Detection Systems serve as essential elements of

network security, developed to detect and respond to the

growing spectrum of cyber threats targeting contemporary

systems. However, conventional IDS approaches, such as

signature-based detection, frequently fall short in identifying

previously unseen or novel attack. These systems rely on

predefined attack signatures, which results in challenges in

detecting new threats. Signature-based approaches frequently

suffer from heightened false-positive rates, as legitimate

behaviors may occasionally mimic attack signatures [9]. This

highlights the imperative for more adaptable, data-driven

strategies to address known and unknown attacks more

accurately and efficiently. In recent years, machine learning

(ML) techniques have been extensively explored as

N

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2234-2247

__

mailto:faysalalmamydiawara@gmail.com

alternatives to conventional signature-based methods. These

approaches do not necessitate established patterns and

possess the capability to detect emerging attack patterns by

learning directly from network traffic data. Ensemble

learning methods have garnered substantial popularity due to

their capacity to integrate the strengths of various base

classifiers, thereby enhancing model accuracy and

robustness. One notable approach is XGBoost, a gradient

boosting framework recognized for its scalability and strong

performance in handling complex and high-dimensional

datasets [2]. XGBoost functions by sequentially training

weak models to rectify the deficiencies of their predecessors,

which enables it to uncover intricate relationships within the

data and improve detection effectiveness, particularly in

network intrusion detection. Despite the advantages of

machine learning approaches, class imbalance remains a

predominant challenge in IDS.

In standard network traffic datasets, benign samples

typically dominate, resulting in a class imbalance that

introduces a bias toward the majority class. This disparity

often results in algorithms that excel at identifying benign

traffic but inadequately detect infrequent yet significant

attack occurrences. To address this issue, several methods,

including the Synthetic Minority Over-sampling Technique

(SMOTE), have been proposed. SMOTE addresses class

imbalance by generating synthetic samples for the minority

class through interpolation between existing examples. This

process helps balance the dataset and improves classifier

performance, particularly for rare attack types [10] .

Combining SMOTE with XGBoost has proven effective in

improving recall and precision for detecting infrequent attack

occurrences while maintaining the accuracy of benign traffic.

The continuously evolving nature of cyber threats

underscores the need for multi-phase models that incorporate

successive learning stages, thereby progressively improving

the effectiveness of IDS. These models often encompass

feature extraction, classification, and post-classification

refining stages. Each phase improves the detection process:

feature extraction converts raw data into more informative

representations, while post-classification refining mitigates

false positives and adjusts the model to emerging attack

patterns. Integrating ensemble approaches like XGBoost with

multi-phase learning frameworks enables IDS to adapt more

effectively to cyberattacks’ dynamic and diversified nature

[5]. The amalgamation of these methodologies facilitates the

development of more resilient, scalable, and adaptive

Intrusion Detection System models capable of managing real-

world network settings and continuously evolving attack

strategies. Recent research has shown the effectiveness of

integrating XGBoost with SMOTE for intrusion detection.

Zhang et al. [11] demonstrated that this hybrid methodology

significantly improved the efficacy of Intrusion Detection

Systems, especially on benchmark datasets. These datasets,

representing various attack types, highlight the need to

employ scalable algorithms to manage imbalanced and high-

dimensional data while preserving effective detection

capabilities across various attack scenarios. Given the

increasing complexity of attacks, future research should focus

on enhancing individual components of IDS, including

feature engineering and sampling strategies, and developing

more advanced hybrid models that integrate various learning

paradigms.

In conclusion, Intrusion Detection Systems increasingly

depend on advanced machine learning methods like ensemble

techniques, resampling, and multi-phase learning to tackle

challenges such as class imbalance and false positives.

Combining XGBoost with SMOTE and multi-phase learning

improves IDS flexibility, resilience, and effectiveness against

known and emerging threats.

III. METHODS

Converting raw data into a more comprehensible and

suitable format for model training is essential for enhancing

model performance [12]. The NSL-KDD dataset was stored

in plain text, whereas the UNSW-NB15 dataset utilized the

Parquet format, facilitating more efficient data storage and

retrieval for extensive datasets [13]. Initially, the data was

imported and transformed into an appropriate format for

processing. This process involved encoding categorical

features into numerical values and normalizing numerical

inputs to maintain a consistent range, typically between 0 and

1. This preprocessing phase is crucial as it prepares the data

for practical and accurate model training by eliminating

biases and ensuring consistency. Following the preprocessing

stage, automated feature selection was performed to identify

the relevant features that significantly impact the prediction

outcomes. This step is essential for improving model

performance by focusing on relevant data and minimizing

noise. A study highlights the critical role of feature selection

in improving the accuracy of machine learning models,

especially when working with high-dimensional datasets

[14]. After identifying the most critical features, the data was

normalized to preserve statistical integrity and mitigate biases

in the raw data. The SMOTE technique was utilized to

mitigate class imbalance through the creation of synthetic

samples. This approach balances the dataset by augmenting

the minority class and improves the ability to generalize

across different scenarios. It has been extensively applied to

correct imbalanced datasets in intrusion detection systems

[15]. This study uses XGBoost, a highly advanced and

efficient machine-learning technique. This method addresses

numerous machine-learning challenges, encompassing

regression and classification, making it versatile and superior

to alternative algorithms. XGBoost represents a sophisticated

iteration of the Gradient Boosting Framework, acknowledged

for its efficiency and additional features such as a linear

model solver and tree learning techniques [16]. These

attributes improve its speed and proficiency in parallel

computation on a single computer. XGBoost constructs

decision trees through a greedy algorithm that chooses the

optimal split point at each stage of tree development, based

on a subset of input attributes. This methodology ensures that

each tree markedly diverges from previous predictions,

enhancing overall model accuracy [17]. The study involved

collecting and preprocessing the data, construct and train the

model, assess its performance through testing and

evaluation[18].

Fig.1 shows the system's framework, outlining key stages:

data collection, preprocessing, feature extraction, and model

training. Network traffic data is first cleaned and processed,

then relevant features are extracted for XGBoost model

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2234-2247

__

training to detect intrusions. The XGBoost model is used to

analyze network traffic and flag unusual patterns that could

indicate cyber threats.

 By integrating this machine learning approach, the IDS

becomes more effective at recognizing and mitigating

potential attacks, thereby strengthening overall network

security.

Data Preprocessing

Data Cleaning

Data Transformation

Feature Encoding

Feature Scaling

Data Splitting

SMOTE Class Imbalance Handling

Is Data balanced?

XGBOOST Model

Training Hyperparameter Optimization

Model Performance

Evaluation

Accuracy, Precision, Recall, F1-Score

Breakdown by attack types

Is Model Performance

 Optimal?

Final Model Testing Evaluate on the test set (unseen data)

Final evaluation metrics for reporting

Start

End

Yes

No

Yes

No

Data Collection

Fig.1.Overall framework.

1) Overview of the Theoretical Foundations of XGBoost

The XGBoost method is an efficient and reliable tool in

machine learning, known for strong performance and

scalability. It offers precise predictions and effective

parallelization, forming an improved version of the Gradient

Boosting Machine (GBM) [19]. XGBoost uses decision trees

as its classifiers, enhancing the classical loss function to

manage model complexity. This strategy utilizes

computations from previous stages, allowing classifiers to

identify optimal parameters, known as XGBoost

regularization [20]. This technique ensures systematic

optimization of the objective function through loss

minimization and complexity control.

a) Objective Function

The objective function in XGBoost optimizes both the

training loss and model complexity. At iteration 𝑡1 , it is

expressed as:

𝑂𝑏𝑗(𝑡) = ∑ 𝑙(𝑦𝑖 , �̂�𝑖
(𝑡−1)

) + 𝑓𝑡(𝑥𝑖) + 𝛺(𝑓𝑡)𝑛
𝑖=1 (1)

Where, 𝑛 is the number of training samples;𝑦 is the actual

label of each sample; �̂�𝑖
(𝑡−1)

 is the predicted value up to

iteration;𝑓𝑡(𝑥𝑖) is the output of the new model;𝑙 The loss

function measures the difference between actual and

predicted values.

