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Abstract - The emergence of complex cyberattacks presents 

considerable difficulties to network security, necessitating 

innovative and adaptable solutions. Intrusion Detection Systems 

(IDS) play a vital role in cybersecurity by monitoring network 

traffic for malicious behavior and preventing potential threats. 

However, traditional IDS methods often suffer from high false-

positive rates and struggle to adapt to evolving attack 

landscapes. This study explores the application of the XGBoost 

algorithm, an advanced gradient-boosting machine learning 

model for enhancing IDS performance using two widely 

recognized datasets: NSL-KDD and UNSW-NB15. A 

comprehensive data preprocessing pipeline was developed, 

including feature engineering, hyperparameter tuning, and 

synthetic data generation using the SMOTE technique to 

address class imbalance. The XGBoost model demonstrated 

superior performance, achieving 96.77% accuracy on the NSL-

KDD dataset and 99.85% on the UNSW-NB15 dataset, with high 

precision, recall, and F1-scores. Cross-validation confirmed the 

model’s ability to generalize effectively to unseen data, including 

novel attack types. The results of this study underscore 

XGBoost’s potential as a scalable and robust solution for 

modern IDS, capable of handling high-dimensional data and 

complex attack scenarios. This research lays the groundwork for 

further integrating ensemble learning techniques with anomaly 

detection approaches to increase network security in dynamic 

contexts. 

 

Index Terms - Class Imbalance Handling, Intrusion Detection, 

SMOTE, XGBoost. 

 

I.  INTRODUCTION 

 ETWORK security has become a key issue in the 

contemporary digital environment, as the rapid increase 

in cyberattacks presents significant dangers to organizational 

infrastructure and personal information. Cyberattacks such as 

Distributed Denial of Service (DDoS), phishing, and 

advanced persistent threats (APTs) have increased in 

frequency and complexity, making it crucial to develop robust 

defense mechanisms [1]. Intrusion Detection Systems (IDS) 

represent one of the most effective mechanisms for detecting 

and mitigating security threats, as they continuously monitor 

network traffic to identify anomalies that may indicate 

malicious intent [2]. 
 

 

Manuscript received November 11, 2024; revised May 26, 2025 
This research was supported by the General Project of scientific research 

funds of the Liaoning Provincial Department of Education (Grant 

No.2021LJKZ0327) and the GPU Resource Support Project of Liaoning 
Technical University (2024-02). 

Wanzhi Chen is an associate professor of the School of Software at 

Liaoning Technical University, Huludao, 125105, China (Corresponding 
author, phone: +8613591996866, E-mail: chenwanzhi@lntu.edu.cn). 

Diawara Faysal Almamy is a postgraduate student at Liaoning Technical 

University, Huludao, 125105, China 

 (E-mail: faysalalmamydiawara@gmail.com). 

Traditional Intrusion Detection Systems (IDS) methods, 

such as signature-based and anomaly-based detection, often 

struggle with high false-positive rates and limited adaptability 

to the rapidly evolving nature of cyberattacks [3]. 

In recent years, machine learning techniques have proven 

to be powerful approaches for improving the accuracy, 

adaptability, and overall efficiency of IDS [4]. These 

algorithms can identify intricate network traffic data patterns, 

effectively detecting known and undiscovered (zero-day) 

threats [5].One method that has garnered considerable 

attention is Extreme Gradient Boosting (XGBoost). 

XGBoost, a sophisticated variant of gradient-boosted 

decision trees, is optimized for both speed and precision, 

making it particularly effective for analyzing high-

dimensional and complex datasets like network traffic 

records [6] . Additionally, its ability to handle missing data, 

anomalies, and imbalanced datasets further enhances its 

effectiveness in IDS [2]. This research explores the 

application of XGBoost for intrusion detection using two 

prominent datasets: NSL-KDD and UNSW-NB15. The NSL-

KDD dataset is an enhanced version of the original KDD Cup 

1999 dataset, designed to address issues of duplication and 

complexity, thereby providing a more reliable baseline for 

evaluating IDS performance [7]. On the other hand, the 

UNSW-NB15 dataset, developed by the Australian Centre for 

Cyber Security, offers a modern and extensive array of 

attributes, covering a wide range of contemporary attack 

types and reflecting the current threat landscape [8]. 

This study enhances the XGBoost model through rigorous 

data preparation methods, feature engineering, and 

hyperparameter optimization. The results demonstrate the 

model’s superior accuracy, precision, recall, and F1-Scores 

across both datasets, underscoring XGBoost’s potential as a 

resilient and scalable solution for modern IDS deployments. 

II.  RELATED WORKS 

Intrusion Detection Systems serve as essential elements of 

network security, developed to detect and respond to the 

growing spectrum of cyber threats targeting contemporary 

systems. However, conventional IDS approaches, such as 

signature-based detection, frequently fall short in identifying 

previously unseen or novel attack. These systems rely on 

predefined attack signatures, which results in challenges in 

detecting new threats. Signature-based approaches frequently 

suffer from heightened false-positive rates, as legitimate 

behaviors may occasionally mimic attack signatures [9]. This 

highlights the imperative for more adaptable, data-driven 

strategies to address known and unknown attacks more 

accurately and efficiently. In recent years, machine learning 

(ML) techniques have been extensively explored as 
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alternatives to conventional signature-based methods. These 

approaches do not necessitate established patterns and 

possess the capability to detect emerging attack patterns by 

learning directly from network traffic data. Ensemble 

learning methods have garnered substantial popularity due to 

their capacity to integrate the strengths of various base 

classifiers, thereby enhancing model accuracy and 

robustness. One notable approach is XGBoost, a gradient 

boosting framework recognized for its scalability and strong 

performance in handling complex and high-dimensional 

datasets [2]. XGBoost functions by sequentially training 

weak models to rectify the deficiencies of their predecessors, 

which enables it to uncover intricate relationships within the 

data and improve detection effectiveness, particularly in 

network intrusion detection. Despite the advantages of 

machine learning approaches, class imbalance remains a 

predominant challenge in IDS.  

In standard network traffic datasets, benign samples 

typically dominate, resulting in a class imbalance that 

introduces a bias toward the majority class. This disparity 

often results in algorithms that excel at identifying benign 

traffic but inadequately detect infrequent yet significant 

attack occurrences. To address this issue, several methods, 

including the Synthetic Minority Over-sampling Technique 

(SMOTE), have been proposed. SMOTE addresses class 

imbalance by generating synthetic samples for the minority 

class through interpolation between existing examples. This 

process helps balance the dataset and improves classifier 

performance, particularly for rare attack types [10] . 

Combining SMOTE with XGBoost has proven effective in 

improving recall and precision for detecting infrequent attack 

occurrences while maintaining the accuracy of benign traffic. 

The continuously evolving nature of cyber threats 

underscores the need for multi-phase models that incorporate 

successive learning stages, thereby progressively improving 

the effectiveness of IDS. These models often encompass 

feature extraction, classification, and post-classification 

refining stages. Each phase improves the detection process: 

feature extraction converts raw data into more informative 

representations, while post-classification refining mitigates 

false positives and adjusts the model to emerging attack 

patterns. Integrating ensemble approaches like XGBoost with 

multi-phase learning frameworks enables IDS to adapt more 

effectively to cyberattacks’ dynamic and diversified nature 

[5]. The amalgamation of these methodologies facilitates the 

development of more resilient, scalable, and adaptive 

Intrusion Detection System models capable of managing real-

world network settings and continuously evolving attack 

strategies. Recent research has shown the effectiveness of 

integrating XGBoost with SMOTE for intrusion detection. 

Zhang et al. [11] demonstrated that this hybrid methodology 

significantly improved the efficacy of Intrusion Detection 

Systems, especially on benchmark datasets. These datasets, 

representing various attack types, highlight the need to 

employ scalable algorithms to manage imbalanced and high-

dimensional data while preserving effective detection 

capabilities across various attack scenarios. Given the 

increasing complexity of attacks, future research should focus 

on enhancing individual components of IDS, including 

feature engineering and sampling strategies, and developing 

more advanced hybrid models that integrate various learning 

paradigms. 

