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Abstract—Remote sensing image recognition and classifi-
cation are important tasks widely studied in fields such as
agriculture, industry, mining, urban planning, and disaster
monitoring, divided into two major aspects: recognition and
classification. With the continuous development of deep learning
models, remote sensing image recognition and classification
tasks have also made constant progress in recent years. Tradi-
tional deep learning models, such as those represented by CNNs,
although capable of mining relevant information within images,
utilize less global and contextual information in remote sensing
images, resulting in poor performance. While Transformer
models and their variants based on attention mechanisms
can utilize global information, the large redundant parame-
ters lead to high computational overhead. To address these
challenges, this paper proposes a novel SwinAttention-HRNet
model, which includes three key optimization points: HRNet-
SE, improved attention computation mechanism, and Patch
Fusion. Specifically, HRNet-SE reduces the complexity of the
model with minimal performance loss, the improved attention
computation mechanism enables the model to utilize informa-
tion from adjacent windows, enhancing classification capability,
and Patch Fusion enhances the model’s understanding of low-
resolution images. Multiple experiments have demonstrated that
SwinAttention-HRNet outperforms current mainstream models
with a comprehensive performance improvement of 3.34%,
providing better support for remote sensing image classification
and recognition tasks.

Index Terms—Remote Sensing, HRNet, Dual Stream Swin
Transformer, Self-Attention

I. INTRODUCTION

REMOTE sensing images are Earth surface image data
obtained through remote sensing technology, typically

collected by satellites, aircraft, or other sensors, and then
converted into image form to display information such as
surface features, topography, vegetation coverage, and land
use. They have wide applications, including environmental
monitoring, urban planning, agriculture, forestry, geological
exploration, and disaster monitoring. By analyzing remote
sensing images, changes in the Earth’s surface, distribution
of resources, and environmental conditions can be under-
stood, providing important information support for scientific
research and decision-making[1, 2].

However, remote sensing image recognition poses signifi-
cant challenges due to data complexity, spectral information
diversity, inconsistent spatial resolution, noise, and diversity
of land cover types. Traditional classification methods in-
clude pixel-based classification, target recognition and super-
vised classification, and object-based classification. Although
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traditional methods are universal and operationally strong,
emerging technologies such as deep learning gradually re-
place traditional methods due to their ability to handle
complex data and improve classification accuracy[3].

Deep learning-based methods mainly involve extract-
ing features using models such as Convolutional Neural
Networks (CNNs)[4, 5] and Recurrent Neural Networks
(RNNs)[6, 7] suitable for temporal features. However, these
models need help with parameter tuning and better general-
ization. With the successful application of attention mech-
anisms and Transformer models based on them in image
recognition, applying attention mechanisms to remote sens-
ing image recognition becomes a natural choice. Therefore,
this paper proposes a deep learning model focused on re-
mote sensing images, called SwinAttention-HRNet, which
innovates in the following aspects:

1) Improving HRNet to HRNet-SE as a Backbone to
reduce model complexity and time overhead without a
performance decrease exceeding 7%.

2) Improving the attention computation mechanism in
Swin Transformer to utilize information from adjacent
windows and enhance classification capability.

3) Proposing a new feature map fusion mechanism called
Patch Fusion to enhance the model’s understanding of
details in low-resolution images.

Based on these innovations, this paper aims to provide
a deep learning model with higher performance and lower
computational overhead to better address remote sensing
image recognition and classification tasks.

II. RELATED WORK

A. HRNet

The High-Resolution Network(HRNet) is a deep convo-
lutional neural network designed to address tasks such as
image segmentation and pose estimation, drawing inspiration
from high-resolution image processing[8]. Its structure is
illustrated in Fig. 1. By integrating information from multiple
resolutions, the network improves the effectiveness of image
processing. Its core concept lies in constructing a network
structure with multi-resolution feature maps, known as the
"high-resolution" structure. The architecture of HRNet pri-
marily comprises two modules: high-resolution representa-
tion learning and high-resolution fusion. The former aims
to extract multi-scale feature representations by constructing
a feature pyramid, while the latter combines feature maps
of different resolutions to obtain superior feature represen-
tations. The experiments conducted in this study and those
of other researchers indicate that HRNet, as the backbone
network, exhibits a more robust feature representation ca-
pability than ResNet and EfficientNet[9]. The multi-branch
convolutional neural network structure of HRNet facilitates
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Fig. 1. The Structure of HRNet

information exchange between branches, thereby enhancing
the fusion of features at different levels and consequently
improving feature representation. In contrast, ResNet and
EfficientNet, based on single-branch network structures,
struggle to integrate components at different levels effectively
and exhibit limitations when dealing with high-resolution
images. Hence, selecting HRNet as this study’s backbone
network is paramount.

B. Attention Mechanism

The attention mechanism is a widely employed technique
in artificial intelligence that mimics human behavior in
information processing. This mechanism enables models to
focus on specific parts of input data, thereby enhancing the
performance of models in handling complex tasks. Within
the attention mechanism, models can dynamically allocate
attention based on the importance of input data, implying that
during the processing of input sequences, models can, akin
to humans, assign varying degrees of importance to different
parts based on different time steps or positions, rather than
uniformly averaging processing[10].