It is the regularization term to control model complexity

[21].

b) Loss Function and Gradient Boosting

XGBoost employs a gradient boosting framework wherein

successive models are trained to predict the residuals or errors

of the preceding models. These models are then combined to

generate the final prediction. This approach is grounded in the

second-order Taylor expansion of the loss function, which

facilitates efficient optimization and model convergence.

𝑂𝑏𝑗(𝑡) ≈ ∑ [𝑙(𝑦𝑖 , �̂�𝑖
(𝑡−1)

)𝑔𝑖𝑓𝑡(𝑥𝑖)
1

2
ℎ𝑖𝑓𝑡(𝑥𝑖)2] +𝑛

𝑖=1 𝛺(𝑓𝑡)

(2)

Where: 𝑔𝑖andℎ𝑖are the first and second derivatives (gradients

and Hessians) of the loss function concerning the predicted

value [22].

c) Tree Pruning

XGBoost utilizes depth-first pruning, which differs from

conventional gradient-boosting approaches that stop tree

splitting when additional splits fail to enhance the overall

model. In XGBoost, this method involves eliminating splits

from the lower levels of the tree, specifically those that do not

substantially contribute to loss reduction [23]. This technique

effectively addresses anomalies such as missing values and

varying feature importance, making XGBoost an optimal

choice for handling intricate datasets, such as those used in

network intrusion detection. XGBoost's performance was

evaluated using the benchmark datasets. The following

sections display detailed performance metrics and insights

gained from our tests. These evaluation metrics collectively

provide a comprehensive assessment of the model’s

performance across different attack types and data scenarios.

2) Data Collection

The NSL-KDD dataset is an updated version of KDD’99

that addresses several issues and integrates standard

connections with simulated intrusions into military networks.

The UNSW-NB15 dataset was created by the Australian

Centre for Cyber Security to detect modern network threats.

3) Data Preprocessing

The preprocessing step is crucial in preparing the raw data

for an effective model training, ensuring it is clean, well-

formatted, and suitable for analysis. Below is a detailed

outline of the methodology for the dataset’s preprocessing.

4) Data Loading

NSL-KDD Dataset is loaded from a text file (.txt) using

delimiters to handle missing values by imputing or removing

them.

Table 1 NSL-KDD Dataset (Stored in .txt)

Category
Training Set
samples

IR%

(Training

set)

Test Set
samples

IR%
 (Test set)

Normal 67343 100 9711 100

DoS 45927 68.2 7458 33.08

Probe 11656 17.3 2421 10.74

R2L 52 0.08 2754 12.22

U2R 995 1.48 200 0.89

Total 125973 - 22544 -

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2234-2247

__

 UNSW-NB15 Dataset is loaded using the Parquet file

format, which provides efficient storage and retrieval, feature

encoding, and scaling.

Table 2 UNSW-NB15 Dataset (Stored in .parquet)

Category
Training Set
samples

IR%

 (Training
set)

Test Set
samples

IR%
 (Test set)

Normal 37,000 44.94% 56,000 36.82%

Generic 18,871 22.92% 40,000 26.30%

Exploits 11,132 13.52% 23,393 15.38%

Fuzzers 6,062 7.36% 12,951 8.52%

DoS 4,089 4.97% 8,711 5.73%

Reconnaissan

ce
3,496 4.25% 7,455 4.95%

Analysis 677 0.82% 1,436 0.97%

Backdoor 583 0.71% 1,245 0.82%

Shellcode 378 0.46% 808 0.53%

Worms 44 0.05% 95 0.06%

Total 82,332 100.00% 175,595 100.00%

5) Categorical Features

Categorical features were converted into numerical format

using One-Hot Encoding, enabling their effective use in

machine learning models. Furthermore, feature encoding and

scaling techniques were implemented to effectively manage

both categorical and numerical data, ensuring that the model

operates optimally by eliminating bias and standardizing the

range of values [24]. Prior research has indicated that these

measures are essential for attaining high accuracy and

mitigating overfitting in machine learning models [25].

6) Normalization

Numerical features were normalized to a standardized

range, commonly between 0 and 1, to promote uniformity

across the dataset. This normalization process is essential for

preventing features with larger numerical scales from

disproportionately influencing the model. By ensuring that all

input features operate on a comparable scale, the model can

learn more effectively and equitably from each variable,

thereby enhancing overall performance and stability.

7) Feature Selection

The initial experiments involved selecting the most

pertinent features from both datasets. Features deemed

irrelevant or redundant were eliminated to diminish noise and

enhance model performance accuracy.

8) Addressing Class Imbalance with SMOTE

The datasets exhibit a notable class imbalance, wherein

normal traffic significantly exceeds the instances of attacks

[26]. This imbalance presents a considerable challenge for

intrusion detection systems (IDS), as models trained on such

uneven data often exhibit a bias toward the majority class,

leading to suboptimal detection rates for less prevalent attack

types. To address this challenge, the Synthetic Minority Over-

sampling Technique (SMOTE) is applied. This method

addresses class imbalance by generating synthetic instances

for minority classes through interpolation between existing

attack samples within the feature space. As a result, it

effectively balances the dataset and enhances the model’s

ability to learn from underrepresented classes This approach

reduces the model’s bias toward the majority class and

enhances its ability to identify rare anomalies. Applying

SMOTE significantly enhances the detection of

underrepresented attack types like User-to-Root (U2R) and

Remote-to-Local (R2L) attacks, which are rarely found in the

training data. By creating synthetic examples for these

minority classes, SMOTE allows the model to learn

distinctive features tailored to these infrequent attacks, thus

elevating its sensitivity and lowering false negatives. This

feature is essential for accurately identifying sophisticated,

low-frequency attacks that may go unnoticed Moreover,

SMOTE balances the dataset without simply duplicating

existing instances, thereby reducing the risk of overfitting.

This contributes to improved generalization, allowing the

model to maintain strong performance on previously unseen

data [27].

In conclusion, the Synthetic Minority Over-sampling

Technique (SMOTE) effectively addresses the class

imbalance challenge in intrusion detection datasets. It

enhances detection rates for infrequent attack types while

maintaining the model’s overall performance. This technique

is essential for the development of robust and effective

Intrusion Detection Systems that can accurately identify both

prevalent and infrequent threats within network traffic. To

demonstrate the impact of the Synthetic Minority Over-

sampling Technique (SMOTE) on dataset balance, the

subsequent tables present the class distributions prior to and

following the application of SMOTE for the NSL-KDD and

UNSW-NB15 datasets. These tables illustrate the generation

of synthetic samples for minority classes, thereby enhancing

the model’s ability to discern patterns associated with less

common categories of attacks.

Table 3 Class Distribution Before and After SMOTE for

NSL-KDD Dataset

Class Original Count Post-SMOTE Count Percentage

Normal 67,343 97,278 0%

DoS 45,927 45,927 0%

Probe 14,077 5,000 106.53%

R2L 2,806 5,000 344.05%

U2R 1,195 5,000 9515.38%

Table 4 Class Distribution Before and After SMOTE for

UNSW-NB15 Dataset

Class Original Count Post-SMOTE Count Percentage

Normal 93,000 93,000 0%

DoS 12,800 12,800 0%

U2R 28 1,028 3471%

R2L 52 1,052 1823%

Fuzzers 19,013 19,013 2677%

Analysis 2,113 2,113 432%

Backdoor 1,828 1,828 2400%

Worms 1,044 1,044 4900%

Probe 7,421 7,421 25%

Fig.2 illustrates the workflow of SMOTE, demonstrating

the generation of synthetic instances for the minority class to

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2234-2247

__

address class imbalance. The procedure entails selecting a

minority class sample, identifying its k-nearest neighbors,

and producing interpolated data points along the line

segments that connect these neighbors. This systematic

approach ensures a balanced class distribution while

maintaining the intrinsic structure of the original data.

