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Distributed Data Analysis Based on Single Index
Model

Jingcheng Xian, Cheng Wang and Guangbao Guo

Abstract—Amid randomized clinical trial data analysis, this
article propose a distributed data analysis approach based on
a single-index model that uniquely estimates the interaction
between pre-processing covariates and treatment variables on
the response variable. The method represents the interaction
effects of the model via a set of therapy-specific adaptive link
functions that act on a linear mixture of covariates (i.e., a
single index) while satisfying the limitation that the expected
value of the covariates is zero, while the primary effects
of the covariates remain unspecified. By uniquely estimating
the interaction effects between pre-processing covariates and
treatment variables, we can optimize personalized treatment
rules to improve clinical treatment outcomes.

Index Terms—distributed single-index model, treatment op-
timization case data

I. INTRODUCTION
A. Our Work

The research in this paper uses a single index model
for distributed data analysis. This method spreads data over
many computing nodes and uses one index to describe
and analyze the data. This helps the method work well in
distributed settings and be more efficient and accurate. The
main parts of this paper are:

To do distributed data processing and analysis, we need to
build a good and reliable distributed computing framework.
This paper uses a constrained least squares method to im-
prove the working model. We use a cubic spline estimate for
the model, with constant weights for the modified covariate
in the sample. In the end, we use penalized additive cubic
splines least squares estimation to estimate additive regres-
sions for each treatment.

To check if the distributed data analysis method using a
single index model works well, we use random trial data
for numerical analysis. When we compare it, the single
index model shows big advantages. This method solves
the efficiency and accuracy problems of multi-index models
in a distributed environment and stays highly efficient and
accurate.

In short, this paper looks into a distributed data analysis
method using a single index model. By building a distributed
computing framework, designing a single index model, and
creating distributed data analysis algorithms, we can process
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and analyze data efficiently and accurately. Through exper-
iments and analyzing the results, we show that this method
works well and talk about future research directions.

II. DISTRIBUTED SINGLE INDEX MODEL
A. Distributed Single index Model

Amid big data, we consider preprocessing the covariates
X = (Xp,...,X1.). At the Kth node, X, satisfies
X1, € R? and a discrete treatment variable 7' € {1,...,L}
with L categories, which has associated randomization prob-
abilities {7, ..., 7 }.LetY = (Y7,,..., Y7, ). For example,
Yl(f() € R represents the potential outcome if a patient
receives treatment 7' = t. We only measure Y = Y7 T
and X. In this paper, we presume that E[Y;, |T =t] =
0, the primacy effect of T, is mean-zero. This is done
only to remove treatment-specific intercepts in the regression
model to make it simpler to explain. It can be achieved by
subtracting the treatment-specific mean of Y from t, and X
is mean-zero.

This study mainly focuses on modeling the interac-
tion effects between X and Y. We assume that Y7, =
E Y7, | X1, ,T]+e€, where € represents zero-mean indepen-
dent disturbance with finite variance. We Presume that the
nested mean model linked to the interaction has a single-
index framework. This includes a set of therapy-specific
linking functions ¢ for the single-index coefficient ag € RY,
fort=1,...,L.

E[YIK | XIK7 T= t] = M(XIK) + {ft<angK)}

interaction
(1)

(X1, ) represents the main effect of X;,. In model
(1), the treatment-specific function f; (-) for ¢ is a smooth
univariate function.

To make the model identifiable without losing generality, it
is assumed that the treatment-specific functions f;(i = 1...L)
in model (1) meet a certain condition for treatment.

maineffect

L
E[fi (g X1e) | Xp) =Y mifi (ag Xp,) =0
t=1
)

The condition usually means that among the L interaction
functions (f1,..., fr), only L-1 functions are free. In other
words, in model (1), the last function f7 is determined by
the other (L-1) functions, except for f;.