In conclusion, Intrusion Detection Systems increasingly 

depend on advanced machine learning methods like ensemble 

techniques, resampling, and multi-phase learning to tackle 

challenges such as class imbalance and false positives. 

Combining XGBoost with SMOTE and multi-phase learning 

improves IDS flexibility, resilience, and effectiveness against 

known and emerging threats. 

III. METHODS 

Converting raw data into a more comprehensible and 

suitable format for model training is essential for enhancing 

model performance [12]. The NSL-KDD dataset was stored 

in plain text, whereas the UNSW-NB15 dataset utilized the 

Parquet format, facilitating more efficient data storage and 

retrieval for extensive datasets [13]. Initially, the data was 

imported and transformed into an appropriate format for 

processing. This process involved encoding categorical 

features into numerical values and normalizing numerical 

inputs to maintain a consistent range, typically between 0 and 

1. This preprocessing phase is crucial as it prepares the data 

for practical and accurate model training by eliminating 

biases and ensuring consistency. Following the preprocessing 

stage, automated feature selection was performed to identify 

the relevant features that significantly impact the prediction 

outcomes. This step is essential for improving model 

performance by focusing on relevant data and minimizing 

noise. A study highlights the critical role of feature selection 

in improving the accuracy of machine learning models, 

especially when working with high-dimensional datasets 

[14]. After identifying the most critical features, the data was 

normalized to preserve statistical integrity and mitigate biases 

in the raw data. The SMOTE technique was utilized to 

mitigate class imbalance through the creation of synthetic 

samples. This approach balances the dataset by augmenting 

the minority class and improves the ability to generalize 

across different scenarios. It has been extensively applied to 

correct imbalanced datasets in intrusion detection systems 

[15]. This study uses XGBoost, a highly advanced and 

efficient machine-learning technique. This method addresses 

numerous machine-learning challenges, encompassing 

regression and classification, making it versatile and superior 

to alternative algorithms. XGBoost represents a sophisticated 

iteration of the Gradient Boosting Framework, acknowledged 

for its efficiency and additional features such as a linear 

model solver and tree learning techniques [16]. These 

attributes improve its speed and proficiency in parallel 

computation on a single computer. XGBoost constructs 

decision trees through a greedy algorithm that chooses the 

optimal split point at each stage of tree development, based 

on a subset of input attributes. This methodology ensures that 

each tree markedly diverges from previous predictions, 

enhancing overall model accuracy [17]. The study involved 

collecting and preprocessing the data, construct and train the 

model, assess its performance through testing and 

evaluation[18].  

Fig.1 shows the system's framework, outlining key stages: 

data collection, preprocessing, feature extraction, and model 

training. Network traffic data is first cleaned and processed, 

then relevant features are extracted for XGBoost model 
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training to detect intrusions. The XGBoost model is used to 

analyze network traffic and flag unusual patterns that could 

indicate cyber threats. 

 By integrating this machine learning approach, the IDS 

becomes more effective at recognizing and mitigating 

potential attacks, thereby strengthening overall network 

security.

Data Preprocessing

Data Cleaning

Data Transformation

Feature Encoding

Feature Scaling

Data Splitting

SMOTE Class Imbalance Handling

Is Data balanced?

XGBOOST Model 

Training Hyperparameter Optimization

Model Performance 

Evaluation

Accuracy, Precision, Recall, F1-Score

Breakdown by attack types

Is Model Performance

 Optimal?

Final Model Testing Evaluate on the test set (unseen data)

Final evaluation metrics for reporting

Start

End

Yes

No

Yes

No

Data Collection

 
Fig.1.Overall framework. 

1) Overview of the Theoretical Foundations of XGBoost 

The XGBoost method is an efficient and reliable tool in 

machine learning, known for strong performance and 

scalability. It offers precise predictions and effective 

parallelization, forming an improved version of the Gradient 

Boosting Machine (GBM) [19]. XGBoost uses decision trees 

as its classifiers, enhancing the classical loss function to 

manage model complexity. This strategy utilizes 

computations from previous stages, allowing classifiers to 

identify optimal parameters, known as XGBoost 

regularization [20]. This technique ensures systematic 

optimization of the objective function through loss 

minimization and complexity control. 

a) Objective Function 

The objective function in XGBoost optimizes both the 

training loss and model complexity. At iteration  𝑡1 , it is 

expressed as: 

𝑂𝑏𝑗(𝑡) = ∑ 𝑙(𝑦𝑖 , �̂�𝑖
(𝑡−1)

) + 𝑓𝑡(𝑥𝑖) + 𝛺(𝑓𝑡)𝑛
𝑖=1             (1) 

Where, 𝑛  is the number of training samples;𝑦   is the actual 

label of each sample; �̂�𝑖
(𝑡−1)

  is the predicted value up to 

iteration;𝑓𝑡(𝑥𝑖)  is the output of the new model;𝑙  The loss 

function measures the difference between actual and 

predicted values. 

It is the regularization term to control model complexity 

[21]. 

 

 

b) Loss Function and Gradient Boosting 

XGBoost employs a gradient boosting framework wherein 

successive models are trained to predict the residuals or errors 

of the preceding models. These models are then combined to 

generate the final prediction. This approach is grounded in the 

second-order Taylor expansion of the loss function, which 

facilitates efficient optimization and model convergence. 

𝑂𝑏𝑗(𝑡) ≈ ∑ [𝑙(𝑦𝑖 , �̂�𝑖
(𝑡−1)

)𝑔𝑖𝑓𝑡(𝑥𝑖)
1

2
ℎ𝑖𝑓𝑡(𝑥𝑖)2] +𝑛

𝑖=1  𝛺(𝑓𝑡)            

(2) 

Where: 𝑔𝑖andℎ𝑖are the first and second derivatives (gradients 

and Hessians) of the loss function concerning the predicted 

value [22]. 

c) Tree Pruning 

XGBoost utilizes depth-first pruning, which differs from 

conventional gradient-boosting approaches that stop tree 

splitting when additional splits fail to enhance the overall 

model. In XGBoost, this method involves eliminating splits 

from the lower levels of the tree, specifically those that do not 

substantially contribute to loss reduction [23]. This technique 

effectively addresses anomalies such as missing values and 

varying feature importance, making XGBoost an optimal 

choice for handling intricate datasets, such as those used in 

network intrusion detection. XGBoost's performance was 

evaluated using the benchmark datasets. The following 

sections display detailed performance metrics and insights 

gained from our tests. These evaluation metrics collectively 

provide a comprehensive assessment of the model’s 

performance across different attack types and data scenarios. 

2) Data Collection 

The NSL-KDD dataset is an updated version of KDD’99 

that addresses several issues and integrates standard 

connections with simulated intrusions into military networks. 

The UNSW-NB15 dataset was created by the Australian 

Centre for Cyber Security to detect modern network threats. 

3) Data Preprocessing 

The preprocessing step is crucial in preparing the raw data 

for an effective model training, ensuring it is clean, well-

formatted, and suitable for analysis. Below is a detailed 

outline of the methodology for the dataset’s preprocessing. 

4) Data Loading 

NSL-KDD Dataset is loaded from a text file (.txt) using 

delimiters to handle missing values by imputing or removing 

them. 

Table 1 NSL-KDD Dataset (Stored in .txt) 

Category 
Training Set 
samples 

IR% 

(Training 

set) 

Test Set 
samples 

IR% 
 (Test set) 

Normal 67343 100 9711 100 

DoS 45927 68.2 7458 33.08 

Probe 11656 17.3 2421 10.74 

R2L 52 0.08 2754 12.22 

U2R 995 1.48 200 0.89 

Total  125973 - 22544 - 
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 UNSW-NB15 Dataset is loaded using the Parquet file 

format, which provides efficient storage and retrieval, feature 

encoding, and scaling. 