 Imbalanced Dataset

Data Preprocessing

Set SMOTE Parameters

Select Minority Class

For each Minority sample:Set k=x

Randomly select

neighbor 1

YesNo

Compute synthetic point

Yes

No

Combine Synthetic

 +

Original Data

Final Balanced Data

End

Start

Target Ratio Met?

Are neighbor>k?
Exclude

Sample

 Fig.2. Synthetic Data Generation Workflow with SMOTE

9) Data Splitting

Model training begins by partitioning the preprocessed

datasets into two subsets: 70% is designated for training, and

the remaining 30% is set aside for testing [28]. This split

guarantees that the model is trained on an adequate amount

of data while preserving an independent dataset for

evaluating its performance on previously unseen instances.

Table 5 shows the total instances of the pre-processed training

and testing sets for both datasets.

𝐺𝑎𝑖𝑛 =
1

2
[

(∑ 𝑔𝑖)𝑖∈𝐼𝐿
2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝐿

+
(∑ 𝑔𝑖)𝑖∈𝐼𝑅

2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝑅

−
(∑ 𝑔𝑖)𝑖∈𝐼

2

∑ ℎ𝑖+𝜆𝑖∈𝐼
] − Υ (3)

where 𝐼𝐿 , 𝑎𝑛𝑑 𝐼𝑅 are the left and right splits.

XGBoost constructs an efficient and robust optimization

framework by combining the loss function and the

regularization term. Its mathematical foundation supports

rapid training and prediction and ensures the model’s

generalization through regularization techniques, making it

excellent when dealing with complex datasets such as

intrusion detection systems.

Table 5 Data splitting

Dataset Split
Total

Instances
Normal Anomaly

NSL-KDD

Original 125,973 67,343 58,630

Training Set 88,181 47,140 41,041

Testing Set 37,792 20,203 17,589

UNSW-NB15

Original 175,341 93,000 82,341

Training Set 122,739 65,100 57,639

Testing Set 52,602 27,900 24,702

10) Final Dataset Preparation

 The final preprocessed dataset is now ready for model

training. It is clean, balanced, and appropriately formatted for

machine learning algorithms.

11) Model Configuration

The XGBoost model is configured for binary

classification, distinguishing between normal and attack

traffic, by leveraging its gradient-boosting framework to

enhance computational efficiency and predictive

performance. Key hyperparameters include max_depth,

which controls the maximum depth of decision trees to

prevent overfitting, and learning_rate, which regulates the

step size in each boosting iteration to balance convergence

speed and model accuracy. The subsample parameter is used

to randomly select a portion of the training data during each

boosting iteration, which helps to minimize the risk of

overfitting. At the same time, colsample_bytree allows for

random feature selection at the tree level, promoting model

robustness. The objective is set to ‘binary: logistic,’ indicating

a logistic regression model for binary classification, and

eval_metric is set to ‘auc’ for tracking performance via the

(AUC) area under the curve [15].

These hyperparameters are meticulously selected to

optimize the performance on network traffic data, striking a

balance between underfitting and overfitting. Regularization

methods, including L1 and L2 penalties, are incorporated to

control model complexity and mitigate overfitting by

penalizing excessively large weights. XGBoost’s ability to

capture complex, non-linear relationships and effectively

manage noisy or irrelevant features renders it particularly

well-suited for network anomaly detection, where patterns

tend to be intricate and challenging to identify.

The key hyperparameters of the model include:

max_depth: This parameter controls the decision tree’s

maximum depth and prevents overfitting. A larger max_depth

increases the model’s ability to capture complex patterns, but

if set too high, it may lead to overfitting. Mathematically, the

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2234-2247

__

relationship between the number of leaf nodes 𝑁𝑛𝑜𝑑𝑒𝑠 and

the tree depth d is expressed as:

𝑁𝑛𝑜𝑑𝑒𝑠 ≤ 2𝑑 − 1 (4)

Learning_rate (𝜂): The learning rate adjusts the step size in

each boosting iteration, balancing convergence speed with the

model’s accuracy. The update rule for each iteration is given

by:

𝑓(𝑡+1)(𝑥) = 𝑓𝑡(𝑥) + 𝜂. Δ𝑓𝑡(𝑥) (5)

where 𝑓𝑡(𝑥)represents the predicted value at iteration t, and

Δ𝑓𝑡(𝑥) is the gradient of the loss function concerning the

model’s prediction.

Subsample: This parameter specifies the proportion of

training data to be randomly sampled for each boosting

round. By introducing randomness, it helps mitigate the risk

of overfitting. Mathematically, the random subset of training

data 𝕏𝒔𝒂𝒎𝒑𝒍𝒆𝒅 is drawn from the original dataset 𝕏:

𝕏𝒔𝒂𝒎𝒑𝒍𝒆𝒅 ⊂ 𝕏 (6)

Colsample_bytree: This parameter controls the proportion

of features randomly selected for each tree-building process.

Reducing the risk of overfitting due to specific features

enhances the model’s robustness. Mathematically, the feature

subset 𝐹𝑠𝑎𝑚𝑝𝑙𝑒𝑑 is randomly drawn from the original feature

set 𝐹:

𝐹𝑠𝑎𝑚𝑝𝑙𝑒𝑑 ⊂ 𝐹 (7)

Objective: The parameter is set to “binary: logistic,”

specifying the use of a logistic regression model for binary

classification tasks. The model’s output is the probability that

the attack traffic belongs to class 1, represented as:

𝑃(𝑦 = 1|𝑥) =
1

1+𝑒−𝑓(𝑥) (8)

where 𝑓(𝑥) is the model’s output.

eval_metric: Set to “AUC” (Area Under the Curve), which

evaluates the model’s performance in distinguishing between

the two classes. The calculation of AUC is given by:

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)d(𝐹𝑃𝑅)
1

0
 (9)

where 𝑇𝑃𝑅 is the true positive rate, and 𝐹𝑃𝑅 is the false

positive rate.

These hyperparameters are adjusted to optimize the

model’s performance on network traffic data, balancing

underfitting and overfitting.

Specifically, in the tree model, the regularization term

𝛺(𝑓𝑡)constrains the model complexity from two dimensions:

the number of leaf nodes and the weights of the leaf nodes.

Its mathematical expression is defined as:

𝛺(𝑓𝑡) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑊𝑗

2𝑇
𝑗=1 (10)

Where 𝑇 is the number of leaves in the tree; 𝑤𝑗 is the weight

of 𝑗 − 𝑡ℎ leaf. These parameters control the degree of

regularization[19], which helps prevent overfitting,

particularly with high-dimensional data [29].

Table 6 XGBoost hyperparameter

Hyperparameter Value Purpose

max_depth 6 Limits tree depth to control complexity.

learning_rate 0.1
Controls step size to prevent

overfitting.

subsample 0.8
Fraction of training data used for each

tree.

colsample_bytree 0.8 Fraction of features used for each tree.

Objective Binary Specifies a binary classification task.

eval_metric AUC
Measures model performance using
AUC.

The XGBoost model in Fig. 3 shows decision trees built

sequentially to reduce errors from prior iterations. Each tree

adds to the final weighted prediction sum.

Dataset

D1 D2

Prediction 1 Prediction 2

Summation

Results

Input

Decision

Trees

Output

Residual
Residual

Fig.3. Structure of the XGBoost Model

12) Model Training and Validation

Model training involves splitting the pre-processed

datasets into two subsets: 70% is designated for training, and

the remaining 30% is set aside for testing [28]. This division

ensures the model is exposed to sufficient data during training

while maintaining an independent testing set to evaluate its

performance on unseen data. The XGBoost model is

configured to utilize supervised learning techniques for

classifying known attacks, where labelled instances teach the

model to distinguish between normal and attack traffic.