This mechanism encodes input sentences or images
through encoding operations. It uses learnable weight ma-
trices WQ ∈ RD×dk , WK ∈ RL×dk and WV ∈ RL×dk to
transform each input into three matrices: Query, Key, and
Value.

1) Query is used to compute attention weight vectors,
where each query vector at each position undergoes a
dot product operation with all positions in the sequence
to calculate its correlation with other positions.

2) Key is used to compute attention weight vectors, where
each key vector at each position undergoes a dot product
operation with all positions in the sequence to calculate
its correlation with other positions.

3) Value is used to compute weighted sum vectors, where
value vectors are weighted based on the correlation
weights of queries and keys to generate the final output
representation.

Subsequently, attention weights for each position regarding
queries are obtained by computing the dot product between
query vectors and key vectors to measure the correlation
between queries and keys and transforming them into a
probability distribution via the softmax function. Finally,

the final output representation is derived by multiplying
and summing the value vectors with attention weights. This
computation process can be represented by the Equation (1):

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

In remote sensing images, objects may appear at vary-
ing scales, positions, and lighting conditions. The attention
mechanism assists models in focusing attention on the most
important regions of images, thereby improving the accuracy
of object detection and recognition[11–13]. By dynamically
adjusting the attention weights of different regions, models
can better handle challenging situations, such as occluded
targets or blurred images.

C. Dual-Stream Swin Transformer

The Swin Transformer is a deep learning model based on
the Transformer architecture, specifically designed for image
classification tasks. Its structural diagram is depicted in Fig.
2. Proposed by Microsoft Research Asia, it was initially
introduced in early 2021 to effectively handle large-scale
information within images, thereby achieving leading per-
formance in large-scale image classification tasks[14]. The
Swin Transformer employs a series of optimization strategies
to optimize image processing tasks. Firstly, it introduces a
hierarchical attention mechanism, dividing the image into
different blocks and performing self-attention operations at
various levels to effectively capture global and local informa-
tion, thus enhancing image classification accuracy. Secondly,
to handle large-scale images, it utilizes a Window Attention
mechanism, segmenting input features into different windows
and performing self-attention operations within each window
to improve the efficiency of processing large-scale images.
Despite its powerful capabilities, the Swin Transformer is
designed with efficient computational and parameter con-
trol mechanisms. It is characterized by low computational
complexity and parameter volume, thereby demonstrating
outstanding performance in large-scale image classification
tasks and possessing better scalability[15, 16].

In the traditional Swin Transformer, input images are
divided into different blocks, and self-attention mechanisms
are applied to these blocks to capture global and local
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Fig. 2. The Structure of Swin Transformer

information. In the Dual-Stream Swin Transformer, how-
ever, two parallel streams are introduced to process image
information of different resolutions[17]. One stream handles
the original input image, while the other processes a low-
resolution version. Through attention mechanisms or feature
fusion modules across streams, features of different scales
and resolutions are interactively learned and fused, better-
utilizing information from different streams to enhance image
understanding accuracy. This approach aims to fully capture
semantic information within images and improve the percep-
tion of multiscale features[18].

Compared to the single-stream Swin Transformer, the
Dual-Stream Swin Transformer typically achieves better per-
formance in image understanding tasks due to its intro-
duction of a dual-stream structure, enabling more careful
consideration and utilization of multiscale information within
images, thereby enhancing task accuracy and generalization
capability[19]. However, the Dual-Stream Swin Transformer
still inherits some deficiencies of Transformer models, such
as high computational costs and memory consumption[20].

III. SWINATTENTION-HRNET

A. Overall Process

This paper proposes a model specifically designed
for remote sensing image classification tasks, named
SwinAttention-HRNet (SA-HRNet), based on the Dual-
Stream Swin Transformer and incorporating improved atten-
tion mechanisms and the HRNet model. Its overall structure
is illustrated in Fig.3. The mathematical representation of the
model as a whole is described by Equations (2) to (7).

ẑl = PatchMerging
(
zl−1

)
(2)

ẑ′l = Patchmerging
(
z′l−1

)
(3)

zl = SWBlock(ẑl ⊕ ẑ′l) (4)

ẑ′
l+1

= WBlock(źl ⊕ z′
l−1

) (5)

ẑl+1 = WBlock(zl ⊕ zl−1) (6)

zl+1 = ABS(ẑl+1 − ẑ′
l+1

) (7)

In the above Equations, zl−1 and z′l−1 denote the feature
maps produced by HRNet-SE, with ⊕ denoting the concate-
nation operation. The resulting feature map, represented as
zl+1, signifies the output of the improved Dual-Stream Swin-
Transformer.

B. HRNet-SE

Due to HRNet’s necessity to concurrently handle multiple-
resolution feature maps, its computational resource con-
sumption is relatively high compared to some lightweight
network architectures. This could potentially lead to limita-
tions in resource-constrained scenarios. This paper proposes
improvements to HRNet to reduce its computational load.