L—-1
ft (agXIK> = _ﬂ-gl Z ﬂ-tft (agXIK)
t=1
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is almost inevitable. In model (1), because the linking
function f; (¢ = 1,..., L) is nonparametric, the single-index
coefficients «y can only be identified up to scale and sign.
Therefore, without losing generality, we assume oy € O ,
where

0: = {a= (a1, ...7ap)T € R”

el = 1,1 > 0}

The semi-parametric model (1) characterizes the vari-
ability of X associated with treatment effects through a
single index ol X;, € R , and captures its interaction
with treatment through a treatment-specific linking function
(f1,--., fr) . The interaction effects are driven by the differ-
ent shapes of the unspecified function f;(¢ = 1...L). There
are multiple reasons why we examine a single index o X7,
in model (1) instead of L indices specific to treatment. First,
a general single index provides a concise one-dimensional
integrated treatment effect modifier (expressed as a linear
mixture of X ) that allows for intuitive visualization of the
interaction effects. In addition to its simplicity, the one-
dimensional simplification in model (1) naturally generalizes
linear model-based approaches. If L = 4 or L = 5, we
constrain the unspecified interaction function f in model (1)
to pre-specified linear forms.

ft (Oé(j;X]K) = (f,-i-ﬂ'l — Q)OégX[K

Then simplify the semi-paraindex model (1) into a modi-
fied covariate model.

To estimate the interaction term f; (ag X IK) for t =
1,...,L in model (1), given the unspecified main effects
(X7, ), we suggest using a working model.

For o € © , we have the constraint:

L
lgr(a" X, | Xi,l] =) mg(@" X)) =0 (3)
t=1
It is likely that for all « , constraint (4) is applied to the
smoothing link function (g1, . . ., gr) specific to the treatment
t in the working model (3).
Within the least squares structure of model (3).
To fit the constrained operative model (3), we use a
restricted least squares criterion.

. 2
Iy = argmin  E [(sz — gT(aTXIK)) /2}

k=1..K
(6)
We compute the minimum over k and find a subset I
such that the elements in Ix are 1,...,n forming a subset
of 1,...,n with ny, elements. In equation (6), the search for
the minimum among K is called the extreme statistic X
and Y.

B. Extreme Statistic

When comparing the effects of drug treatment and placebo
treatment using extreme values as extreme statistics, follow
these steps: Calculate the maximum pain level for the drug
treatment group and the placebo treatment group. Let Y be

the maximum pain level for the drug treatment group, and
Y,pt be the maximum pain level for the placebo treatment
group. Here, K is the individual index, and K, is the
optimal K.

Assume the extreme value distribution function models the
maximum values in each group. In this case, use the Gumbel
distribution to fit the distribution of the extreme values. In
drug treatment group, estimate the parameters (ui, 1) of
the Gumbel distribution. For the placebo treatment group,
estimate the parameters (u2, 82) of the Gumbel distribution.

fly,m,8)=(1- 6)exp<(y - u)/ﬁ)

*exp<—exp((y—u)/6>> (M

In drug treatment group, the predicted maximum value, de-
noted as X, is generated based on the Gumbel distribution
parameters (u1,031). For the placebo treatment group, the
predicted maximum value, also denoted as X, is generated
based on the Gumbel distribution parameters (2, 32). Calcu-
late the mean squared error between the predicted values and
the actual observed values (the maximum pain level in each
group), which is the average of the squared differences. Here,
Nopt represents the sample size of both the drug treatment
group and the placebo treatment group.

III. DISTRIBUTED SIMULATION
A. Distributed Simulation Study of L = 4 Treatment Levels

In this section, we present additional simulation results
to evaluate the performance of the restricted single-index
model in assessing optimal treatment prediction policies
when the number of treatment options L = 4. We consider
different scenarios with varying strengths of the main effects
0 € {1,2}, with sample sizes n € {250,500} and number
of covariates p € {10,20}. Each scenario simulates 100
training datasets. We generate covariates X7, ~ N(0,1,)
and assign treatments T; € {1,2, 3,4} randomly with equal
probabilities, independent of X . We follow the model for
t=1,...,L. ’

E [Y}X ’ Xfx7T = t] = /“L(Xlx) + ft (agXIX)

(16)

Generated Results
Yi=p (Xfxi) + sz' (h (agXIxi)) + €,
X, ~ N (0,0.4%)

We normalize aq = (1,1/2,1/4,1/8,0,...,0)" € RP to
have a unit Euclidean norm. The treatment-specific function
fe(u) (¢t =1,2,3) , denoted as u=h (o X7, ) ,u€[0,1]
, 1s set as.

fi(w) =u'(1=w)"/B(5,4) — fo ()

f2(w) =u'(1—)’/B(4,3) ~ fo (u)

f3(w) = v’ (1—w)'/B(1,4) ~ fo (u)

fi(w) =u’(1—w)'/B(7,1) ~ fo (w) (17
Where B (a,b) is a Beta function.
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Fig. 1: Treatment-specific functions

fo(w) = {u'(1 - u)’/B (5,3)
+ul(1—u)*/B(4,3)+
u’(1—u)'/B(1,4)+
w’(1—u)'/B(7,1)}/4

the function in Fig. 1 is shown below.