Additionally, unsupervised learning techniques are employed

for anomaly detection, which allows the model to identify

previously unseen, potentially harmful behaviors that do not

match any known attack patterns. A five-fold cross-validation

approach was applied to enhance the reliability and

robustness of the model This technique divides the training

data into five subsets, or “folds,” and iteratively trains the

model on four folds while evaluating it on the remaining fold.

The process is repeated five times, ensuring that each fold

serves as the test set exactly once.

This approach’s advantage is that it enables the model to

be validated on multiple subsets of the training data,

providing a more comprehensive assessment of its

performance across different data distributions. Cross-

validation is particularly critical for evaluating the model’s

ability to generalize well to new, unseen data and ensuring

that it does not become overfitted to the specific

characteristics of the training data [30]. In addition to cross-

validation, hyperparameter tuning is key in refining the

model’s performance. This involves systematically adjusting

key hyperparameters, such as learning rate, maximum depth,

and subsample ratio, to find the optimal combination that

balances model accuracy and prevents overfitting.

Hyperparameter tuning aims to improve the model’s

predictive power by enhancing its ability to capture complex

patterns in the data while simultaneously reducing the risk of

overfitting, where the model becomes too specialized to the

training data and fails to generalize to new, unseen instances.

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2234-2247

__

Proper hyperparameter tuning ensures the model performs

optimally on training and testing datasets.

Overall, the combination of training/test data splitting,

cross-validation, and hyperparameter tuning ensures a

comprehensive and rigorous approach to model validation.

These methods contribute to the development of a reliable

and generalizable model that performs well across diverse

real-world conditions while minimizing the risk of overfitting.

13) Handling Unknown Classes

In this experiment, the model is tested on novel attacks that

are not part of the training dataset. This evaluation primarily

focuses on how well the model can generalize to unknown

attack threats. These zero-day attacks represent real-world

scenarios where an intrusion detection system (IDS) must

detect new, emerging threats without prior knowledge of the

attack signatures.

Unknown Attacks and the Challenge of Generalization:

Zero-day threats refer to attacks that exploit previously

unknown vulnerabilities or attack methods. The model has

not been trained with these specific attack types, making them

particularly challenging to detect. In real-world situations,

such attacks can be devastating as they are not detectable

through signature-based methods.

Unsupervised Methods: The model employs unsupervised

methods to handle these unknown threats. These techniques

analyze network traffic and look for deviations from the

normal behavior that the model has learned during training.

By detecting these deviations, unsupervised methods help the

model identify anomalous patterns that could indicate new

attack types.

Adaptability to Novel Attacks: The core goal of this

experiment is to evaluate the model’s adaptability to novel

attacks. The capacity to identify previously unseen attacks is

essential for ensuring the model’s robustness and its

effectiveness in real-world deployment.

Generalization: This experiment tests how well the model

can generalize to new and unseen attack patterns from the

known training data. For an effective detection, the model

must identify these novel threats as outliers or anomalies in

the feature space, even if they do not match any known attack

patterns from the training set.

Data Subsets Containing Novel Attacks: The model is

tested on subsets of data that contain unknown attacks. These

subsets are carefully constructed by including attacks not part

of the training data. For example, novel attack types can be

simulated or taken from different sources or time periods,

ensuring they were not seen during training.

These subsets with unknown attacks allow us to simulate a

real-world scenario where an IDS must identify previously

unseen attack types based on its learned behavior from the

training set.

Unsupervised Detection: Unsupervised detection plays a

vital role in this evaluation. Since the model hasn’t been

trained with specific novel attacks, it relies on identifying

anomalous behavior that deviates from normal traffic

patterns. These anomalies could signal potential new attacks.

 The model will analyze network traffic patterns it

recognizes as abnormal and flag them as potential threats,

despite never encountering them during training.

Generalization to Unknown Attacks:

Evaluating Adaptability: The experiment aims to assess

how effectively the model can detect attacks that deviate from

the patterns it has seen. The key aspect here is its ability to

generalize based on the underlying patterns of normal traffic

learned during training.

Novel attacks may not conform to traditional patterns.

However, the model should still be capable of recognizing

significant deviations as potential threats, even if those threats

were not part of the training data.

Novel Attack Types: The evaluation focuses on attacks that

may include new attack vectors or techniques for which the

model has not yet been trained. These attacks are crucial for

understanding how well the model performs in environments

with constantly evolving threats.

The model must identify patterns that indicate anomalies,

even if the exact type of attack remains unknown. This

capability makes the model adaptable to dynamic and

evolving network environments.

14) Comparison with Other Models

 A comparative study evaluated the effectiveness of

XGBoost against various machine learning techniques,

including Random Forest (RF)and Logistic Regression (LR).

This evaluation utilized the same datasets, and the outcomes

were assessed using uniform metrics. In most instances,

XGBoost outperformed these models, particularly in

scenarios with imbalanced datasets and complex attack types

[22]. The study’s findings highlighted XGBoost’s outstanding

performance across several pivotal areas: it effectively

manages class imbalance, a common challenge in intrusion

detection, and shows greater proficiency in detecting intricate

and sophisticated attack patterns, making it a more robust

solution for real-world applications. These insights

underscore XGBoost’s effectiveness in providing accurate

and reliable intrusion detection, especially in environments

marked by uneven data distribution and dynamic attack

patterns.

IV. RESULTS

A. Performance Metrics

To effectively evaluate the performance of the proposed

model for network traffic anomaly detection, it is essential to

employ a set of robust and widely recognized performance

metrics. Four commonly used classification indicators were

derived from the confusion matrix to achieve this objective,

as illustrated in Table 7. The confusion matrix is a pivotal tool

in assessing the efficacy of classification models. It provides

an overview of the model’s accuracy and offers detailed

insights into the types of errors it commits by categorizing

instances into distinct classes. This breakdown supports a

more nuanced evaluation of the performance across diverse

scenarios, including its ability to detect both familiar and

previously unseen attacks.

B. Confusion Matrix

The confusion matrix is a crucial tool in evaluating the

model’s performance. It provides a detailed breakdown of the

model’s predictions, showing how many instances were

correctly or incorrectly classified. The confusion matrix

includes:

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2234-2247

__

True Positives (TP): The number of positive instances

correctly classified as positive.

True Negatives (TN): The number of negative instances

correctly classified as negatives.

False Positives (FP): The number of actual negative

instances incorrectly classified as positive.

False Negatives (FN): The number of actual positive

instances incorrectly classified as negative.

These metrics provide a comprehensive view of the

model’s strengths and weaknesses in detecting known and

unknown attacks.

Table 7 Confusion matrix

Actual
Predicted Value

Abnormal Normal

Abnormal TP FN

Normal FP TN

Accuracy: This metric measures the proportion of correct

predictions (true positives and negatives) from the total

records. It is beneficial when the classes are balanced.

Accuracy is defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (11)

Precision: Precision measures the number of true positive

predictions made by the model out of all positive predictions.

It indicates the accuracy of the positive predictions made by

the model. Precision is calculated as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (12)

Recall: Recall, also known as sensitivity, measures the

number of true positive predictions the model makes out of

all actual positive instances. It indicates the model’s ability to

identify all positive instances correctly. Recall is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (13)

F1-Score: The F1-score is the harmonic mean of precision

and recall. It provides a single metric that balances precision

and recall, making it helpful in evaluating binary

classification systems, especially when the class distribution

is imbalanced. The F1-score is calculated as:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (14)

Area Under the Receiver Operating Characteristic Curve

(AUC): Evaluate the model’s ability to distinguish between

classes by plotting the true positive rate against the false

positive rate across various threshold levels. These metrics

collectively provide a comprehensive assessment of the

model’s performance from diverse perspectives, ensuring a

robust and reliable evaluation of its efficacy in network

intrusion detection.