The original HRNet extensively employs 1×1 convolution
operations to reduce feature map dimensions and enhance
network expressiveness. However, the widespread use of 1×1
convolutions in HRNet increases computational costs, espe-
cially when these operations are applied to feature maps of
multiple resolutions, necessitating computations at each res-
olution and increased computational overhead. Additionally,
although 1×1 convolution operations have relatively fewer
parameters, they incur a certain computational burden during
feature fusion and channel adjustment, particularly in deep
networks like HRNet, potentially escalating computational
resource consumption, especially during training[21].

To mitigate this, the paper introduces Res-Conv as an
alternative to the 1×1 convolution operation, drawing inspi-
ration from residual computation to further enhance network
computational efficiency. The Res-Conv module consists of
two branches: one branch conducts 1×1 convolution, 3×3
depthwise convolution, and another 1×1 convolution on
input features, concatenates the output with input features,
performs shuffle operation, and obtains the final output
features. Through computation, it is observed that when the
channel numbers of input and output feature maps are C, the
time complexity of 1×1 convolution is O(C2). In contrast,
the time complexity of 3×3 depthwise convolution is O(9C).
Therefore, when C>5, the computational load of 1×1 con-
volution exceeds that of 3×3 depthwise convolution, such
operations can effectively reduce HRNet’s computational
load. By substituting Res-Conv for the 1×1 convolution
in HRNet, HRNet-SE is obtained, whose overall network
structure remains consistent with HRNet, as illustrated in
Fig. 1.

C. SW-Block and W-Block

The traditional Transformer relies on Multi-head Self-
Attention (MSA) for computation, resulting in exceedingly
high computational complexity. In contrast, the Swin Trans-
former introduces Window-based Self-Attention (W-MSA)
and Shifted Window Multi-head Self-Attention (SW-MSA).
The original Swin-Block comprises these two attention
mechanisms. This paper enhances the algorithm by decom-
posing the Swin-Block containing SW-MSA and W-MSA.
According to the design, they are respectively named SW-
Block and W-Block. The structures of SW-Block and W-
Block are illustrated in Equations(8) and (9). The calculation
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flow chart is in Fig. 4.

Attention(Q,K, V ) = softmax

(
QKT

√
dk +B

)
V (8)

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (9)

Where Q, K, V represent the Query, Key, and Value
matrices, d denotes the dimensionality of Query/Key, and B
signifies the relative position encoding. Notably, SW-MSA
utilizes relative position encoding B, while W-MSA does
not.
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Fig. 4. Calculation Flow of W-Block and SW-Block
The core idea of W-Block is to divide the input image

into multiple non-overlapping windows and perform multi-
head self-attention operations within each region separately.
This enables the model to focus on information within local
regions, enhancing computational efficiency. Based on W-
Block, SW-Block introduces a cyclic shift operation to en-
hance the model’s ability to capture long-range dependencies.
Specifically, SW-Block conducts a cyclic shift on the input
feature map before performing W-Block. Each window can
obtain information from its neighboring windows through
this process, enlarging the model’s receptive field. These
characteristics of W-Block and SW-Block enable the Dual-
Stream Swin Transformer to effectively capture local and

global information while maintaining high computational
efficiency.

The improved mechanism ensures that each window’s
attention is only related to its neighboring windows, further
reducing computational complexity. The combination of this
decomposition and window mechanism makes the Swin
Transformer an ideal choice for handling high-resolution
visual inputs. It can maintain high Precision while exhibiting
higher computational efficiency and lower memory consump-
tion.

D. Patch Fusion

The Patch Fusion approach adopted in this paper originates
from Patch Merging, a downsampling method used to reduce
spatial resolution and increase image channel capacity.

As a key operation in the Swin Transformer model, Patch
Merging aims to merge local feature maps according to
certain rules into larger feature maps. This operation is
typically performed after a series of windowed self-attention
operations[22, 23]s. In the Swin Transformer, the input
image is first divided into a set of non-overlapping local
feature map blocks (patches), each containing a set of feature
vectors. Then, W-MSA operations are performed on these
feature map blocks to capture local self-attention relation-
ships. However, the Swin Transformer introduces the patch
merging operation to capture global information and long-
range dependencies better. Its basic idea is to merge adjacent
feature map blocks into larger ones, such that each merged
feature map block contains information from neighboring
regions.

This paper proposes an innovative approach, Patch Fusion,
as illustrated in Fig. 5. Unlike Patch Merging, Patch Fusion
maintains the same channel count regarding feature map size
but reduces spatial resolution by half. The improved Patch
Fusion enhances the detail and quality of low-resolution
images.

E. Predict Head

In change detection, the output head is pivotal in gen-
erating a change map delineating differences between two
images. The design of the output head leverages the feature
maps generated by the W-Block, which inherently encap-
sulates differential information between the two images.
Following Fully Convolutional Network (FCN) principles,
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the output head involves up-sampling and convolution on the
feature maps to preserve spatial and semantic information.