Table 2 UNSW-NB15 Dataset (Stored in .parquet) 

Category 
Training Set 
samples 

IR% 

 (Training 
set) 

Test Set 
samples 

IR% 
 (Test set) 

Normal 37,000 44.94% 56,000 36.82% 

Generic 18,871 22.92% 40,000 26.30% 

Exploits 11,132 13.52% 23,393 15.38% 

Fuzzers 6,062 7.36% 12,951 8.52% 

DoS 4,089 4.97% 8,711 5.73% 

Reconnaissan

ce 
3,496 4.25% 7,455 4.95% 

Analysis 677 0.82% 1,436 0.97% 

Backdoor 583 0.71% 1,245 0.82% 

Shellcode 378 0.46% 808 0.53% 

Worms 44 0.05% 95 0.06% 

Total 82,332 100.00% 175,595 100.00% 

5) Categorical Features 

Categorical features were converted into numerical format 

using One-Hot Encoding, enabling their effective use in 

machine learning models. Furthermore, feature encoding and 

scaling techniques were implemented to effectively manage 

both categorical and numerical data, ensuring that the model 

operates optimally by eliminating bias and standardizing the 

range of values [24]. Prior research has indicated that these 

measures are essential for attaining high accuracy and 

mitigating overfitting in machine learning models [25]. 

6) Normalization 

Numerical features were normalized to a standardized 

range, commonly between 0 and 1, to promote uniformity 

across the dataset. This normalization process is essential for 

preventing features with larger numerical scales from 

disproportionately influencing the model. By ensuring that all 

input features operate on a comparable scale, the model can 

learn more effectively and equitably from each variable, 

thereby enhancing overall performance and stability. 

7) Feature Selection 

The initial experiments involved selecting the most 

pertinent features from both datasets. Features deemed 

irrelevant or redundant were eliminated to diminish noise and 

enhance model performance accuracy. 

8) Addressing Class Imbalance with SMOTE 

The datasets exhibit a notable class imbalance, wherein 

normal traffic significantly exceeds the instances of attacks 

[26]. This imbalance presents a considerable challenge for 

intrusion detection systems (IDS), as models trained on such 

uneven data often exhibit a bias toward the majority class, 

leading to suboptimal detection rates for less prevalent attack 

types. To address this challenge, the Synthetic Minority Over-

sampling Technique (SMOTE) is applied. This method 

addresses class imbalance by generating synthetic instances 

for minority classes through interpolation between existing 

attack samples within the feature space. As a result, it 

effectively balances the dataset and enhances the model’s 

ability to learn from underrepresented classes This approach 

reduces the model’s bias toward the majority class and 

enhances its ability to identify rare anomalies. Applying 

SMOTE significantly enhances the detection of 

underrepresented attack types like User-to-Root (U2R) and 

Remote-to-Local (R2L) attacks, which are rarely found in the 

training data. By creating synthetic examples for these 

minority classes, SMOTE allows the model to learn 

distinctive features tailored to these infrequent attacks, thus 

elevating its sensitivity and lowering false negatives. This 

feature is essential for accurately identifying sophisticated, 

low-frequency attacks that may go unnoticed Moreover, 

SMOTE balances the dataset without simply duplicating 

existing instances, thereby reducing the risk of overfitting. 

This contributes to improved generalization, allowing the 

model to maintain strong performance on previously unseen 

data [27]. 

In conclusion, the Synthetic Minority Over-sampling 

Technique (SMOTE) effectively addresses the class 

imbalance challenge in intrusion detection datasets. It 

enhances detection rates for infrequent attack types while 

maintaining the model’s overall performance. This technique 

is essential for the development of robust and effective 

Intrusion Detection Systems that can accurately identify both 

prevalent and infrequent threats within network traffic. To 

demonstrate the impact of the Synthetic Minority Over-

sampling Technique (SMOTE) on dataset balance, the 

subsequent tables present the class distributions prior to and 

following the application of SMOTE for the NSL-KDD and 

UNSW-NB15 datasets. These tables illustrate the generation 

of synthetic samples for minority classes, thereby enhancing 

the model’s ability to discern patterns associated with less 

common categories of attacks. 

Table 3 Class Distribution Before and After SMOTE for 

NSL-KDD Dataset 

Class Original Count Post-SMOTE Count Percentage 

Normal 67,343 97,278 0% 

DoS 45,927 45,927 0% 

Probe 14,077 5,000 106.53% 

R2L 2,806 5,000 344.05% 

U2R 1,195 5,000 9515.38% 

Table 4 Class Distribution Before and After SMOTE for 

UNSW-NB15 Dataset 

Class Original Count Post-SMOTE Count Percentage 

Normal 93,000 93,000 0% 

DoS 12,800 12,800 0% 

U2R 28 1,028 3471% 

R2L 52 1,052 1823% 

Fuzzers 19,013 19,013 2677% 

Analysis 2,113 2,113 432% 

Backdoor 1,828 1,828 2400% 

Worms 1,044 1,044 4900% 

Probe 7,421 7,421 25% 

Fig.2 illustrates the workflow of SMOTE, demonstrating 

the generation of synthetic instances for the minority class to 
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address class imbalance. The procedure entails selecting a 

minority class sample, identifying its k-nearest neighbors, 

and producing interpolated data points along the line 

segments that connect these neighbors. This systematic 

approach ensures a balanced class distribution while 

maintaining the intrinsic structure of the original data. 

 Imbalanced Dataset

Data Preprocessing

Set SMOTE Parameters 

Select Minority Class

For each Minority sample:Set k=x

Randomly select 

neighbor 1

YesNo

Compute synthetic point

Yes

No

Combine Synthetic

 + 

Original Data

Final Balanced Data

End

Start

Target Ratio Met?

Are neighbor>k?
Exclude 

Sample

 

 Fig.2. Synthetic Data Generation Workflow with SMOTE 

9) Data Splitting 

Model training begins by partitioning the preprocessed 

datasets into two subsets: 70% is designated for training, and 

the remaining 30% is set aside for testing [28]. This split 

guarantees that the model is trained on an adequate amount 

of data while preserving an independent dataset for 

evaluating its performance on previously unseen instances. 

Table 5 shows the total instances of the pre-processed training 

and testing sets for both datasets. 

𝐺𝑎𝑖𝑛 =
1

2
[

(∑ 𝑔𝑖)𝑖∈𝐼𝐿
2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝐿

+
(∑ 𝑔𝑖)𝑖∈𝐼𝑅

2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝑅

−
(∑ 𝑔𝑖)𝑖∈𝐼

2

∑ ℎ𝑖+𝜆𝑖∈𝐼
] − Υ     (3) 

where 𝐼𝐿 , 𝑎𝑛𝑑 𝐼𝑅 are the left and right splits. 

XGBoost constructs an efficient and robust optimization 

framework by combining the loss function and the 

regularization term. Its mathematical foundation supports 

rapid training and prediction and ensures the model’s 

generalization through regularization techniques, making it 

excellent when dealing with complex datasets such as 

intrusion detection systems. 

Table 5 Data splitting 

Dataset Split 
Total 

Instances 
Normal Anomaly 

NSL-KDD 

Original 125,973 67,343 58,630 

Training Set 88,181 47,140 41,041 

Testing Set 37,792 20,203 17,589 

UNSW-NB15 

Original 175,341 93,000 82,341 

Training Set 122,739 65,100 57,639 

Testing Set 52,602 27,900 24,702 

10) Final Dataset Preparation 

 The final preprocessed dataset is now ready for model 

training. It is clean, balanced, and appropriately formatted for 

machine learning algorithms. 

11) Model Configuration 

The XGBoost model is configured for binary 

classification, distinguishing between normal and attack 

traffic, by leveraging its gradient-boosting framework to 

enhance computational efficiency and predictive 

performance. Key hyperparameters include max_depth, 

which controls the maximum depth of decision trees to 

prevent overfitting, and learning_rate, which regulates the 

step size in each boosting iteration to balance convergence 

speed and model accuracy. The subsample parameter is used 

to randomly select a portion of the training data during each 

boosting iteration, which helps to minimize the risk of 

overfitting. At the same time, colsample_bytree allows for 

random feature selection at the tree level, promoting model 

robustness. The objective is set to ‘binary: logistic,’ indicating 

a logistic regression model for binary classification, and 

eval_metric is set to ‘auc’ for tracking performance via the 

(AUC) area under the curve [15]. 