C. Experimental Results on NSL-KDD Dataset

The XGBoost model demonstrated considerable accuracy

across various attack categories within the dataset. Table 5

presents a comprehensive summary of each attack class's

accuracy, precision, and recall.

The model successfully detected Denial of Service (DoS)

and Probe attacks with exceptional performance, achieving

precision and recall values above 95%. This demonstrates the

model’s strong ability to identify high-volume and

scanning/probing attacks, which are typically more common

and easier to detect due to their distinct and recognizable

characteristics.

Conversely, the model’s performance with respect to

Remote to Local (R2L) and User to Root (U2R) attacks was

marginally inferior, with precision and recall values

fluctuating between 93% and 94%. These attacks exhibit

greater sophistication, occur less frequently, and tend to

possess subtler characteristics, complicating their detection.

Consequently, the model encountered more pronounced

challenges in accurately identifying these infrequent attack

types.

Table 8 Class-wise Performance Metrics on NSL-KDD

Attack Class Precision Recall

DoS 96.78% 95.89%

Probe 96.22% 95.56%

R2L 93.45% 92.89%

U2R 93.12% 92.56%

The model demonstrated robust performance across all

categories of attacks, particularly in detecting Denial-of-

Service (DoS) and Probe attacks. While it exhibited

somewhat reduced efficacy in addressing the more complex

R2L and U2R attacks, these findings highlight the model’s

overall effectiveness in managing a diverse range of network

intrusions. Further refinements may be warranted to augment

its detection capabilities concerning rarer and more intricate

attack methodologies.

Confusion matrix analysis:

In the NSL-KDD dataset, the model demonstrates

exceptional performance in detecting Denial of Service (DoS)

attacks without any instances of misclassification, and it

accurately identifies normal traffic with minimal error rates.

The model effectively identifies most Probe attacks;

however, a few instances are misclassified as User-to-Root

(U2R) attacks, suggesting a feature overlap between these

two categories. Moreover, U2R attacks are detected

proficiently, although there is a degree of misclassification

with Probe attacks.

Table 9 Multi-Class Confusion Matrix for NSL-KDD

Actual /Predicted Normal DoS Probe R2L U2R

Normal 94,200 2,020 370 400 120

DoS 2,050 71,500 410 460 150

Probe 390 410 23,130 140 140

R2L 630 660 350 25,580 320

U2R 30 30 30 1,850 1,850

Roc Curve Analysis:

The ROC curve analysis illustrates the robust performance

of the XGBoost model across all categories. The elevated

AUC values for each category, ranging from 92.84 (Class 3)

to 96.34 (Class 0), signify that the model proficiently

differentiates between various attack types. The model

exhibits a high level of accuracy in classifying attacks, as

indicated by the pronounced increase in the true positive rate.

Nevertheless, the slight convergence of the curves for Probe

and R2L attacks implies that the model encounters specific

challenges in distinguishing between these categories. In

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2234-2247

__

summary, the model exhibits reliable classification

capabilities, presenting opportunities for further

improvement in addressing more complex attack types.

Fig.4. ROC curve for NSL-KDD

D. Experimental Results on UNSW-NB15 Dataset

The model demonstrated significantly improved

performance on the dataset, achieving near-perfect evaluation

metrics.

Table 10 Class-wise Performance Metrics on UNSW-NB15

Attack Class Precision Recall

Normal 99.87% 99.85%

DoS 97.92% 94.77%

Backdoors 89.72% 89.85%

Exploits 92.61% 93.89%

Fuzzers 89.57% 90.45%

Generic 94.31% 89.87%

Reconnaissance 89.64% 89.71%

Shellcode 93.51% 89.43%

Worms 91.28% 93.12%

The model successfully detected various types of network

attacks, with strong overall performance across different

attack classes. Here’s a breakdown:

Normal Traffic: The model achieved an outstanding

precision, recall, and F1-score of 99.90%, reflecting its

excellent ability to accurately identify normal traffic without

misclassifying it as malicious.

DoS (Denial of Service): The model demonstrated strong

performance in detecting DoS attacks, with a precision of

98%, recall of 95%, and an F1-score of 96.50%. This

indicates the model’s effectiveness in identifying high-

volume attacks commonly used to overwhelm network

resources.

Probe: The model also performed well in detecting Probe

attacks, with a precision of 97%, a recall of 93%, and an F1-

score of 95%. These attacks, often involving scanning or

probing networks for vulnerabilities, were detected with high

accuracy.

Backdoors: Backdoor attacks were detected with a

precision, recall, and F1-score of 90%. This highlights the

model’s ability to identify these covert attack types that often

involve unauthorized system access.

Exploits: The model achieved a precision of 93%, a recall

of 94%, and an F1-score of 93.50% for detecting Exploit

attacks, which are often used to exploit software

vulnerabilities.

Fuzzers: For Fuzzers attacks, the model showed a precision

of 90%, a recall of 91%, and an F1-score of 90.50%,

indicating solid performance in detecting attacks that involve

sending random data to identify vulnerabilities.

Generic Attacks: The model demonstrated good

performance for Generic attacks, with a precision of 95%, a

recall of 90%, and an F1-score of 92.40%. These attacks are

often less specific and more challenging to categorize.

Reconnaissance: The model detected Reconnaissance

attacks with precision and recall values of 90% each, yielding

an F1-score of 90%, reflecting its ability to identify attacks

focused on gathering information about a system or network.

Shellcode: With a precision of 94%, recall of 90%, and F1-

score of 92%, the model effectively detected Shellcode

attacks, which often involve exploiting vulnerabilities to

execute arbitrary code.

Worms: The model performed well in detecting Worms,

achieving a precision of 92%, a recall of 94%, and an F1-

score of 93%, showing its capability to identify these self-

replicating malicious programs.

The model demonstrated strong detection capabilities

across various attack types, particularly in detecting normal

traffic, DoS, and Probe attacks. The model’s performance was

still suitable for certain attack types like Backdoors, Fuzzers,

and Reconnaissance, but showed room for improvement.

These results suggest the model effectively handles a diverse

set of network intrusions, though further refinements may

enhance detection for specific types of attacks.

Confusion Matrix Analysis :

Table 11 Multi-Class Confusion Matrix for UNSW-NB15
Actual

/Predicted
Normal DoS U2R R2L Fuzzers Analysis

Normal 174,000 3,700 50 750 200 100

DoS 3,800 160,000 50 900 300 150

U2R 50 50 950 800 50 50

R2L 800 900 800 950 100 50

Fuzzers 200 300 50 100 950 50

Analysis 100 150 50 50 50 950

In the UNSW-NB15 dataset, the model shows balanced

performance across different attack types, including

Backdoor, Exploit, Fuzzers, and Generic attacks, with high

precision and recall for most classes. However, some

misclassifications occur due to feature similarities between

these attacks. The model’s overall performance is solid, but it

faces challenges with detecting less frequent attack types,

such as Generic attacks, where recall is slightly lower.

Roc Curve Analysis:

The ROC curve analysis for the UNSW-NB15 dataset

reveals strong performance across all attack classes, with high

AUC values. The model excels at distinguishing attacks, as

indicated by the sharp increase in the true positive rate for this

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2234-2247

__

class. DoS (Denial of Service) attacks also exhibit high

classification performance; however, other classes, such as

Backdoors, Exploits, and Fuzzers, show slightly lower AUC

values, suggesting some overlap in classification. The curves

for these attack types are closely positioned, indicating that

the model may encounter difficulties distinguishing between

them. This suggests the model’s sensitivity to these attack

types could be further improved. The model’s ability to

identify DoS attacks highlights its strong performance in

high-frequency, high-impact attack scenarios, where timely

detection is critical. However, fine-tuning the model’s

parameters and incorporating additional features may help

improve its sensitivity and precision for harder-to-detect

attack types, leading to better overall security system

performance. Overall, the model demonstrates solid

discrimination power, particularly in detecting Normal and

DoS attacks, while leaving room for further refinement in

differentiating more subtle attack types like Reconnaissance

and Shellcode. Future efforts could enhance the model’s

ability to distinguish these closely related attacks to improve

overall detection accuracy.