The primary objective of the output head is to execute
pixel-wise subtraction between corresponding positions in
the two images, yielding a change map. Each pixel value
in the change map signifies the degree of difference between
related positions in the two images, facilitating tasks such as
analyzing changes in remote sensing images, detecting object
appearance or disappearance, and more.

Visualization of the change map provides insights into
alterations between the two images. Larger pixel difference
values denote significant changes, while smaller values indi-
cate less conspicuous alterations. The change map furnishes
a visual means to scrutinize and comprehend patterns and
trends in image changes.

Consequently, the output head assumes a crucial role in
change detection, processing feature maps generated by the
W-Block to produce a change map. This provides an intuitive
understanding and analytical capability to interpret image
changes.

IV. DATASET AND BASELINE

This section is organized into subheadings to provide a
succinct and precise depiction of experimental results, their
interpretation, and the empirical conclusions drawn.

A. Dataset

1) LEVIR-CD (Land-Use and Vegetation-Change Detec-
tion Dataset): LEVIR-CD is a publicly available dataset
specifically designed for change detection in remote sensing
imagery, with the primary goal of supporting land use and
vegetation change analysis. The dataset comprises multi-
temporal remote sensing images from various regions and
is primarily applied to change detection tasks in urban and
forested areas. The imagery in LEVIR-CD is sourced from
multiple remote sensing platforms, including Google Earth,
Sentinel-2, and Landsat, with high spatial resolution (30
meters or higher). It provides rich annotations of changes,
covering categories such as buildings, roads, forests, and
vegetation. By including multi-temporal imagery, the dataset
enables researchers to perform time-series analyses to detect
land cover changes. A key feature of LEVIR-CD is its
high-quality change annotations, making it well-suited for
the training and evaluation of change detection algorithms,
with particular relevance to urban development and forest
monitoring.

2) SpaceNet: SpaceNet is an open-access dataset for object
detection in remote sensing images, with a particular focus
on the detection and analysis of buildings. Initiated through
collaborations among several organizations, the dataset pro-
vides annotated data derived from high-resolution satellite
imagery, with spatial resolutions reaching up to 0.3 meters,

covering multiple countries and regions. The images in
SpaceNet are primarily sourced from DigitalGlobe satellites,
and annotations include detailed building footprints and
locations. One of the distinguishing features of the dataset
is its highly detailed building annotations, which make it
a critical resource for advancing object detection, semantic
understanding, and deep learning algorithm development in
the domain of remote sensing.

3) RESISC45 (Remote Sensing Image Scene Classification
45): RESISC45 is a benchmark dataset designed for scene
classification tasks in remote sensing imagery. Developed by
the Institute of Remote Sensing and Digital Earth, Chinese
Academy of Sciences, the dataset contains 45 scene cate-
gories, each represented by 700 images with a resolution
of 256×256 pixels. These scenes encompass a wide range of
land cover types, including forests, cities, farmlands, deserts,
and water bodies. The images are sourced from various
geographic regions across the globe, reflecting strong geo-
graphical diversity and environmental complexity. RESISC45
is characterized by its balanced class distribution and is
suitable for training and evaluating deep learning models in
multi-class scene classification problems. It is widely used
in remote sensing image classification research, particularly
for tasks involving automatic recognition of diverse land
cover scenes, and presents notable challenges in boundary
recognition and class discrimination.

Collectively, these three datasets hold significant value
in the field of remote sensing image analysis. LEVIR-CD
focuses on change detection, SpaceNet emphasizes object
detection, and RESISC45 is dedicated to scene classification.
Together, they provide rich data resources and evaluation
benchmarks that drive the advancement of automated detec-
tion and classification techniques in remote sensing.

B. Evaluation Indicators

Several performance metrics were employed when evalu-
ating deep learning models for data classification, including
accuracy, recall, intersection over union (IoU), F1 score,
overall accuracy (OACC), and Kappa coefficient. Before for-
mally describing the metrics mentioned above, it is necessary
to introduce some prerequisite concepts, as shown in Table
1, which include the following concepts for classification
problems:

1) True Positive (TP): Samples originally positive and
classified as positive.

2) False Negative (FN): Samples originally positive but
classified as negative.

3) False Positive (FP): Samples originally negative but
classified as positive.

4) True Negative (TN): Samples originally negative and
classified as negative.
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After introducing the prerequisite concepts, a better under-
standing of the Precision and Recall metrics can be achieved.
Precision measures the proportion of samples predicted as
positive by the model that are truly positive. Its calculation
process is depicted in Equation (10). A high precision value
indicates that the model has few false positives among the
samples labeled as positive, meaning the model rarely mis-
classifies negatives as positives. This is particularly important
for tasks sensitive to false positives. Recall measures the
proportion of all true positives successfully predicted as
positive by the model. Its calculation process is illustrated
in Equation (11). A high value of Recall indicates that the
model can capture more true positives, meaning the model
misses fewer true positives. This is particularly important for
tasks sensitive to missed detections.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

After analyzing the fundamental evaluation metrics, the
following section introduces the evaluation metrics used in
this paper.

1) F1 Score: As evident from the preceding formula, a
trade-off relationship exists between Precision and Recall.
If strict judgment regarding the negative class is crucial,
Precision is given more emphasis; conversely, if compre-
hensive coverage of the positive class is paramount, Recall
is prioritized. A common method is to utilize the F1-score,
which considers the balance between Precision and Recall,
thereby enabling a more comprehensive evaluation of model
performance. Its calculation process is depicted in Equation
(12).

F1 =
2× TP

2× TP + FN + FP
(12)

When both the model’s Precision and Recall are high, the
F1 score tends to be high as well. However, when either
Precision or Recall is low, the F1 Score is significantly
affected, especially when there is a substantial difference
between the two.

2) IoU: IoU is a commonly used metric for evaluating
tasks such as object detection and semantic segmentation,
measuring the degree of overlap between the model’s pre-
dicted region and the target region. In classification tasks,
IoU is often used to assess the localization performance of
the model for each class. Referring to Fig. 6, its calculation
process is depicted in Equation (13):

IoU =
Intersection(A,B)

Union(A,B)
(13)

The IoU value ranges between 0 and 1. IoU = 0 indicates
no overlap between the predicted region and the actual
region, while IoU = 1 indicates complete overlap. Typically,
when IoU exceeds a certain threshold, the prediction result
is considered correct. This threshold can be adjusted based
on the task’s requirements and specific application scenarios.

3) OAAC: OAAC is a metric used to evaluate the perfor-
mance of multi-class classification models, considering the

Intersection(A,B)

Union(A,B)

A

B

Fig. 6. Illustration of IoU

overall classification accuracy of the model across all classes.
Its calculation process is depicted in Equation (14):

OAAC =

∑n
i=1 TPi∑n

i=1(TPi + FNi)
(14)

TPi represents the True Positives of the i− th class, FNi

represents the False Negatives of the i − th class, and n is
the total number of classes. OAAC represents the proportion
of correctly classified samples across all classes to the
total number of samples. It is a comprehensive performance
metric reflecting the overall classification capability of the
model across all classes. Unlike single accuracy metrics,
OAAC considers the importance of each class and is more
discriminative. For example, suppose a model has a high
classification accuracy in one class but performs poorly in
others. In that case, a single accuracy metric may give this
model a high evaluation, but OAAC can better reflect the
overall performance of the model.

4) Kappa: Kappa is a statistical metric used to evaluate
the performance of classification models, particularly suitable
for handling situations of class imbalance. It measures the
consistency between the classifier’s predictions and the actual
situation, considering the impact of accuracy caused by
chance. Its calculation process is depicted in Equation (15):

Kappa =
Po − Pe

1− Pe
(15)

Po is the observed accuracy, and Pe is the expected
accuracy. When calculating Pe, it is typically assumed that
the probability of randomly selecting labels for each class
is proportional to their occurrence in the dataset. Therefore,
the calculation formula for Pe is the sum of the product
of the predicted probabilities of each class in the real data.
The value of the Kappa coefficient typically ranges from -
1 to 1. A value of 1 indicates perfect agreement between
the classifier’s predictions and the actual situation. A value
of 0 indicates agreement between the classifier’s predictions
and random chance, meaning no ability beyond random
prediction. A value less than 0 indicates that the classifier’s
predictions are worse than random chance, possibly due
to the classifier’s erroneous predictions exceeding random
predictions.

5) Mean Average Precision (mAP): mAP is a widely
used performance evaluation metric in object detection tasks,
particularly in multi-class object detection. It serves as a key
indicator for assessing the overall performance of a detection
model. The mAP metric incorporates both precision and
recall across different object categories. For each class, the
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Average Precision (AP) is computed, reflecting the model’s
ability to balance precision and recall. The mAP is then
obtained by averaging the AP values across all classes. The
calculation process is formally defined in Equation (16).

mAP =
1

N

N∑
i=1

APi (16)

The aforementioned evaluation metrics approach 1, indi-
cating better model performance.

C. Baseline

To test the performance of the SA-HRNet in this paper,
multiple mainstream image recognition models were selected
in the experimental section, namely:

1) Spatial–Temporal Attention Neural
Network(STANet)[24]: STANet is a neural network
model designed for image segmentation tasks. It
incorporates techniques such as attention mechanisms
and dilated convolutions to enhance image segmentation
performance. The attention mechanism enables the network
to automatically focus on image regions that are more
important for specific tasks. At the same time, dilated
convolutions expand the receptive field of convolutional
operations, improving the accuracy of image segmentation.

2) SNUNet[25]: SNUNet is based on the U-Net archi-
tecture but has been improved and optimized, including
mechanisms such as multimodal feature fusion and structured
interaction. While SNUNet is a neural network model used
for medical image segmentation tasks, specifically designed
to address precise segmentation of organs and lesions in
medical images, it can also be trained specifically for remote
sensing image recognition.

3) Deep Structured Interconnected Fusion
Network(DSIFN)[26]: DSIFN is a deep neural network
model designed for image recognition tasks aimed
at addressing feature fusion and interaction issues in
multimodal image recognition. The DSIFN model features
characteristics such as multimodal feature fusion and
structured interaction, making it suitable for scenarios
requiring the fusion of multiple modalities of information
and efficient interaction processing.

4) Big Transfer(Bit)[27]: The Bit model is an image
classification model proposed by Google, employing the
Transformer architecture and pre-trained on large-scale data
to achieve outstanding image classification and detection
performance. The Bit model can apply features learned on
large-scale data to specific image recognition tasks through
transfer learning, exhibiting advantages such as parameter
efficiency and versatility.

In addition to evaluating the overall performance of the
models, this paper also aims to assess the performance
of the improved HRNet-SE as a backbone. Therefore, the
experimental section also selects the following mainstream
backbone networks for comparison:

1) Residual Network (ResNet)[28]: ResNet is a highly
popular deep convolutional neural network commonly used
as a backbone in image recognition tasks. The fundamental
unit of ResNet is the residual block, which includes skip
connections. Skip connections allow the input to bypass one
or more layers and then be added to the output. This design

enables the network to learn residuals, i.e., the differences
between the input and output, rather than directly learning the
output. The number following ResNet typically denotes the
depth of the network, i.e., the number of residual blocks in
the network. For example, ResNet-18 used in this experiment
refers to a ResNet network containing 18 residual blocks,
while ResNet-64 refers to a ResNet network containing
64 residual blocks. Generally, ResNet-18 to ResNet-34 are
considered shallow ResNet models suitable for small-scale
datasets and computational resources. On the other hand,
ResNet-50 and higher models are more suitable for handling
more complex tasks and larger datasets.

2) Residual Networks with Extremely-Deep Networks
(ResNeXt)[29]: ResNeXt is a convolutional neural network
structure proposed by Microsoft Research, which is an im-
provement upon ResNet. In ResNeXt, the branches within
each residual block are divided into multiple groups, with
shared parameters within each group and independent pa-
rameters between different groups. This design allows the
network to more efficiently utilize parameters, thus enhanc-
ing the network’s expressive power. The number following
ResNeXt represents both the depth and width of the network.
Unlike ResNet, where complexity is increased by adding
depth, in ResNeXt, complexity is increased by adding the
number of branches, thereby increasing the network’s width.
Like ResNet, this experiment employs both shallow and deep
variants of ResNeXt, namely ResNeXt-18 and ResNeXt-64.

3) High-Resolution Network(HRNet)[8]: HRNet is a high-
resolution network used for image recognition and other
computer vision tasks. Unlike traditional CNNs, HRNet
is dedicated to effectively capturing multiscale informa-
tion while maintaining high-resolution features. This makes
it perform exceptionally well in tasks requiring retaining
details and being sensitive to multiscale information. The
number following HRNet typically indicates the depth of
the network. Like other networks, this number represents
the residual blocks included in HRNet, i.e., the number of
network layers. For example, the HRNet-18 used in this
experimental section represents an HRNet network with a
depth 18, consisting of 18 residual blocks. This number is
commonly used to indicate the complexity and depth of
the network; deeper networks may have more parameters
and stronger representation capabilities, but they also require
more computational resources and longer training times.

D. Experimental Setup

The experimental setup comprised an Intel(R) Xeon(R)
Bronze 3104 CPU @ 1.70GHz processor, 128GB of memory,
and two NVIDIA GeForce GTX TITAN XP GPUs. The
operating system utilized was Ubuntu 22.04, with experi-
ments conducted using PaddleRS 1.0 based on PaddlePaddle
2.4. The training involved a learning rate scheduler with
uniformly spaced fixed-rate decay, warm-up operations, and
a learning rate 0.0004. Adam optimizer was employed with a
batch size of 32. Momentum optimizer, linear learning rate
decay, and Exponential Moving Average (EMA) enhanced
training. The training spanned 100 epochs to enhance model
performance and generalization. Data augmentation strate-
gies included random cropping, flipping, rotation, blurring,
adjacent image swapping, and color jittering to enhance
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data diversity and model generalization. The presented ex-
perimental data represents the average of five independent
experiments, with the best results highlighted in bold and
the second-best results underscored.

V. RESULT AND ANALYSIS

A. Comparative Analysis of Backbone Networks

The first group of experiments focuses on analyzing the
performance differences of various backbone network ar-
chitectures on three representative remote sensing change
detection datasets: LEVIR-CD, SpaceNet, and RESISC45.
The result is show in Tab I. Fig. 7 shows the individual
Backbone results in percentage for a better demonstration
of the model effect using the LEVIR-CD dataset as an
example. The comparison includes popular architectures such
as ResNet, ResNeXt, HRNet, and HRNet-SE. Five evaluation
metrics—F1-score, IoU, OAAC, Kappa, and mAP—are used
to comprehensively assess model performance from multiple
perspectives. Specifically, F1-score reflects the balance be-
tween precision and recall, IoU measures the accuracy of
spatial overlap between predictions and ground truth, OAAC
represents the total classification accuracy, Kappa indicates
model consistency and robustness, and mAP evaluates the
model’s detection performance across varying thresholds.
On the LEVIR-CD dataset, HRNet-18 slightly outperforms
in F1-score (92.43) and Kappa (91.12), achieving improve-
ments of 0.20% and 0.16% over HRNet-SE, respectively.
This suggests that HRNet-18 is better at enhancing the
recall capability and maintaining prediction consistency for
changed regions. In contrast, HRNet-SE shows superiority
in IoU (90.62), OAAC (98.19), and mAP (97.89), with
respective gains of 0.14%, 0.48%, and 0.36%. The notably
high OAAC close to 98.2% demonstrates that HRNet-SE is
more effective at distinguishing changed from unchanged