When K = 4, we divide X into four blocks, resulting in
four u values that determine the values of the four treatment-
specific functions f;(u). For each extreme value data point
of each treatment level, we compute the predicted value of
the extreme value based on the estimated parameter values.

For a given dataset f:(u), the predicted value Y7, is
taken as the maximum value. We then calculate the squared
difference between the predicted value Y7, and the actual
observed value Y7, (the maximum pain level). This squared
difference represents the square error.

For a given dataset f;(u), we sum up the squared differ-
ences and divide the sum by the number of observations n to
obtain the mean squared error (MSE). We compare the MSE
across different treatment levels. A smaller MSE indicates
better treatment effectiveness.

Using the MSE calculated through the aforementioned
steps, the example results are as follows: MSE. Conclusion:
Based on the given dataset, the obtained MSE is used. A
smaller MSE indicates better treatment efficacy.

a7

B. Distributed Simulation Study of L = 5 Treatment Levels

In this section, we present extended simulation studies to
evaluate the constrained single-index model’s performance
in estimating optimal treatment rules for L = 5 treat-
ment options . We consider different scenarios with varying
strengths of the main effects 6 € {1,2}, with sample sizes
n € {250,500} and number of covariates p € {10,20}.
Each scenario simulates 100 training datasets. We generate
covariates X, ~ N(0,1,) and assign treatments T; €
{1,2,3,4,5} randomly with equal probabilities, independent
of X I, We follow the same model (16).

E[Y}X ’ XIX>T = t] = /’L(XIX) + ft (agXIX)
(16)

0 01 02 03 04 05 06 07 08 09
Fig. 2: Treatment-specific functions

Generated Results

Y; = p(Xpa) + fr, (b (g X1,)) + €,
X;, ~ N (0,0.4%)

We normalize
a0 = (1,1/2,1/4,1/8,0,...,00" € RP to have
a unit Euclidean norm. The treatment-specific function
fe(u) (t=1,2,3,4,5) , denoted as u = h(agXIK) ,u €
[0,1] , is set as.

fr(w) =u' (1 =u)*/B(5,4) = fo (u)

f2(u) =u' (1 —w)?/B(4,3) = fo (u)

fs(u) =u’(1—u)'/B(1,4) — fo (u)

fo(w) =u’(1—w)'/B(7,1) = fo (u)

fs(@) =v’(1-u)’/B(5,3) = fo(w)  (18)

fo(w) = {u' (1 -u)’/B (5,3)

+u'(1—u)*/B(4,3)+
uw’(1-u)'/B(1,4)+
u’(1—u)'/B(7,1)+
u®(1— )’/ B (5,3)}/5 (18)

When K = 5, we divide X into four blocks, resulting in
five u values that determine the values of the five treatment-
specific functions f;(u). For each extreme value data point
of each treatment level, we compute the predicted value of
the extreme value based on the estimated parameter values.

For a given dataset f;(u), the predicted value Y, is
taken as the maximum value. We then calculate the squared
difference between the predicted value Y7, and the actual
observed value Y7, (the maximum pain level). This squared
difference represents the square error.

For a given dataset f;(u), we sum up the squared differ-
ences and divide the sum by the number of observations n to
obtain the mean squared error (MSE). We compare the MSE
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across different treatment levels. A smaller MSE indicates
better treatment effectiveness.

Using the MSE calculated through the aforementioned
steps, the example results are as follows: MSE. Conclusion:
Based on the given dataset, the obtained MSE is used. A
smaller MSE indicates better treatment efficacy.

IV. REAL DATA ANALYSIS
A. Real Data Analysis

The single index coefficient @ = (ay,...,a5)7 of the
presented model and its 95% approximate normal bootstrap
confidence interval based on 500 bootstrap replicates are
as follows: a; = 0.69(0.31,1.06), @z = 0.23(0.10,0.57),
az = 0.33(0.03,0.64), @, = 0.22(0.51,0.08), and a5 =
0.55(0.85, 0.25). The fitted treatment-specific functions f(-)
(with 95% confidence bands) for ¢t = 1, 2 are shown in the
first two panels of Fig.4. We select the f;(-) with the least
mean square error.

Fig.3 shows the discrepancy between the two computed

treatment effects (drug vs. placebo) and the estimated single
measure. This indicates that the drug’s superiority over
placebo decreases nonlinearly with 2 = a? X7, , but is stable
in some nonlinear modes near Z = 2.4 and has a crossover
point around Z = —0.7. As shown in Fig.3, an personalized
treatment rule based on a single index z = o X;,. can be
derived by assigning patients with an index —0.7 < Z < 2.4
to the active drug.
__To evaluate the efficacy of the personalized treatment rule
DeP! estimated from the five different methods described in
Section 3, we randomly divided the dataset into a training
set and a test set (size m) in aAS to 1 ratio, repeated 500
times. Each time, we obtained D°P! and estimated its value
based on the training set:

V(ﬁopt) —E [E |:YIK | X1, T = ﬁOptH

We used an inverse probability weighted estimator based
on the test set (size ~ n).

For the improved covariate approach, we used a lin-
ear model with a covariate X to enhance efficiency. For
comparison, We included two simple rules: administering
placebo and active drugs to all patients, without considering
individual patient characteristics X. As shown in Fig.4, the
proposed constrained single-indicator regression for estimat-
ing D°P performed better than all other alternatives in terms
of mean estimates. Specifically, this method outperformed the
improved covariate approach and outcome-weighted learning
with polynomial kernels, showing the value of using flexible
link functions to approximate nonlinear interactions. This
method also outperformed the regularized additive spline
least squares method, indicating that the optimal linear com-
bination of biomarkers (single index a” X,.) collectively
exhibits stronger effects, possibly nonlinear.

Fig.3. Randomized Clinical Trial in Cancer: Scatter plot
of results for placebo (T = 1) and drug (T = 2) versus the
estimated single indicator z = oTX I estimated treatment-
specific curves (95% confidence) for each group (red solid
curve). In the adjacent panel, the comparison between the two
estimated treatment effects (drug vs. placebo) as a function
of the estimated single measure is shown.

Method

CSIm
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OWL-Gauss
PLS

AllPBO
AllDRUG
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M*"HH$:=

8 RSN SUSE:
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Fig. 4: comparison between different methods

The interaction of therapy is an attractive approach to
optimize treatment decision rules. In this instance, outcome-
weighted learning using Gaussian kernels performs poorly.
The suggested single-index regression offers a visualization
of the estimated single indicator, as shown in Fig.3. The rela-
tive importance of each pre-treatment covariate in describing
heterogeneous treatment outcomes can be expressed by the
coefficients av, ..., as. The practical value of the proposed
method is to highlight the difference between the treatment
decision guidelines values based on the new method and
the simple rule that assigns the the efficacy of each drug
as almost twice that of the placebo.

V. CONCLUSION

The proposed method is mainly developed to examine
information from randomized clinical trials. A drawback
might arise when utilizing it to observational studies where
covariates and treatment assignments can be correlated. In
such cases, the estimator may not produce an optimal subset.
However, the working model (3) can still be useful when
fitting the T in model (1). If there is an estimator gy, ..., gL
for each fixed «, then at the objective function (6), the
associated estimation coefficient «( in model (1) is the
asymptotically separated X primary effect term u (X7, ) in
model (1), as shown in (5). This results in robustness of the X
primary effect estimate T times X interaction. We can use the
iterative optimization process to maximize « and g1,...,gr.
For each constant «, this process identifies the subset & that
asymptotically minimizes the objective function in equation
(6) for I.

Future directions for this work include extending the
proposed regression to multiexponential regression modeling
interactions. For instance, when L. = 4, the model (1) can
be expanded to a partial linear single-indicator model by
incorporating a modified covariate. We will also examine
the combination of functional predictors and longitudinal
outcomes.
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