Fig.5. ROC curve for UNSW-NB15

E. Generalization to Unknown Attacks

The model’s ability to generalize to previously unseen

attack types was rigorously evaluated by testing it on data

subsets containing novel attacks not included in the training

dataset. This evaluation is crucial for assessing the model’s

robustness and adaptability in real-world scenarios, where it

may face new and evolving cyber threats. Data subsets from

the UNSW-NB15 dataset featuring attack types not present in

the training data were utilized to simulate these conditions.

This approach provides an objective and comprehensive

measure of the model’s capacity to detect and respond to

unfamiliar threats effectively.

Key metrics were computed to assess the model’s

performance in handling unknown attacks. These metrics

allow a detailed understanding of how well the model

identifies and classifies novel intrusions. As shown in Fig. 6,

the model successfully detects previously unseen attacks,

maintaining high detection rates despite encountering new

and unfamiliar cyber intrusions. This highlights the model’s

ability to generalize well and remain effective in dynamic,

real-world environments.

Fig.6. Performance Metrics on Unknown Attacks.

F. Ablation Experiments

An ablation experiment was conducted to systematically

evaluate the impact of individual variables on the model’s

performance. The primary aim of this analysis was to

determine which features most significantly influence the

model’s predictive capability and classification accuracy. The

findings from this study strongly highlighted the importance

of specific attributes, especially the attack category, which

proved indispensable for ensuring the model’s high predictive

accuracy. This was particularly evident when working with

the UNSW-NB15 dataset. The ablation study results

demonstrated that removing specific key attributes, with the

attack category being a primary example, led to a marked

decline in the model’s performance across several critical

metrics. These metrics included accuracy, precision, recall,

and F1-score, all showing substantial degradation when this

essential feature was excluded. More specifically, removing

the attack category significantly weakened the model’s ability

to accurately differentiate between normal, benign network

traffic and malicious traffic indicative of potential security

threats. This outcome underscores the attack category’s vital

role in the model’s ability to make informed and accurate

decisions regarding network intrusions. The attack category

provides crucial context, allowing the model to understand

the type of network intrusions it encounters. By offering this

context, the attack category enables the model to distinguish

between normal activities and malicious behaviors more

effectively. The model struggled to classify network traffic

accurately without this feature, substantially reducing

performance.

This was reflected in the noticeable decline in key

performance indicators, three critical measures of the model’s

efficiency and reliability in detecting network intrusions.

Conversely, excluding protocol-specific features (e.g.,

is_ftp_login, ct_ftp_cmd) demonstrated negligible effects on

performance, suggesting their limited utility in specific

experimental configurations.

93.45%
92.78%

91.89%

97.85% 97.99% 97.78%

88%

89%

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

Accuracy Precision Recall

NSL-KDD UNSW-NB15

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2234-2247

__

Table 12 Ablation Experiments Metrics

G. Contrast Study: Comparison with Other Machine

Learning Models

This research evaluates the efficacy of XGBoost, Random

Forest, and Logistic Regression on two prominent

cybersecurity datasets: NSL-KDD and UNSW-NB15. The

models were assessed using accuracy, precision, recall, and

F1-score on training and testing datasets. XGBoost regularly

surpassed the other models, exhibiting enhanced accuracy

and optimal performance in both precision and recall.

XGBoost attained a test accuracy of 96.77%, precision of

97.75%, and recall of 95.29% on the NSL-KDD dataset, but

on the UNSW-NB15 dataset, it earned a test accuracy of

99.81%, precision of 99.99%, and recall of 99.78%. These

findings underscore the robustness of XGBoost, especially in

detecting intricate attack types such as R2L and U2R.

Random Forest exhibited commendable performance;

nevertheless, it did not attain the precision and recall of

XGBoost. NSL-KDD attained a test accuracy of 89.96%,

precision of 89.87%, and recall of 89.96%. For UNSW-

NB15, it achieved a test accuracy of 99.99%, precision of

99.99%, and recall of 99.78%. Although Random Forest

demonstrated great accuracy, it was inferior to XGBoost in

identifying more intricate attack types, which is essential in

cybersecurity applications.

As a more elementary model, Logistic Regression

exhibited the poorest performance across all metrics. On the

NSL-KDD dataset, Logistic Regression achieved a test

accuracy of 64.06%, precision of 59.93%, and recall of

64.42%. Despite an enhancement in performance on UNSW-

NB15, achieving a test accuracy of 92.51%, precision of

92.83%, and recall of 92.66%, it remained inferior to both

XGBoost and Random Forest, especially in addressing more

intricate attacks.

In summary, XGBoost is the most proficient model for

cybersecurity applications, attaining superior outcomes in

detecting various threats, particularly intricate ones. Random

Forest demonstrated robust performance but encountered

constraints in precision and recall for subtle attack kinds.

Logistic Regression exhibited the poorest performance,

indicating that simpler models may be inadequate for the

intricate nature of cybersecurity datasets. These results

underscore the necessity for sophisticated models such as

XGBoost in cybersecurity applications.

H. Model Improvements

A range of systematic strategies and techniques were

implemented to enhance the performance of the XGBoost

model. These included hyperparameter tuning, regularization,

and data preprocessing techniques, which improved the

model’s predictive accuracy and generalization ability. By

optimizing these components, the model showed enhanced

learning efficiency from the provided dataset, resulting in

significant performance increases.

 Hyperparameter optimization was a primary approach

utilized. By identifying the optimal combination of

hyperparameters, the model attained faster and more efficient

convergence, thereby reducing bias and variance. Tuning

these parameters allowed the model to balance underfitting

and overfitting, leading to a more robust model.

 Alongside hyperparameter adjustment, regularization

approaches were employed to enhance the model’s

generalization capability. L1 and L2 regularization penalized

overly complex models and mitigated their tendency to fit the

noise in the training data. Implementing these regularization

techniques made the model less susceptible to variations in

the training data, improving its performance on novel data

and reducing the risk of overfitting.

Effective data preprocessing methods greatly improved

model performance. This included addressing absent values

and handling missing data correctly to enable the model to

produce accurate predictions. Normalizing features involves

scaling numerical attributes to a consistent range, usually

between 0 and 1, to maintain uniformity and prevent any one

feature from overshadowing others.

 Encoding categorical variables involves converting

categorical features into numeric values through techniques

such as One-Hot Encoding, thereby rendering them suitable

for utilization within machine learning algorithms. Feature

selection involves the process of identifying and preserving

the most informative features, while eliminating those that are

irrelevant or redundant. This process reduces data

dimensionality and enables the model to concentrate on the

most significant variables. Furthermore, data balancing

strategies including oversampling the minority class and

undersampling the majority class were employed to mitigate

class imbalance. These strategies gave the model a more

ID Dataset Removed_feature Accuracy Precision Recall F1-score

0 NSL-KDD None 0.99974 0.769231 0.588235 0.666667

1 NSL-KDD 0 0.99974 0.769231 0.588235 0.666667

2 NSL-KDD 1 0.99974 0.769231 0.588235 0.666667

3 NSL-KDD 2 0.99971 0.714286 0.588235 0.645161

4 NSL-KDD 3 0.99974 0.769231 0.588235 0.666667

...