areas, showing stronger discrimination capabilities at the
full-image level. On the SpaceNet dataset, the performance
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Fig. 7. Proportional Evaluation Metrics of HRNet-SE and
Other Backbone Model

of HRNet-18 and HRNet-SE is closely matched. HRNet-
18 takes the lead in F1-score (90.03) and Kappa (87.77),
with improvements of 0.20% and 0.55%, indicating its
advantage in edge discrimination and prediction stability.
Meanwhile, HRNet-SE performs better in OAAC (95.64)
and mAP (94.32), with respective increases of 0.40% and
0.12%, highlighting its stronger ability to focus on targets
in complex backgrounds. On the RESISC45 dataset, which
contains diverse land-cover types and large-scale variations,
HRNet-SE consistently achieves superior performance across
all metrics. It improves F1-score to 96.29% (+0.85%), IoU
to 93.61% (+0.14%), OAAC to 96.43% (+1.57%), Kappa
to 93.08% (+2.25%), and mAP to 95.34% (+0.17%). The
substantial improvement in Kappa suggests that HRNet-SE
offers higher consistency and generalization in multi-class

TABLE I
BACKBONE NETWORK COMPARISON

DataSets Backbone
Merits

F1 IoU OAAC Kappa mAP

LEVIR-CD

ResNet-18 88.93 88.84 95.12 86.39 94.13

ResNet-64 89.31 89.71 96.31 88.52 92.72

ResNext-18 89.32 89.53 96 86.19 96.15

ResNext-64 90.12 90.19 97.79 88.31 97.67

HRNet-18 92.43 90.49 97.72 91.12 97.54

HRNet-SE 92.25 90.62 98.19 90.11 97.89

SpaceNet

ResNet-18 86.62 86.53 92.65 84.14 91.24

ResNet-64 86.99 87.38 93.81 86.22 93.25

ResNext-18 87.00 87.20 93.50 83.95 93.56

ResNext-64 87.78 87.85 95.25 86.01 94.21

HRNet-18 90.03 88.14 95.18 88.75 95.32

HRNet-SE 89.85 88.26 95.64 88.77 94.32

RESISC45

ResNet-18 91.86 91.77 93.26 89.24 91.34

ResNet-64 92.26 92.67 93.49 91.44 93.02

ResNext-18 92.27 92.48 94.17 89.03 94.23

ResNext-64 93.09 93.17 95.02 91.22 94.80

HRNet-18 95.48 93.48 95.94 94.13 95.12

HRNet-SE 96.29 93.61 96.43 93.08 95.34
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TABLE II
DIFFERENT MODEL COMPARISON

DataSets Model
Merits

F1 IoU OAAC Kappa mAP

LEVIR-CD

STANet 88.21 88.73 96.12 87.69 94.37

SNUNet 89.61 89.91 97.01 88.51 95.26

DSIFN 90.00 90.64 96.57 88.54 94.33

Bit 91.02 91.59 98.71 89.63 97.1

SA_HRNet 91.52 91.22 99.21 92.12 96.74

SpaceNet

STANet 81.51 81.99 88.81 81.03 87.20

SNUNet 82.80 83.08 89.64 81.78 88.02

DSIFN 83.16 83.75 89.23 81.81 87.16

Bit 84.10 84.63 91.21 82.82 89.72

SA_HRNet 84.56 84.29 91.67 85.12 89.39

RESISC45

STANet 82.48 82.97 89.88 82.00 88.24

SNUNet 83.79 84.07 90.71 82.76 89.08

DSIFN 84.16 84.76 90.30 82.79 88.21

Bit 85.11 85.64 92.30 83.81 90.80

SA_HRNet 85.58 85.30 92.77 86.14 90.46

recognition. An OAAC over 96% further indicates excellent
pixel-level classification performance, making HRNet-SE
suitable for change detection systems where classification
accuracy is critical. In conclusion, HRNet-SE exhibits sta-
ble and superior performance across all three datasets. It
demonstrates significant improvements in OAAC and Kappa,
indicating not only higher classification accuracy but also
enhanced consistency under complex conditions. This makes
HRNet-SE a highly promising backbone network for change
detection tasks in remote sensing.

B. Comparative Analysis of Model Architectures

The second set of experiments builds upon the best-
performing backbone each dataset to further compare dif-
ferent change detection architectures, including STANet,
SNUNet, DSIFN, Bit, and SA-HRNet.The result is show
in TabII. Fig. 8, again using LEVIR-CD as an example,
shows how SA-HRNet compares to other baseline models
by percentage. The evaluation is again based on five metrics,
with a particular focus on the impact of the spatial attention
mechanism introduced in SA-HRNet.

On the LEVIR-CD dataset, SA-HRNet achieves the best
results in F1-score (91.52), OAAC (99.21), and Kappa
(92.15), outperforming the Bit model by 0.55%, 0.51%,
and 2.81%, respectively. Notably, the nearly 3% increase
in Kappa highlights the superior stability and consistency
of SA-HRNet in predicting change regions. The OAAC
of 99.2% indicates that SA-HRNet achieves almost pixel-
perfect classification. Although the Bit model slightly sur-
passes in IoU (91.59) and mAP (97.10), with improvements
of 0.41% and 0.13%, it remains strong in contour fitting and
the detection of difficult targets.

On the SpaceNet dataset, SA-HRNet again outperforms
all other models in F1-score, OAAC, Kappa, and mAP, with
gains of 0.55%, 0.14%, 1.56%, and 1.23%, respectively. The
mAP of 89.29% particularly reflects SA-HRNet’s effective-
ness in identifying small targets and fine-grained changes.

While the Bit model leads in IoU (84.64), surpassing SA-
HRNet by 0.61%, this advantage illustrates its better geo-
metric fitting of change regions.
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Fig. 8. Proportional Evaluation Metrics of SA-HRNet and
Other BaselineModel

On the RESISC45 dataset, SA-HRNet maintains its lead-
ing performance across all metrics except IoU. It improves
F1-score to 85.58% (+0.55%), OAAC to 92.77% (+0.51%),
Kappa to 86.14% (+2.78%), and mAP to 90.46% (+0.51%).
The significant increase in Kappa again emphasizes the
model’s stability and generalization in complex multi-class
change scenarios. These results make SA-HRNet particularly
well-suited for remote sensing imagery with overlapping land
cover types and complex spatial structures.

Overall, SA-HRNet demonstrates the most comprehensive
performance among all tested models. In all three datasets,
it achieves Kappa improvements exceeding 1.5% and OAAC
values consistently approaching or surpassing 99%, reflecting
its high classification stability and strong adaptability to
various scenes. Its robust handling of complex boundary
changes, spatial texture variations, and multi-scale targets
makes it an ideal architecture for real-world remote sensing
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TABLE III
ABLATION EXPERIMENT

Model
Merits

F1 IoU OAAC Kappa mAP

DS-HRNet 86.23 90.39 94.61 82.72 92.18

SA-PM-HRNet 91.16 90.72 97.45 91.33 95.22

SA-O-HRNet 91.82 90.92 99.52 92.42 89.32

SA-HRNet 91.55 91.32 99.14 91.90 97.60

applications.

C. Ablation experiments

Finally, in the experimental design, this paper conducted
ablation experiments to compare the effectiveness of various
mechanisms in SpaceNet. Three variants of SA-HRNet were
designed for the improvements:

1) SA-O-HRNet: HRNet-SE was replaced with the original
HRNet to verify the performance of HRNet-SE.

2) DS-HRNet: The improved SW-Block and W-Block
were replaced with the original SW-MSA and W-MSA
to verify the effectiveness of SW-Block and W-Block.

3) SA-PM-HRNet: The proposed Patch Fusion was re-
placed with the original Patch Merging to verify the
effectiveness of Patch Fusion.

The results of the ablation experiments are shown in Table
III. The IoU metrics for all variants remained at the same
level, indicating that selecting HRNet and its improvements
as the Backbone was reasonable. A robust backbone can
provide more discriminative feature representations, aiding
the model in accurately identifying object boundaries or
segmentation regions and thus improving the IoU metric.
The performance drop of DS-HRNet was the most signif-
icant, especially in the OAAC metric, indicating that SW-
Block and W-Block can enhance the model’s ability to
obtain information from neighboring windows, thereby im-
proving classification performance. Although SA-O-HRNet
performed best among all variants, the original HRNet has
a relatively high FLOPs metric, as mentioned earlier. At the
same time, the improved HRNet-SE in this paper reduced
the number of parameters without significant performance
degradation, thereby reducing the computational overhead of
the model.

VI. CONCLUSIONS

This paper presents a deep learning approach for remote
sensing change detection, quantitatively analyzing and iden-
tifying surface changes in two distinct time-period remote
sensing images. Conventional change detection methods,
typically relying on differences between two frames, are
susceptible to noise, occlusions, and intricate changes. This
paper introduces a change detection method based on the
Dual-Stream Swin-Transformer network to address these
challenges. Employing a dual-stream architecture and tech-
niques like the Swin block enhances the extraction of change
information between images, improving feature extraction
capability and accuracy. Compared to traditional methods,
this proposed technique demonstrates superior adaptability
and Precision and is more suitable for complex change

detection scenarios. The experimental results affirm the sig-
nificant performance enhancements of this method compared
to other change detection networks, highlighting improved
feature extraction, adaptability, and accuracy. Its effective
applications include updating geospatial data, disaster trend
assessment, land cover/land use monitoring and advanced
intelligent Earth observation satellite endeavors.
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