These hyperparameters are meticulously selected to 

optimize the  performance on network traffic data, striking a 

balance between underfitting and overfitting. Regularization 

methods, including L1 and L2 penalties, are incorporated to 

control model complexity and mitigate overfitting by 

penalizing excessively large weights. XGBoost’s ability to 

capture complex, non-linear relationships and effectively 

manage noisy or irrelevant features renders it particularly 

well-suited for network anomaly detection, where patterns 

tend to be intricate and challenging to identify. 

The key hyperparameters of the model include: 

max_depth: This parameter controls the decision tree’s 

maximum depth and prevents overfitting. A larger max_depth 

increases the model’s ability to capture complex patterns, but 

if set too high, it may lead to overfitting. Mathematically, the 
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relationship between the number of leaf nodes  𝑁𝑛𝑜𝑑𝑒𝑠  and 

the tree depth d is expressed as: 

𝑁𝑛𝑜𝑑𝑒𝑠 ≤ 2𝑑 − 1                                   (4) 

Learning_rate (𝜂): The learning rate adjusts the step size in 

each boosting iteration, balancing convergence speed with the 

model’s accuracy. The update rule for each iteration is given 

by: 

𝑓(𝑡+1)(𝑥) = 𝑓𝑡(𝑥) + 𝜂. Δ𝑓𝑡(𝑥)                        (5) 

where 𝑓𝑡(𝑥)represents the predicted value at iteration t, and 

Δ𝑓𝑡(𝑥) is the gradient of the loss function concerning the 

model’s prediction. 

Subsample: This parameter specifies the proportion of 

training data to be randomly sampled for each boosting 

round. By introducing randomness, it helps mitigate the risk 

of overfitting. Mathematically, the random subset of training 

data 𝕏𝒔𝒂𝒎𝒑𝒍𝒆𝒅 is drawn from the original dataset 𝕏: 

𝕏𝒔𝒂𝒎𝒑𝒍𝒆𝒅 ⊂ 𝕏                                    (6) 

Colsample_bytree: This parameter controls the proportion 

of features randomly selected for each tree-building process. 

Reducing the risk of overfitting due to specific features 

enhances the model’s robustness. Mathematically, the feature 

subset 𝐹𝑠𝑎𝑚𝑝𝑙𝑒𝑑   is randomly drawn from the original feature 

set 𝐹: 

𝐹𝑠𝑎𝑚𝑝𝑙𝑒𝑑 ⊂ 𝐹                                   (7) 

Objective: The parameter is set to “binary: logistic,” 

specifying the use of a logistic regression model for binary 

classification tasks. The model’s output is the probability that 

the attack traffic belongs to class 1, represented as: 

𝑃(𝑦 = 1|𝑥) =
1

1+𝑒−𝑓(𝑥)                            (8) 

where 𝑓(𝑥) is the model’s output. 

eval_metric: Set to “AUC” (Area Under the Curve), which 

evaluates the model’s performance in distinguishing between 

the two classes. The calculation of AUC is given by: 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)d(𝐹𝑃𝑅)
1

0
                   (9) 

where 𝑇𝑃𝑅  is the true positive rate, and 𝐹𝑃𝑅  is the false 

positive rate. 

These hyperparameters are adjusted to optimize the 

model’s performance on network traffic data, balancing 

underfitting and overfitting. 

Specifically, in the tree model, the regularization term 

𝛺(𝑓𝑡)constrains the model complexity from two dimensions: 

the number of leaf nodes and the weights of the leaf nodes. 

Its mathematical expression is defined as: 

𝛺(𝑓𝑡) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑊𝑗

2𝑇
𝑗=1                    (10) 

Where 𝑇 is the number of leaves in the tree; 𝑤𝑗  is the weight 

of 𝑗 − 𝑡ℎ  leaf. These parameters control the degree of 

regularization[19], which helps prevent overfitting, 

particularly with high-dimensional data [29]. 

Table 6 XGBoost hyperparameter 

Hyperparameter Value Purpose 

max_depth 6 Limits tree depth to control complexity. 

learning_rate 0.1 
Controls step size to prevent 

overfitting. 

subsample 0.8 
Fraction of training data used for each 

tree. 

colsample_bytree 0.8 Fraction of features used for each tree. 

Objective Binary Specifies a binary classification task. 

eval_metric AUC 
Measures model performance using 
AUC. 

The XGBoost model in Fig. 3 shows decision trees built 

sequentially to reduce errors from prior iterations. Each tree 

adds to the final weighted prediction sum.  

Dataset

D1 D2

Prediction 1 Prediction 2

Summation

Results

Input

Decision 

Trees

Output

Residual
Residual

 
Fig.3. Structure of the XGBoost Model 

12) Model Training and Validation 

Model training involves splitting the pre-processed 

datasets into two subsets: 70% is designated for training, and 

the remaining 30% is set aside for testing [28]. This division 

ensures the model is exposed to sufficient data during training 

while maintaining an independent testing set to evaluate its 

performance on unseen data. The XGBoost model is 

configured to utilize supervised learning techniques for 

classifying known attacks, where labelled instances teach the 

model to distinguish between normal and attack traffic. 

Additionally, unsupervised learning techniques are employed 

for anomaly detection, which allows the model to identify 

previously unseen, potentially harmful behaviors that do not 

match any known attack patterns. A five-fold cross-validation 

approach was applied to enhance the reliability and 

robustness of the model This technique divides the training 

data into five subsets, or “folds,” and iteratively trains the 

model on four folds while evaluating it on the remaining fold. 

The process is repeated five times, ensuring that each fold 

serves as the test set exactly once.  

This approach’s advantage is that it enables the model to 

be validated on multiple subsets of the training data, 

providing a more comprehensive assessment of its 

performance across different data distributions. Cross-

validation is particularly critical for evaluating the model’s 

ability to generalize well to new, unseen data and ensuring 

that it does not become overfitted to the specific 

characteristics of the training data [30]. In addition to cross-

validation, hyperparameter tuning is key in refining the 

model’s performance. This involves systematically adjusting 

key hyperparameters, such as learning rate, maximum depth, 

and subsample ratio, to find the optimal combination that 

balances model accuracy and prevents overfitting. 

Hyperparameter tuning aims to improve the model’s 

predictive power by enhancing its ability to capture complex 

patterns in the data while simultaneously reducing the risk of 

overfitting, where the model becomes too specialized to the 

training data and fails to generalize to new, unseen instances. 
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Proper hyperparameter tuning ensures the model performs 

optimally on training and testing datasets. 

Overall, the combination of training/test data splitting, 

cross-validation, and hyperparameter tuning ensures a 

comprehensive and rigorous approach to model validation. 

These methods contribute to the development of a reliable 

and generalizable model that performs well across diverse 

real-world conditions while minimizing the risk of overfitting. 

13) Handling Unknown Classes 

In this experiment, the model is tested on novel attacks that 

are not part of the training dataset. This evaluation primarily 

focuses on how well the model can generalize to unknown 

attack threats. These zero-day attacks represent real-world 

scenarios where an intrusion detection system (IDS) must 

detect new, emerging threats without prior knowledge of the 

attack signatures. 

Unknown Attacks and the Challenge of Generalization: 

Zero-day threats refer to attacks that exploit previously 

unknown vulnerabilities or attack methods. The model has 

not been trained with these specific attack types, making them 

particularly challenging to detect. In real-world situations, 

such attacks can be devastating as they are not detectable 

through signature-based methods. 

Unsupervised Methods: The model employs unsupervised 

methods to handle these unknown threats. These techniques 

analyze network traffic and look for deviations from the 

normal behavior that the model has learned during training. 

By detecting these deviations, unsupervised methods help the 

model identify anomalous patterns that could indicate new 

attack types. 

Adaptability to Novel Attacks: The core goal of this 

experiment is to evaluate the model’s adaptability to novel 

attacks. The capacity to identify previously unseen attacks is 

essential for ensuring the model’s robustness and its 

effectiveness in real-world deployment. 

Generalization: This experiment tests how well the model 

can generalize to new and unseen attack patterns from the 

known training data. For an effective detection, the model 

must identify these novel threats as outliers or anomalies in 

the feature space, even if they do not match any known attack 

patterns from the training set. 

Data Subsets Containing Novel Attacks: The model is 

tested on subsets of data that contain unknown attacks. These 

subsets are carefully constructed by including attacks not part 

of the training data. For example, novel attack types can be 

simulated or taken from different sources or time periods, 

ensuring they were not seen during training. 

These subsets with unknown attacks allow us to simulate a 

real-world scenario where an IDS must identify previously 

unseen attack types based on its learned behavior from the 

training set. 

Unsupervised Detection: Unsupervised detection plays a 

vital role in this evaluation. Since the model hasn’t been 

trained with specific novel attacks, it relies on identifying 

anomalous behavior that deviates from normal traffic 

patterns. These anomalies could signal potential new attacks. 

 The model will analyze network traffic patterns it 

recognizes as abnormal and flag them as potential threats, 

despite never encountering them during training. 

 

Generalization to Unknown Attacks: 

Evaluating Adaptability: The experiment aims to assess 

how effectively the model can detect attacks that deviate from 

the patterns it has seen. The key aspect here is its ability to 

generalize based on the underlying patterns of normal traffic 

learned during training. 

Novel attacks may not conform to traditional patterns. 

However, the model should still be capable of recognizing 

significant deviations as potential threats, even if those threats 

were not part of the training data. 

Novel Attack Types: The evaluation focuses on attacks that 

may include new attack vectors or techniques for which the 

model has not yet been trained. These attacks are crucial for 

understanding how well the model performs in environments 

with constantly evolving threats. 

The model must identify patterns that indicate anomalies, 

even if the exact type of attack remains unknown. This 

capability makes the model adaptable to dynamic and 

evolving network environments. 

14) Comparison with Other Models 

 A comparative study evaluated the effectiveness of 

XGBoost against various machine learning techniques, 

including Random Forest (RF)and Logistic Regression (LR). 

This evaluation utilized the same datasets, and the outcomes 

were assessed using uniform metrics. In most instances, 

XGBoost outperformed these models, particularly in 

scenarios with imbalanced datasets and complex attack types 

[22]. The study’s findings highlighted XGBoost’s outstanding 

performance across several pivotal areas: it effectively 

manages class imbalance, a common challenge in intrusion 

detection, and shows greater proficiency in detecting intricate 

and sophisticated attack patterns, making it a more robust 

solution for real-world applications. These insights 

underscore XGBoost’s effectiveness in providing accurate 

and reliable intrusion detection, especially in environments 

marked by uneven data distribution and dynamic attack 

patterns. 

IV. RESULTS 

A. Performance Metrics 

To effectively evaluate the performance of the proposed 

model for network traffic anomaly detection, it is essential to 

employ a set of robust and widely recognized performance 

metrics. Four commonly used classification indicators were 

derived from the confusion matrix to achieve this objective, 

as illustrated in Table 7. The confusion matrix is a pivotal tool 

in assessing the efficacy of classification models. It provides 

an overview of the model’s accuracy and offers detailed 

insights into the types of errors it commits by categorizing 

instances into distinct classes. This breakdown supports a 

more nuanced evaluation of the performance across diverse 

scenarios, including its ability to detect both familiar and 

previously unseen attacks. 

B. Confusion Matrix 

The confusion matrix is a crucial tool in evaluating the 

model’s performance. It provides a detailed breakdown of the 

model’s predictions, showing how many instances were 

correctly or incorrectly classified. The confusion matrix 

includes: 
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True Positives (TP): The number of positive instances 

correctly classified as positive. 

True Negatives (TN): The number of negative instances 

correctly classified as negatives. 

False Positives (FP): The number of actual negative 

instances incorrectly classified as positive. 

False Negatives (FN): The number of actual positive 

instances incorrectly classified as negative. 

These metrics provide a comprehensive view of the 

model’s strengths and weaknesses in detecting known and 

unknown attacks.  

Table 7 Confusion matrix 

Actual 
Predicted Value 

Abnormal  Normal 

Abnormal TP FN 

Normal FP TN 

Accuracy: This metric measures the proportion of correct 

predictions (true positives and negatives) from the total 

records. It is beneficial when the classes are balanced. 

Accuracy is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                        (11) 

Precision: Precision measures the number of true positive 

predictions made by the model out of all positive predictions. 

It indicates the accuracy of the positive predictions made by 

the model. Precision is calculated as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                             (12) 

Recall: Recall, also known as sensitivity, measures the 

number of true positive predictions the model makes out of 

all actual positive instances. It indicates the model’s ability to 

identify all positive instances correctly. Recall is defined as:  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                             (13)  

F1-Score: The F1-score is the harmonic mean of precision 

and recall. It provides a single metric that balances precision 

and recall, making it helpful in evaluating binary 

classification systems, especially when the class distribution 

is imbalanced. The F1-score is calculated as:  

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                 (14) 

Area Under the Receiver Operating Characteristic Curve 

(AUC): Evaluate the model’s ability to distinguish between 

classes by plotting the true positive rate against the false 

positive rate across various threshold levels. These metrics 

collectively provide a comprehensive assessment of the 

model’s performance from diverse perspectives, ensuring a 

robust and reliable evaluation of its efficacy in network 

intrusion detection. 

C. Experimental Results on NSL-KDD Dataset 

The XGBoost model demonstrated considerable accuracy 

across various attack categories within the dataset. Table 5 

presents a comprehensive summary of each attack class's 

accuracy, precision, and recall. 

The model successfully detected Denial of Service (DoS) 

and Probe attacks with exceptional performance, achieving 

precision and recall values above 95%. This demonstrates the 

model’s strong ability to identify high-volume and 

scanning/probing attacks, which are typically more common 

and easier to detect due to their distinct and recognizable 

characteristics. 

Conversely, the model’s performance with respect to 

Remote to Local (R2L) and User to Root (U2R) attacks was 

marginally inferior, with precision and recall values 

fluctuating between 93% and 94%. These attacks exhibit 

greater sophistication, occur less frequently, and tend to 

possess subtler characteristics, complicating their detection. 

Consequently, the model encountered more pronounced 

challenges in accurately identifying these infrequent attack 

types. 

Table 8 Class-wise Performance Metrics on NSL-KDD 

Attack Class Precision Recall 

DoS 96.78% 95.89% 

Probe 96.22% 95.56% 

R2L 93.45% 92.89% 

U2R 93.12% 92.56% 

The model demonstrated robust performance across all 

categories of attacks, particularly in detecting Denial-of-

Service (DoS) and Probe attacks. While it exhibited 

somewhat reduced efficacy in addressing the more complex 

R2L and U2R attacks, these findings highlight the model’s 

overall effectiveness in managing a diverse range of network 

intrusions. Further refinements may be warranted to augment 

its detection capabilities concerning rarer and more intricate 

attack methodologies. 

Confusion matrix analysis:  

In the NSL-KDD dataset, the model demonstrates 

exceptional performance in detecting Denial of Service (DoS) 

attacks without any instances of misclassification, and it 

accurately identifies normal traffic with minimal error rates. 

The model effectively identifies most Probe attacks; 

however, a few instances are misclassified as User-to-Root 

(U2R) attacks, suggesting a feature overlap between these 

two categories. Moreover, U2R attacks are detected 

proficiently, although there is a degree of misclassification 

with Probe attacks. 

Table 9 Multi-Class Confusion Matrix for NSL-KDD 

Actual /Predicted Normal DoS Probe R2L U2R 

Normal 94,200 2,020 370 400 120 

DoS 2,050 71,500 410 460 150 

Probe 390 410 23,130 140 140 

R2L 630 660 350 25,580 320 

U2R 30 30 30 1,850 1,850 

Roc Curve Analysis: 

The ROC curve analysis illustrates the robust performance 

of the XGBoost model across all categories. The elevated 

AUC values for each category, ranging from 92.84 (Class 3) 

to 96.34 (Class 0), signify that the model proficiently 

differentiates between various attack types. The model 

exhibits a high level of accuracy in classifying attacks, as 

indicated by the pronounced increase in the true positive rate. 

Nevertheless, the slight convergence of the curves for Probe 

and R2L attacks implies that the model encounters specific 

challenges in distinguishing between these categories. In 

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2234-2247

 
______________________________________________________________________________________ 



summary, the model exhibits reliable classification 

capabilities, presenting opportunities for further 

improvement in addressing more complex attack types. 

 
Fig.4. ROC curve for NSL-KDD 

D. Experimental Results on UNSW-NB15 Dataset 

The model demonstrated significantly improved 

performance on the dataset, achieving near-perfect evaluation 

metrics. 

Table 10 Class-wise Performance Metrics on UNSW-NB15 

Attack Class Precision Recall 

Normal 99.87% 99.85% 

DoS 97.92% 94.77% 

Backdoors 89.72% 89.85% 

Exploits 92.61% 93.89% 

Fuzzers 89.57% 90.45% 

Generic 94.31% 89.87% 

Reconnaissance 89.64% 89.71% 

Shellcode 93.51% 89.43% 

Worms 91.28% 93.12% 

The model successfully detected various types of network 

attacks, with strong overall performance across different 

attack classes. Here’s a breakdown: 

Normal Traffic: The model achieved an outstanding 

precision, recall, and F1-score of 99.90%, reflecting its 

excellent ability to accurately identify normal traffic without 

misclassifying it as malicious. 

DoS (Denial of Service): The model demonstrated strong 

performance in detecting DoS attacks, with a precision of 

98%, recall of 95%, and an F1-score of 96.50%. This 

indicates the model’s effectiveness in identifying high-

volume attacks commonly used to overwhelm network 

resources. 

Probe: The model also performed well in detecting Probe 

attacks, with a precision of 97%, a recall of 93%, and an F1-

score of 95%. These attacks, often involving scanning or 

probing networks for vulnerabilities, were detected with high 

accuracy. 

Backdoors: Backdoor attacks were detected with a 

precision, recall, and F1-score of 90%. This highlights the 

model’s ability to identify these covert attack types that often 

involve unauthorized system access. 

Exploits: The model achieved a precision of 93%, a recall 

of 94%, and an F1-score of 93.50% for detecting Exploit 

attacks, which are often used to exploit software 

vulnerabilities. 

Fuzzers: For Fuzzers attacks, the model showed a precision 

of 90%, a recall of 91%, and an F1-score of 90.50%, 

indicating solid performance in detecting attacks that involve 

sending random data to identify vulnerabilities. 

Generic Attacks: The model demonstrated good 

performance for Generic attacks, with a precision of 95%, a 

recall of 90%, and an F1-score of 92.40%. These attacks are 

often less specific and more challenging to categorize. 

Reconnaissance: The model detected Reconnaissance 

attacks with precision and recall values of 90% each, yielding 

an F1-score of 90%, reflecting its ability to identify attacks 

focused on gathering information about a system or network. 

Shellcode: With a precision of 94%, recall of 90%, and F1-

score of 92%, the model effectively detected Shellcode 

attacks, which often involve exploiting vulnerabilities to 

execute arbitrary code. 

Worms: The model performed well in detecting Worms, 

achieving a precision of 92%, a recall of 94%, and an F1-

score of 93%, showing its capability to identify these self-

replicating malicious programs. 

The model demonstrated strong detection capabilities 

across various attack types, particularly in detecting normal 

traffic, DoS, and Probe attacks. The model’s performance was 

still suitable for certain attack types like Backdoors, Fuzzers, 

and Reconnaissance, but showed room for improvement. 

These results suggest the model effectively handles a diverse 

set of network intrusions, though further refinements may 

enhance detection for specific types of attacks. 

Confusion Matrix Analysis : 

Table 11 Multi-Class Confusion Matrix for UNSW-NB15  
Actual 

/Predicted 
Normal DoS U2R R2L Fuzzers Analysis 

Normal 174,000 3,700 50 750 200 100 

DoS 3,800 160,000 50 900 300 150 

U2R 50 50 950 800 50 50 

R2L 800 900 800 950 100 50 

Fuzzers 200 300 50 100 950 50 

Analysis 100 150 50 50 50 950 

In the UNSW-NB15 dataset, the model shows balanced 

performance across different attack types, including 

Backdoor, Exploit, Fuzzers, and Generic attacks, with high 

precision and recall for most classes. However, some 

misclassifications occur due to feature similarities between 

these attacks. The model’s overall performance is solid, but it 

faces challenges with detecting less frequent attack types, 

such as Generic attacks, where recall is slightly lower. 

Roc Curve Analysis: 

The ROC curve analysis for the UNSW-NB15 dataset 

reveals strong performance across all attack classes, with high 

AUC values. The model excels at distinguishing attacks, as 

indicated by the sharp increase in the true positive rate for this 
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class. DoS (Denial of Service) attacks also exhibit high 

classification performance; however, other classes, such as 

Backdoors, Exploits, and Fuzzers, show slightly lower AUC 

values, suggesting some overlap in classification. The curves 

for these attack types are closely positioned, indicating that 

the model may encounter difficulties distinguishing between 

them. This suggests the model’s sensitivity to these attack 

types could be further improved. The model’s ability to 

identify DoS attacks highlights its strong performance in 

high-frequency, high-impact attack scenarios, where timely 

detection is critical. However, fine-tuning the model’s 

parameters and incorporating additional features may help 

improve its sensitivity and precision for harder-to-detect 

attack types, leading to better overall security system 

performance. Overall, the model demonstrates solid 

discrimination power, particularly in detecting Normal and 

DoS attacks, while leaving room for further refinement in 

differentiating more subtle attack types like Reconnaissance 

and Shellcode. Future efforts could enhance the model’s 

ability to distinguish these closely related attacks to improve 

overall detection accuracy. 

 
Fig.5. ROC curve for UNSW-NB15 

E. Generalization to Unknown Attacks 

The model’s ability to generalize to previously unseen 

attack types was rigorously evaluated by testing it on data 

subsets containing novel attacks not included in the training 

dataset. This evaluation is crucial for assessing the model’s 

robustness and adaptability in real-world scenarios, where it 

may face new and evolving cyber threats. Data subsets from 

the UNSW-NB15 dataset featuring attack types not present in 

the training data were utilized to simulate these conditions. 

This approach provides an objective and comprehensive 

measure of the model’s capacity to detect and respond to 

unfamiliar threats effectively. 

Key metrics were computed to assess the model’s 

performance in handling unknown attacks. These metrics 

allow a detailed understanding of how well the model 

identifies and classifies novel intrusions. As shown in Fig. 6, 

the model successfully detects previously unseen attacks, 

maintaining high detection rates despite encountering new 

and unfamiliar cyber intrusions. This highlights the model’s 

ability to generalize well and remain effective in dynamic, 

real-world environments. 

 
Fig.6. Performance Metrics on Unknown Attacks. 

F. Ablation Experiments 

An ablation experiment was conducted to systematically 

evaluate the impact of individual variables on the model’s 

performance. The primary aim of this analysis was to 

determine which features most significantly influence the 

model’s predictive capability and classification accuracy. The 

findings from this study strongly highlighted the importance 

of specific attributes, especially the attack category, which 

proved indispensable for ensuring the model’s high predictive 

accuracy. This was particularly evident when working with 

the UNSW-NB15 dataset. The ablation study results 

demonstrated that removing specific key attributes, with the 

attack category being a primary example, led to a marked 

decline in the model’s performance across several critical 

metrics. These metrics included accuracy, precision, recall, 

and F1-score, all showing substantial degradation when this 

essential feature was excluded. More specifically, removing 

the attack category significantly weakened the model’s ability 

to accurately differentiate between normal, benign network 

traffic and malicious traffic indicative of potential security 

threats. This outcome underscores the attack category’s vital 

role in the model’s ability to make informed and accurate 

decisions regarding network intrusions. The attack category 

provides crucial context, allowing the model to understand 

the type of network intrusions it encounters. By offering this 

context, the attack category enables the model to distinguish 

between normal activities and malicious behaviors more 

effectively. The model struggled to classify network traffic 

accurately without this feature, substantially reducing 

performance. 

This was reflected in the noticeable decline in key 

performance indicators, three critical measures of the model’s 

efficiency and reliability in detecting network intrusions. 

Conversely, excluding protocol-specific features (e.g., 

is_ftp_login, ct_ftp_cmd) demonstrated negligible effects on 

performance, suggesting their limited utility in specific 

experimental configurations. 

93.45%
92.78%

91.89%

97.85% 97.99% 97.78%

88%

89%

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

Accuracy Precision Recall

NSL-KDD UNSW-NB15

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2234-2247

 
______________________________________________________________________________________ 



Table 12 Ablation Experiments Metrics 

 

G. Contrast Study: Comparison with Other Machine 

Learning Models 

This research evaluates the efficacy of XGBoost, Random 

Forest, and Logistic Regression on two prominent 

cybersecurity datasets: NSL-KDD and UNSW-NB15. The 

models were assessed using accuracy, precision, recall, and 

F1-score on training and testing datasets. XGBoost regularly 

surpassed the other models, exhibiting enhanced accuracy 

and optimal performance in both precision and recall. 

XGBoost attained a test accuracy of 96.77%, precision of 

97.75%, and recall of 95.29% on the NSL-KDD dataset, but 

on the UNSW-NB15 dataset, it earned a test accuracy of 

99.81%, precision of 99.99%, and recall of 99.78%. These 

findings underscore the robustness of XGBoost, especially in 

detecting intricate attack types such as R2L and U2R.  

Random Forest exhibited commendable performance; 

nevertheless, it did not attain the precision and recall of 

XGBoost. NSL-KDD attained a test accuracy of 89.96%, 

precision of 89.87%, and recall of 89.96%. For UNSW-

NB15, it achieved a test accuracy of 99.99%, precision of 

99.99%, and recall of 99.78%. Although Random Forest 

demonstrated great accuracy, it was inferior to XGBoost in 

identifying more intricate attack types, which is essential in 

cybersecurity applications. 

As a more elementary model, Logistic Regression 

exhibited the poorest performance across all metrics. On the 

NSL-KDD dataset, Logistic Regression achieved a test 

accuracy of 64.06%, precision of 59.93%, and recall of 

64.42%. Despite an enhancement in performance on UNSW-

NB15, achieving a test accuracy of 92.51%, precision of 

92.83%, and recall of 92.66%, it remained inferior to both 

XGBoost and Random Forest, especially in addressing more 

intricate attacks. 

In summary, XGBoost is the most proficient model for 

cybersecurity applications, attaining superior outcomes in 

detecting various threats, particularly intricate ones. Random 

Forest demonstrated robust performance but encountered 

constraints in precision and recall for subtle attack kinds. 

Logistic Regression exhibited the poorest performance, 

indicating that simpler models may be inadequate for the 

intricate nature of cybersecurity datasets. These results 

underscore the necessity for sophisticated models such as 

XGBoost in cybersecurity applications. 

H. Model Improvements 

A range of systematic strategies and techniques were 

implemented to enhance the performance of the XGBoost 

model. These included hyperparameter tuning, regularization, 

and data preprocessing techniques, which improved the 

model’s predictive accuracy and generalization ability. By 

optimizing these components, the model showed enhanced 

learning efficiency from the provided dataset, resulting in 

significant performance increases. 

 Hyperparameter optimization was a primary approach 

utilized. By identifying the optimal combination of 

hyperparameters, the model attained faster and more efficient 

convergence, thereby reducing bias and variance. Tuning 

these parameters allowed the model to balance underfitting 

and overfitting, leading to a more robust model. 

 Alongside hyperparameter adjustment, regularization 

approaches were employed to enhance the model’s 

generalization capability. L1 and L2 regularization penalized 

overly complex models and mitigated their tendency to fit the 

noise in the training data. Implementing these regularization 

techniques made the model less susceptible to variations in 

the training data, improving its performance on novel data 

and reducing the risk of overfitting. 

Effective data preprocessing methods greatly improved 

model performance. This included addressing absent values 

and handling missing data correctly to enable the model to 

produce accurate predictions. Normalizing features involves 

scaling numerical attributes to a consistent range, usually 

between 0 and 1, to maintain uniformity and prevent any one 

feature from overshadowing others. 

 Encoding categorical variables involves converting 

categorical features into numeric values through techniques 

such as One-Hot Encoding, thereby rendering them suitable 

for utilization within machine learning algorithms. Feature 

selection involves the process of identifying and preserving 

the most informative features, while eliminating those that are 

irrelevant or redundant. This process reduces data 

dimensionality and enables the model to concentrate on the 

most significant variables. Furthermore, data balancing 

strategies including oversampling the minority class and 

undersampling the majority class were employed to mitigate 

class imbalance. These strategies gave the model a more 

ID  Dataset Removed_feature Accuracy  Precision Recall F1-score 

0 NSL-KDD None 0.99974 0.769231 0.588235 0.666667 

1 NSL-KDD 0 0.99974 0.769231 0.588235 0.666667 

2 NSL-KDD 1 0.99974 0.769231 0.588235 0.666667 

3 NSL-KDD 2 0.99971 0.714286 0.588235 0.645161 

4 NSL-KDD 3 0.99974 0.769231 0.588235 0.666667 

... ... ... ... ... ... ... 

74 UNSW-NB15 is_ftp_login 1 1 1 1 

75 UNSW-NB15 ct_ftp_cmd 1 1 1 1 

76 UNSW-NB15 ct_flw_http_mthd 1 1 1 1 

77 UNSW-NB15 is_sm_ips_ports 1 1 1 1 

78 UNSW-NB15 attack_cat 0.94373 0.969143 0.926953 0.947579 
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equitable and representative perspective on the data, ensuring 

its capacity to learn patterns from both classes effectively. 

The integration of these strategies led to substantial 

enhancements in the model’s performance across critical 

metrics, such as accuracy, precision, recall, and F1-score. The 

improvements are clear in Figs. 7 and 8, which show 

significant metric increases after model upgrades. Optimizing 

internal parameters and training data resulted in a more 

efficient XGBoost model that better discerned underlying 

data patterns. 

 
Fig.7. Overall model’s Performance on NSL-KDD. 

The effective use of hyperparameter tuning, regularization, 

and data preprocessing resulted in a model that exhibited 

superior performance on the training set and demonstrated 

strong generalization to novel, unseen data. These 

enhancements were essential for achieving the requisite 

performance level and have facilitated the project’s overall 

success. 

 
Fig.8. Overall model’s Performance on UNSW-NB15. 

V.  DISCUSSION 

1) Overview of Principal Discoveries 

This research elucidates the effectiveness of the XGBoost 

algorithm in identifying network intrusions utilizing the NSL-

KDD and UNSW-NB15 datasets. The model attained 

remarkable accuracy across various categories of attacks, 

with performance metrics consistently exceeding 95%. This 

evidences the robustness and adaptability of XGBoost, 

particularly in addressing complex attack types, including 

Denial of Service (DoS) and Probe, as highlighted in prior 

studies on network intrusion detection [31]. The exemplary 

performance of XGBoost within these datasets underscores 

its reliability and versatility, rendering it an outstanding 

choice for detecting a diverse range of cyber threats. The 

consistent metrics across various attack types, encompassing 

the challenging DoS and Probe attacks, accentuate the 

model’s capability to effectively manage common and 

sophisticated intrusions. 

2) Comparison with Prior Research 

Our findings corroborate prior research indicating that 

ensemble models, particularly gradient-boosted decision 

trees, such as XGBoost, outperform traditional models like 

Random Forest and Logistic Regression in network intrusion 

detection tasks. In a comparative analysis, XGBoost 

exhibited superior performance compared to Support Vector 

Machine (SVM) and Random Forest. Our results affirm this 

superiority, specifically regarding the generalization to 

previously unknown attacks. Unlike the Random Forest 

model, which displayed commendable performance on 

training data yet encountered overfitting during testing, 

XGBoost’s advanced regularization algorithms effectively 

mitigated overfitting. This resulted in consistent performance 

across training and testing datasets [32]. Such consistency 

implies that XGBoost is more appropriate for Intrusion 

Detection System (IDS) applications, where scalability and 

resilience to overfitting are imperative [2]. XGBoost’s 

remarkable generalization capability and robust 

regularization techniques establish it as a reliable option for 

identifying familiar and novel attack types. These attributes 

enable the model to sustain high levels of performance and 

accuracy, even when confronted with previously unseen data, 

thereby establishing it as a vital asset in the constantly 

evolving field of network security. 

3) Generalization to Unknown Attacks 

One of the most significant outcomes of this study is the 

ability of the XGBoost model to generalize to previously 

unknown attacks. Upon evaluation using subsets that 

included novel attack types, the model attained accuracy 

levels of 93.45% on NSL-KDD and 97.85% on UNSW-

NB15. This feature is paramount in light of the continuously 

evolving nature of cyber threats, where new and previously 

unseen attacks consistently arise. The findings indicate that 

integrating anomaly detection techniques with XGBoost 

could further augment its generalization capabilities, 

providing more comprehensive protection against zero-day 

attacks. 

4) Importance of Feature Selection 

The Ablation Study indicated that specific features are 

essential for sustaining the model’s elevated performance. 

Notably, eliminating significant features, such as attack_cat 

from the UNSW-NB15 dataset, resulted in a marked decline 

in accuracy and recall, thereby underscoring the model’s 

reliance on meticulously engineered features. This 

emphasizes the necessity of feature selection and engineering 
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as fundamental elements of any successful Intrusion 

Detection System (IDS) [33]. Prior research has highlighted 

the significance of feature selection, especially in high-

dimensional datasets such as NSL-KDD and UNSW-NB15. 

Our findings corroborate this notion, illustrating that optimal 

feature selection can substantially enhance detection rates, 

particularly for intricate attack types such as R2L and U2R. 

5) Model Improvements and Hyperparameter Tuning 

The enhancements achieved through hyperparameter 

tuning and regularization have improved the model’s 

performance. Before tuning, the model demonstrated lower 

precision and recall values, particularly in detecting minority 

attack classes. Following the tuning process, the model’s 

performance improved across all metrics, with significant 

advancements noted in recall and F1-score, thereby 

underscoring the necessity of optimization in intrusion 

detection tasks.  

This highlights the imperative for rigorous model 

optimization, especially in Intrusion Detection Systems 

(IDS), where false negatives (undetected attacks) can result 

in dire consequences. Future research should investigate 

advanced tuning methodologies, such as Bayesian 

optimization, to enhance the model’s performance. 

6) Limitations 

Despite the strong results, there are several limitations to 

this study: 

Class Imbalance: The datasets exhibit class imbalance, 

with some attack types significantly underrepresented. 

Although SMOTE was employed to address this, future work 

could consider more advanced approaches, such as cost-

sensitive learning, for improved handling of the imbalance 

[2]. 

Computational Resources: The XGBoost model requires 

significant computational resources, particularly for large-

scale datasets like UNSW-NB15. This can limit the model’s 

practical deployment in resource-constrained environments. 

Real-Time Detection: Although the model performed well 

in offline testing, real-time intrusion detection poses 

additional challenges. Future work should evaluate the 

model’s performance in real-time scenarios, where latency 

and computational efficiency are critical factors. 

7) Future Work 

This study establishes the foundation for several potential 

avenues of future research: 

Integration with Anomaly Detection: Combining XGBoost 

with unsupervised learning techniques, such as autoencoders, 

can potentially enhance the model’s capability to detect novel 

and evolving attacks. Autoencoders are particularly effective 

in identifying anomalies by learning a compressed 

representation of standard data and flagging deviations from 

this pattern. This integration may provide a more robust 

defense against zero-day threats, which are otherwise 

challenging to detect due to their previously unseen nature. 

Ensemble Methods: The exploration of ensemble 

approaches that amalgamate XGBoost with other machine 

learning algorithms, including Random Forest, Support 

Vector Machines (SVM), and neural networks, could further 

improve detection rates for complex attack types. Ensemble 

methods leverage the strengths of multiple models to achieve 

enhanced overall performance, thereby reducing the risk of 

false positives and false negatives. By integrating the 

predictive power of diverse algorithms, these ensemble 

models can present a more comprehensive and resilient 

solution for intrusion detection. 

Real-Time Implementation: Future research should aim to 

deploy this model in real-time to assess its performance under 

varying network conditions. Optimizing the model for speed 

and efficiency is paramount for practical applications, as real-

time detection necessitates rapid and accurate responses. Key 

areas for optimization include: - Algorithmic Efficiency: 

Enhancing the computational efficiency of the XGBoost 

model to minimize prediction latency. - Scalability: Ensuring 

the model can accommodate high-throughput network traffic 

without compromising accuracy. 

Adaptability: Implementing mechanisms that allow the 

model to dynamically adapt to changing network conditions 

and emerging attack patterns. 

Data Augmentation: Given the class imbalance issue, 

future research could concentrate on advanced data 

augmentation techniques to establish a more balanced dataset 

and enhance the model’s capacity to detect minority attack 

classes. 

These prospective research directions aim to build upon the 

present findings and further bolster XGBoost’s capabilities in 

intrusion detection. By integrating advanced anomaly 

detection, leveraging ensemble methods, and optimizing for 

real-time performance, the model can become even more 

effective and versatile, providing a stronger and more 

adaptable defense against cyber threats. 

VI. CONCLUSION 

The research illustrates the considerable efficacy of 

XGBoost as a potent machine learning (ML) model for 

Intrusion Detection Systems (IDS). Through extensive testing 

on the NSL-KDD and UNSW-NB15 datasets, XGBoost 

consistently outperformed alternative models, such as 

Random Forest and Logistic Regression, in critical metrics, 

including accuracy, precision, recall, and F1-score. The 

model’s ability to generalize proficiently to unfamiliar attacks 

highlights its resilience and versatility, making it an 

exemplary choice for practical network security applications.  

The enhancements realized through hyperparameter tuning 

and data preprocessing underscore the need for meticulous 

model optimization to augment IDS performance. The 

ablation study highlighted the importance of specific features, 

demonstrating that feature selection and engineering are 

crucial for enhancing model accuracy. The research provided 

valuable insights into the essential components that drive the 

model’s effectiveness by systematically removing and 

evaluating the impact of various features.  

Considering the dynamic landscape of cyber threats, 

integrating XGBoost with supplementary machine learning 

methodologies, such as anomaly detection and ensemble 

approaches, could significantly improve its efficacy. This 

combination offers a more robust and comprehensive defense 

against advanced network attacks. Integrating these 

techniques can assist in detecting known and unknown attack 

patterns, thereby providing a more resilient and adaptable 

IDS.  
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This research lays a robust foundation for the continued 

investigation and implementation of sophisticated machine 

learning algorithms such as XGBoost within dynamic and 

complex network environments. It contributes to ongoing 

efforts to enhance cybersecurity frameworks by offering a 

powerful and flexible solution for intrusion detection. The 

findings underscore the importance of a multi-faceted 

approach to cybersecurity, which combines the strengths of 

various machine learning techniques to create a more 

comprehensive and effective defense system. 

Data Availability 

NSL-KDD Dataset: The NSL-KDD dataset is an 

improved version of the KDD Cup 1999 dataset, designed to 

remove redundant and duplicate records for enhanced 

reliability in intrusion detection system research 

(https://www.unb.ca/cic/datasets/nsl.html). 

UNSW-NB15 Dataset: Created by the Australian Centre 

for Cyber Security, this dataset includes a diverse set of 

network attack data in Parquet format, capturing modern 

cyber threats (https://research.unsw.edu.au/projects/unsw-

nb15-dataset). 

These datasets are publicly accessible and widely used in 

cybersecurity and machine learning research. 
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