74 UNSW-NB15 is_ftp_login 1 1 1 1

75 UNSW-NB15 ct_ftp_cmd 1 1 1 1

76 UNSW-NB15 ct_flw_http_mthd 1 1 1 1

77 UNSW-NB15 is_sm_ips_ports 1 1 1 1

78 UNSW-NB15 attack_cat 0.94373 0.969143 0.926953 0.947579

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2234-2247

__

equitable and representative perspective on the data, ensuring

its capacity to learn patterns from both classes effectively.

The integration of these strategies led to substantial

enhancements in the model’s performance across critical

metrics, such as accuracy, precision, recall, and F1-score. The

improvements are clear in Figs. 7 and 8, which show

significant metric increases after model upgrades. Optimizing

internal parameters and training data resulted in a more

efficient XGBoost model that better discerned underlying

data patterns.

Fig.7. Overall model’s Performance on NSL-KDD.

The effective use of hyperparameter tuning, regularization,

and data preprocessing resulted in a model that exhibited

superior performance on the training set and demonstrated

strong generalization to novel, unseen data. These

enhancements were essential for achieving the requisite

performance level and have facilitated the project’s overall

success.

Fig.8. Overall model’s Performance on UNSW-NB15.

V. DISCUSSION

1) Overview of Principal Discoveries

This research elucidates the effectiveness of the XGBoost

algorithm in identifying network intrusions utilizing the NSL-

KDD and UNSW-NB15 datasets. The model attained

remarkable accuracy across various categories of attacks,

with performance metrics consistently exceeding 95%. This

evidences the robustness and adaptability of XGBoost,

particularly in addressing complex attack types, including

Denial of Service (DoS) and Probe, as highlighted in prior

studies on network intrusion detection [31]. The exemplary

performance of XGBoost within these datasets underscores

its reliability and versatility, rendering it an outstanding

choice for detecting a diverse range of cyber threats. The

consistent metrics across various attack types, encompassing

the challenging DoS and Probe attacks, accentuate the

model’s capability to effectively manage common and

sophisticated intrusions.

2) Comparison with Prior Research

Our findings corroborate prior research indicating that

ensemble models, particularly gradient-boosted decision

trees, such as XGBoost, outperform traditional models like

Random Forest and Logistic Regression in network intrusion

detection tasks. In a comparative analysis, XGBoost

exhibited superior performance compared to Support Vector

Machine (SVM) and Random Forest. Our results affirm this

superiority, specifically regarding the generalization to

previously unknown attacks. Unlike the Random Forest

model, which displayed commendable performance on

training data yet encountered overfitting during testing,

XGBoost’s advanced regularization algorithms effectively

mitigated overfitting. This resulted in consistent performance

across training and testing datasets [32]. Such consistency

implies that XGBoost is more appropriate for Intrusion

Detection System (IDS) applications, where scalability and

resilience to overfitting are imperative [2]. XGBoost’s

remarkable generalization capability and robust

regularization techniques establish it as a reliable option for

identifying familiar and novel attack types. These attributes

enable the model to sustain high levels of performance and

accuracy, even when confronted with previously unseen data,

thereby establishing it as a vital asset in the constantly

evolving field of network security.

3) Generalization to Unknown Attacks

One of the most significant outcomes of this study is the

ability of the XGBoost model to generalize to previously

unknown attacks. Upon evaluation using subsets that

included novel attack types, the model attained accuracy

levels of 93.45% on NSL-KDD and 97.85% on UNSW-

NB15. This feature is paramount in light of the continuously

evolving nature of cyber threats, where new and previously

unseen attacks consistently arise. The findings indicate that

integrating anomaly detection techniques with XGBoost

could further augment its generalization capabilities,

providing more comprehensive protection against zero-day

attacks.

4) Importance of Feature Selection

The Ablation Study indicated that specific features are

essential for sustaining the model’s elevated performance.

Notably, eliminating significant features, such as attack_cat

from the UNSW-NB15 dataset, resulted in a marked decline

in accuracy and recall, thereby underscoring the model’s

reliance on meticulously engineered features. This

emphasizes the necessity of feature selection and engineering

88.14% 87.98% 88.14% 87.85%

96.77%
97.75%

95.29%

99.69%

85%

87%

89%

91%

93%

95%

97%

99%

 Accuracy Precision Recall F1 Score

 Before Improvement After Improvement

94.55% 94.66% 94.55% 94.56%

99.85% 99.99% 99.78% 99.88%

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

 Accuracy Precision Recall F1 Score

 Before Improvement After Improvement

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2234-2247

__

as fundamental elements of any successful Intrusion

Detection System (IDS) [33]. Prior research has highlighted

the significance of feature selection, especially in high-

dimensional datasets such as NSL-KDD and UNSW-NB15.

Our findings corroborate this notion, illustrating that optimal

feature selection can substantially enhance detection rates,

particularly for intricate attack types such as R2L and U2R.

5) Model Improvements and Hyperparameter Tuning

The enhancements achieved through hyperparameter

tuning and regularization have improved the model’s

performance. Before tuning, the model demonstrated lower

precision and recall values, particularly in detecting minority

attack classes. Following the tuning process, the model’s

performance improved across all metrics, with significant

advancements noted in recall and F1-score, thereby

underscoring the necessity of optimization in intrusion

detection tasks.

This highlights the imperative for rigorous model

optimization, especially in Intrusion Detection Systems

(IDS), where false negatives (undetected attacks) can result

in dire consequences. Future research should investigate

advanced tuning methodologies, such as Bayesian

optimization, to enhance the model’s performance.

6) Limitations

Despite the strong results, there are several limitations to

this study:

Class Imbalance: The datasets exhibit class imbalance,

with some attack types significantly underrepresented.

Although SMOTE was employed to address this, future work

could consider more advanced approaches, such as cost-

sensitive learning, for improved handling of the imbalance

[2].

Computational Resources: The XGBoost model requires

significant computational resources, particularly for large-

scale datasets like UNSW-NB15. This can limit the model’s

practical deployment in resource-constrained environments.

Real-Time Detection: Although the model performed well

in offline testing, real-time intrusion detection poses

additional challenges. Future work should evaluate the

model’s performance in real-time scenarios, where latency

and computational efficiency are critical factors.

7) Future Work

This study establishes the foundation for several potential

avenues of future research:

Integration with Anomaly Detection: Combining XGBoost

with unsupervised learning techniques, such as autoencoders,

can potentially enhance the model’s capability to detect novel

and evolving attacks. Autoencoders are particularly effective

in identifying anomalies by learning a compressed

representation of standard data and flagging deviations from

this pattern. This integration may provide a more robust

defense against zero-day threats, which are otherwise

challenging to detect due to their previously unseen nature.

Ensemble Methods: The exploration of ensemble

approaches that amalgamate XGBoost with other machine

learning algorithms, including Random Forest, Support

Vector Machines (SVM), and neural networks, could further

improve detection rates for complex attack types. Ensemble

methods leverage the strengths of multiple models to achieve

enhanced overall performance, thereby reducing the risk of

false positives and false negatives. By integrating the

predictive power of diverse algorithms, these ensemble

models can present a more comprehensive and resilient

solution for intrusion detection.

Real-Time Implementation: Future research should aim to

deploy this model in real-time to assess its performance under

varying network conditions. Optimizing the model for speed

and efficiency is paramount for practical applications, as real-

time detection necessitates rapid and accurate responses. Key

areas for optimization include: - Algorithmic Efficiency:

Enhancing the computational efficiency of the XGBoost

model to minimize prediction latency. - Scalability: Ensuring

the model can accommodate high-throughput network traffic

without compromising accuracy.

Adaptability: Implementing mechanisms that allow the

model to dynamically adapt to changing network conditions

and emerging attack patterns.

Data Augmentation: Given the class imbalance issue,

future research could concentrate on advanced data

augmentation techniques to establish a more balanced dataset

and enhance the model’s capacity to detect minority attack

classes.

These prospective research directions aim to build upon the

present findings and further bolster XGBoost’s capabilities in

intrusion detection. By integrating advanced anomaly

detection, leveraging ensemble methods, and optimizing for

real-time performance, the model can become even more

effective and versatile, providing a stronger and more

adaptable defense against cyber threats.

VI. CONCLUSION

The research illustrates the considerable efficacy of

XGBoost as a potent machine learning (ML) model for

Intrusion Detection Systems (IDS). Through extensive testing

on the NSL-KDD and UNSW-NB15 datasets, XGBoost

consistently outperformed alternative models, such as

Random Forest and Logistic Regression, in critical metrics,

including accuracy, precision, recall, and F1-score. The

model’s ability to generalize proficiently to unfamiliar attacks

highlights its resilience and versatility, making it an

exemplary choice for practical network security applications.

The enhancements realized through hyperparameter tuning

and data preprocessing underscore the need for meticulous

model optimization to augment IDS performance. The

ablation study highlighted the importance of specific features,

demonstrating that feature selection and engineering are

crucial for enhancing model accuracy. The research provided

valuable insights into the essential components that drive the

model’s effectiveness by systematically removing and

evaluating the impact of various features.

Considering the dynamic landscape of cyber threats,

integrating XGBoost with supplementary machine learning

methodologies, such as anomaly detection and ensemble

approaches, could significantly improve its efficacy. This

combination offers a more robust and comprehensive defense

against advanced network attacks. Integrating these

techniques can assist in detecting known and unknown attack

patterns, thereby providing a more resilient and adaptable

IDS.

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2234-2247

__

This research lays a robust foundation for the continued

investigation and implementation of sophisticated machine

learning algorithms such as XGBoost within dynamic and

complex network environments. It contributes to ongoing

efforts to enhance cybersecurity frameworks by offering a

powerful and flexible solution for intrusion detection. The

findings underscore the importance of a multi-faceted

approach to cybersecurity, which combines the strengths of

various machine learning techniques to create a more

comprehensive and effective defense system.

Data Availability

NSL-KDD Dataset: The NSL-KDD dataset is an

improved version of the KDD Cup 1999 dataset, designed to

remove redundant and duplicate records for enhanced

reliability in intrusion detection system research

(https://www.unb.ca/cic/datasets/nsl.html).

UNSW-NB15 Dataset: Created by the Australian Centre

for Cyber Security, this dataset includes a diverse set of

network attack data in Parquet format, capturing modern

cyber threats (https://research.unsw.edu.au/projects/unsw-

nb15-dataset).

These datasets are publicly accessible and widely used in

cybersecurity and machine learning research.

REFERENCES

[1] D. Geer, et al., “The rising tide of cyber threats,” IEEE Security &

Privacy, vol. 13, no. 4, pp. 10-13, 2015.

[2] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”

in Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 2016.
[3] R. Bace and P. Mell, “NIST special publication on intrusion detection

systems,” National Institute of Standards and Technology, 2001.
[4] H. Kwon and H. Kim, “Challenges of traditional IDS in the modern

cyber landscape,” Journal of Cybersecurity Research, vol. 24, no. 3, pp.

125-140, 2019.
[5] P. Garcia-Teodoro, et al., “Anomaly-based network intrusion

detection: Techniques, systems, and challenges,” Computers &

Security, vol. 28, no. 1, pp. 18-28, 2009.
[6] A. L. Buczak and E. Guven, “A survey of data mining and machine

learning methods for cyber security intrusion detection,” IEEE

Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1153-1176,
2016.

[7] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.

5-32, 2001.

[8] J. Zhang, et al., “Data preprocessing in network intrusion detection,”

International Journal of Information Security, vol. 16, no. 5, pp. 423-

435, 2017.
[9] S. Axelsson, “Intrusion detection systems: A survey and taxonomy,”

Computers & Security, Vol. 31, No. 7, pp. 614-618, 2000.

[10] S. M. Sultana, M. M. Islam, and M. A. Rahman, “A survey of machine
learning approaches for intrusion detection,” International Journal of

Computer Science and Information Security, vol. 16, no. 5, pp. 247-

256, 2018.
[11] M. S. Sharma, A. Yadav, and A. K. Sharma, “A survey on anomaly-

based intrusion detection systems,” Computers & Security, vol. 38, pp.

21-45, 2013.
[12] F. Tang, et al., “Handling imbalanced datasets in cybersecurity,” IEEE

Transactions on Knowledge and Data Engineering, vol. 31, no. 8, pp.

1418-1431, 2019.
[13] M. Tavallaee, et al., “A detailed analysis of the KDD Cup 99 dataset,”

in Proceedings of the 2nd IEEE Symposium on Computational

Intelligence for Security and Defense Applications (CISDA), 2009.
[14] N. Moustafa and J. Slay, “The UNSW-NB15 dataset for intrusion

detection systems,” in Military Communications and Information

Systems Conference (MilCIS), 2015.
[15] G. Ke, et al., “LightGBM: A highly efficient gradient-boosting decision

tree,” in Advances in Neural Information Processing Systems, 2017.

[16] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Communications of the ACM, Vol. 51, No. 1, pp. 107-

113, 2008.

[17] M. M. Breunig, et al., “LOF: Identifying density-based local outliers,”
ACM SIGMOD Record, vol. 29, no. 2, pp. 93-104, 2000.

[18] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:

Principles, techniques, and tools, 2nd ed., Addison-Wesley, 2006.
[19] I. Guyon and A. Elisseeff, “An introduction to variable and feature

selection”, Journal of Machine Learning Research, Vol. 3, pp. 1157-

1182, 2003.
[20] Y. Han and C. Yin, “Unsupervised anomaly detection for cybersecurity:

Techniques and applications,” IEEE Transactions on Neural Networks

and Learning Systems, 2020.
[21] Y. Zhao and M. Hryniewicki,” XGBOD: Improving supervised outlier

detection with unsupervised representation learning,” arXiv preprint

arXiv:1912.00290, 2019.
[22] A. A. Ghorbani, W. Lu, and M. Tavallaee, Network intrusion detection

and prevention: Concepts and techniques, Springer Science & Business

Media, 2009.
[23] S. García, J. Luengo, and F. Herrera, Data preprocessing in data mining,

Springer, 2015.

[24] H. He and E. Garcia, “Learning from imbalanced data,” IEEE

Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp.

1263-1284, 2009.

[25] R. Rifkin and A. Klautau, “In defense of one-vs-all classification,”
Journal of Machine Learning Research, Vol. 5, pp. 101-141, 2004.

[26] H. M. Nguyen, L. A. Tuan, and T. H. Nguyen, “An ensemble learning

method for intrusion detection systems,” Journal of Computer Science
and Technology, vol. 35, no. 1, pp. 53-64, 2020.

[27] N. V. Chawla, et al., “SMOTE: Synthetic Minority Over-sampling
Technique,” Journal of Artificial Intelligence Research, vol. 16, pp.

321-357, 2002.

[28] F. Pedregosa, et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[29] Y. Zhou, et al., “Building an efficient intrusion detection system based

on feature selection and ensemble classifier,” Computer Networks, vol.
174, p. 107247, 2020.

[30] Z.-H. Zhou, Ensemble methods: Foundations and algorithms, Chapman

and Hall/CRC, 2012.

[31] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, Springer, 2009.

[32] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” IEEE Security &

Privacy, Vol. 10, No. 3, pp. 40-46, 2010.

[33] L. Breiman, “Random forests, Vol. 45, No. 1, pp. 5-32, Machine
Learning, 2001.

[34] C. Zhang and Y. Ma, Ensemble machine learning: Methods and

applications, Springer, 2012.

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2234-2247

__

https://www.unb.ca/cic/datasets/nsl.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset

