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Abstract— A powerful hybrid AI-driven classification 

method with the goal of revolutionizing the diagnosis of 

lung cancer using CT scan pictures. In the process, 

integrating various machine learning algorithms such as 

Support Vector Machine (SVM), K-Nearest Neighbors 

(KNN), Decision Tree and Artificial Neural Network 

techniques, this novel algorithm aims to significantly 

enhance accuracy in lung cancer identification. The 

investigation extensively utilizes the Lung Image 

Database, comprising meticulously documented CT scans 

meticulously annotated for precise nodule locations, 

facilitating in-depth analysis for lung cancer detection. 

Throughout the rigorous evaluation process, the ANN 

consistently showcases outstanding precision, recall, F-

measure, and accuracy metrics, significantly surpassing 

other tested models such as DT, KNN, and SVM. Across 

both dataset distributions (70:30 and 80:20), the ANN 

showcased exceptional metrics: recall (0.9240 / 0.9486), 

precision (0.9240 / 0.9486), F-measure, and accuracy 

(93.15% / 95.50%), surpassing Decision Trees, K-Nearest 

Neighbors, and SVM. Among the models examined, the 

ANN consistently stood out, demonstrating unparalleled 

performance in accurately identifying and delineating 

lung cancer instances.  

 
Index Terms— Lung Cancer Analysis, Image Processing, 

Support Vector Machine (SVM), K-Nearest Neighbors (KNN), 

Decision Tree, Artificial Neural Network  

I. INTRODUCTION 

One of the most prevalent and lethal types of cancer in the 

world is lung cancer. If lung cancer is identified early, the 

likelihood of a suitable outcome can be significantly 

increased [1]. Using CT scan imaging, machine-learning 

algorithms were created to help interpret these images, which 

have become a potent tool for the timely identification of 

pulmonary cancer. Machine learning can be used to amend 

lung cancer detection's precision and effectiveness. Utilizing 

vast collections of clinical and medical imaging data, these 

algorithms identify patterns and predict lung cancer risks. The 

algorithms may reduce the need for invasive diagnostic 

procedures through the early detection of lung cancer. [2, 3]. 

Figure 1 shows the major tasks of digital image processing 

[1]. 
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    Fig. 1. Primary Objectives in Computational Image Manipulation. 

 

The identification and diagnosis of lung cancer. Medical 

practitioners are able to spot suspected tumors or other 

abnormalities with detailed images that CT scans of the lungs 

may create [4]. The CT pictures can be improved by image 

processing methods, making it simpler to see these 

abnormalities and monitor how they change over time. 

Texture analysis algorithms, for instance, might find changes 

in the texture or density of lung tissue that can be signs of 

cancer [5, 6]. Segmentation algorithms, meanwhile, can 

isolate the lung tissue and spot probable tumors or nodules. 

These image-processing methods could help diagnose lung 

cancer more accurately and quickly, which might result in 

earlier detection and better treatment. Further study and 

improvement are required to improve these algorithms' 

performance and guarantee their reliable incorporation into 

clinical practice, as the correctness of these algorithms 

depends on the caliber of the CT scans and the skill of the 

medical specialists analyzing them [7,8]. 

To enhance the accuracy and resilience of pulmonary cancer 

identification. The paper uses hybrid classification 

algorithms for CT scan images to incorporate different 

machine learning algorithms. These algorithms often 

combine feature extraction and classification approaches, 

with the classification model using features retrieved from the 

CT scans as inputs. For feature extraction, a hybrid approach 

is used i.e. scale invariant feature transform and particle 

swarm optimization. The selected features using SIFT and 

PSO are used as the input feature set for classification into 

normal and abnormal samples. The classifiers evaluated here 

are decision tree, k-nearest neighbor, support vector machine 

and artificial neural networks. These machine learning 

classifiers were used to distinguish normal and abnormal 

samples. The performance of the proposed work 

methodology is computed in terms of precision, recall, f-

measure and accuracy by which the two classes get detected. 

The comparative analysis of average performance values of 

different classifiers shows that ANN outperforms the other 

classifiers.  
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II. LITERATURE REVIEW 

This section contains a thorough analysis of the pertinent 

literature. A variety of algorithms have been investigated by 

numerous researchers with the goal of identifying lung 

cancer. The level of exploration and research into these 

algorithms, meanwhile, has been rather constrained. 

Arulmurugan and Ananda kumar [9] suggested a system that 

combines the classification power of an ANN with wavelet 

function descriptors. The system initially applies wavelet 

transformation to the incoming data. After that, the data is 

processed, and statistical features including energy, contrast, 

entropy, and autocorrelation are retrieved. The neural 

network classifier uses these measured attributes as input 

parameters. For training purposes, the neural network 

classifier is set up to make use of both feed-forward and 

feedback propagation network architectures. There are 

several training programs used, including Trained, Traingda, 

Traingdm, and Traingdx. In terms of accuracy, the feed-

forward classification falls short of the feedback propagation 

network. With a precision rate of 92.6%, specificity of 100%, 

flexibility of 91.2%, and a mean square error of 0.978, the 

classification system produced promising results. These 

results show that wavelet function descriptors and ANN 

classification work well together for the task at hand [9]. 
Kumar et al. [10] assessed how well five optimization 

methods performed when it came to extracting tumors from 

lung pictures. Among the techniques that were tested were 

GCPSO, inertia-weighted particle swarm optimization, and 

particle swarm optimization (PSO). When the study 

examined the efficiency of median, adaptive median, and 

average filters in the pre-processing stage, the adaptive 

median filter was shown to be the best appropriate for 

medical CT images. Additionally, the researchers employed 

adaptive histogram equalization to enhance picture contrast. 

The better-quality pre-processed photos were then subjected 

to the four optimization methods. The useful outcomes were 

verified using twenty MATLAB lung imaging samples. The 

results of the investigation demonstrated that, at 95.89%, the 

GCPSO algorithm had the highest tumour extraction 

accuracy [10].Sweetlin et al. [11] suggested the use of a 

computer-aided diagnostic (CAD) system to improve the 

consistency and accuracy of the interpretation of pulmonary 

TB images. The system employs a wrapper approach that 

combines a one-against-all SVM classifier with the cuckoo 

search optimization algorithm to determine which subset of 

characteristics is the best. The cuckoo search method was 

applied both with and without the entropy measure in order 

to choose the most relevant characteristics. The selected 

characteristics are then used to train the one-against-all SVM 

classifier. Out of the 98 features retrieved from the sick areas, 

47 features are chosen using the entropy measure, resulting in 

an accuracy of 92.77%. With an accuracy of 91.89%, 51 

characteristics are selected without the use of the entropy 

measure. These results imply that the features used for 

training have a major impact on the classifier's performance 

[11]. Lenin et al. [12] centered on integrating Fuzzy C-Means 

(FCM) with a variety of optimization approaches (ABC, 

Firefly, Cuckoo, and SA) for picture segmentation. For the 

purpose of segmenting abdominal CT images using FCM, a 

novel optimization method known as Crow Search (CS) 

Optimization was presented and contrasted with previous 

methods. The methods were built in MATLAB 2015a after 

the researchers carried out a comprehensive examination to 

choose suitable validation functions for clustering 

approaches. Furthermore, a Raspberry Pi B+ embedded board 

was used to implement the FCM-CS algorithm in hardware. 

In FCM-based picture segmentation, the CS optimization 

approach outperformed competing algorithms and 

demonstrated promising results. The work investigates 

hardware implementation on embedded boards and advances 

picture segmentation [12]. Jena et al. [13] aimed to improve 

the accuracy of early disease diagnosis through the use of 

various techniques. The researchers applied Gaussian and 

Wiener filters to a large volume of scanned images using the 

LIDC dataset to reduce noise. By merging adjacent pixels 

based on seed points, they used region growing segmentation 

to precisely identify the Region of Interest (ROI). 

Subsequently, relevant characteristics like area, perimeter, 

entropy, intensity, and statistical-based features were 

extracted from the segmented areas. A deep Gaussian mixture 

model in a region-based convolutional neural network 

(DGMM-RBCNN) was utilized to decrease dimensionality 

and offer a flexible and nonlinear model for describing the 

picture data. At each layer, Gaussian-based dimensionality 

reduction was used to prevent overly parameterized solutions. 

Metrics used in performance evaluation included Martin's 

correlation coefficient, F-measure, accuracy, sensitivity, and 

specificity. The model trained and tested the image samples 

in a MATLAB environment, and during the 18th epoch, it 

achieved an accuracy of around 87.79% [13].He et al. [14] 

examined an ANN algorithm model that was used to create a 

model for the identification of lung cancer. The model 

conducted a comparative experiment to verify its accuracy 

and used image segmentation algorithms to locate the lung 

cancer lesion area. Lung cancer was detected by the ANN-

based approach with 94.6% accuracy, 95.7% sensitivity, and 

93.5% specificity. Using a combination of image retrieval 

techniques and lung cancer image segmentation algorithms, 

the study successfully displayed the lesion area [14]. Guleria 

et al. [15] carried out a study in which they built prediction 

models for determining the class of hypothyroidism using a 

variety of machine learning-based methodologies. Among 

these techniques were naive Bayes, decision trees, random 

forests, and multiclass classifiers. They also used an ANN 

deep learning model, which is well known for its efficiency 

in handling text data. The authors compared the effectiveness 

of the various classifiers as well as their suggested model with 

earlier works. Their model achieved an accuracy of 

93.8226%, which was higher than that of other studies in the 

field. With accuracy rates of 99.5758% and 99.3107%, 

respectively, and very low error rates of 0.0424 and 0.0689, 

the decision tree and random forest were found to perform 

best, according to the performance evaluation [15].Karthick 

et al [16] presented the S-FNGC method, which improves 

color picture segmentation. It employed shape priority and 

connection measure as a thresholding technique to separate 

items from the background. The approach employed a 

normalized fuzzy network cut measure based on the S 

membership function to tackle structural faults in color 

pictures. The S-FNGC algorithm provided details about the 

object's involvement in the image boundary by using a system 

of S fuzzy sets. It addressed difficulties like inaccurate 

segmentation and poor accuracy. A comparison of the S-

FNGC approach with other methods, such as mask 

thresholding, Gabor filter, GA, and K-Means clustering 

algorithm, showed that it performed better while having the 
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fewest misclassification errors and error rates, which 

improved color image segmentation [16]. 

 Jian et al [17] aimed to increase retinal vascular 

segmentation accuracy for more accurate identification of 

cardiovascular disorders. For feature extraction in medical 

picture segmentation, a Dual-Branch encoder structure based 

on the U-Net model was included into the Dual-Branch-U Net 

framework. The framework utilized a parallel encoder with 

various convolutional modules to enhance the feature 

extraction process and generate richer semantic data. Instead 

of pooling, convolution operations were used for lower 

sampling to control the step size and enable effective 

information fusion. An attention module was implemented in 

the decoder stage to reduce image noise and filter out 

irrelevant features. When tested on the DRIVE and ARIA 

datasets, the suggested strategy outperformed five other 

cutting-edge methods for precisely segmenting retinal 

arteries [17]. 

Lee et al. [18] intended to address the shortcomings in 

particular medical data, which is frequently sparse and 

inconsistent. It recommended a preprocessing technique to 

increase deep learning models' ability to detect 

cardiovascular illnesses from CT scans automatically. During 

the preprocessing phase, the CT images were split into areas 

of interest and uninteresting regions using the Grabcut 

technique and K-means clustering. Three sets of data were 

used to assess the efficacy of deep learning: the original data, 

data treated just using K-means clustering, and data processed 

with both K-means clustering and the Grabcut technique. 

With IRB approval, the study made use of data from Korea's 

Soonchunhyang University Cheonan Hospital. Training 

using the VGG, Inception ResNet V2, and Resnet 50 models 

showed that Resnet 50 had the highest validation and testing 

accuracy. The proposed preprocessing strategy demonstrated 

a considerable improvement in deep learning model 

accuracy, ranging from 10% to 40%. All things considered, 

the study offered a helpful preprocessing method to address 

the limitations of specific medical data and improve the 

effectiveness of deep learning models [18]. 

III. RESEARCH METHODOLOGY 

In this proposed scheme, the technology of image processing 

is to use to detect the lung cancer. Actually, this is done by 

using lung CT scans.  Then the cancer detection task is 

accomplished into four stages so that the lung cancer can be 

localized and classified. All phases of lung cancer detection 

are summed up as. 

1) Pre-processing:  In this phase, lung CT scans image is 

used as input and Adaptive Intensity Adjustment and 

using limited contrast stretching techniques are used.    

2) Segmentation: This second phase applied region-based 

segmentation approach for segmenting the similar and 

dissimilar portions in the CT scans. By means of k-means 

with cuckoo search algorithm. 

3) Feature Extraction: Scale invariant feature transform 

with particle swarm optimization is applied   so that the 

valuable features can be extracted from the lung CT scan 

image. 

4) Classification: The final stage of classification 

implements different classifiers to identify the classifier 

that yields better outcomes among all and is more 

suitable for this research work . The ANN outer performs 

the other classifiers.  

Several methods are employed to identify lung cancer in its 

early stages using image processing techniques. A method 

used to manipulate picture-based data and extract the most 

valuable information is called image processing. Signal 

processing and image processing are comparable in that they 

both take pictures as input, process them, and provide an 

enhanced image as the result [3]. Image processing is now 

advancing quickly and has taken over as the primary area of 

study for engineers. It consists of the three primary processes 

listed below: 

1) Use image acquisition tools to import images. 

2)  Examine and handle the input photos, and 

3) Output the enhanced image for classification purpose. 

Two technologies are being used to process the images: 

digital image processing (DIP) and analogue image 

processing. For physical copies like printed pictures and 

photographs, analogue image processing is used. With the use 

of computers and software, digital processing of the picture 

is used to process digital images. The primary steps in digital 

image processing are information extraction, augmentation, 

pre-processing, and presentation [2]. Figure 2 illustrates the 

general procedures used in the digital picture processing. 

Figure 2 illustrates the general procedures used in the digital 

picture processing. 

 
 

Fig. 2. Steps of Image Processing and Classification. 
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A. Simulation Parameters 

The parameters used in the simulation analysis of the 

proposed work are discussed below. 

Precision measures how well a model predicts the favorable 

outcomes. To put it another way, precision is the ratio of 

actual positive forecasts to all of the model's positive 

predictions. It quantifies the quantity of positive results from 

model. This is calculated by use of below mentioned formula.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (1) 

Recall also called sensitivity or true positive rate are 

employed in categorization tasks. It assesses a model's 

capacity to locate every pertinent instance within a dataset, 

paying particular attention to true positive predictions. It is 

also known as recall or true Positive rate calculator. It is the 

ratio of correctly identified outputs to the sum of actual 

correct values. This is calculated by use of below mentioned 

formula. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (2) 

The harmonic mean of recall and accuracy is used to calculate 

F-meaure value. Since the F-measure is a harmonic mean, 

recall and accuracy are factors that affect its value. When 

recall and accuracy are identical, it can reach a maximum 

value of 1.  

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 (3) 

 

The most important indicator that is used for calculating the 

performance of the model is accuracy. It is actually 

calculating the fraction of prediction the model got right. The 

equation used for the calculation is stated below:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4) 

𝑊ℎ𝑒𝑟𝑒, 𝑇𝑃 →  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒,  𝑇𝑁 →
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒,   𝐹𝑃 →

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, and 𝐹𝑁 → 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒. 
 

The analysis of the model efficiency is based on the values 

of parameters discussed in the section.  

IV. RESULTS AND DISCUSSION 

The segmentation and classification approaches created for 

lung cancer detection and prognosis are evaluated. The results 

obtained from the implemented segmentation approaches are 

used to refine the overall classification model. The best 

outcomes are used to assure the approach for segmentation 

stage and the outcomes are fed to the classification model. 

The performance analysis is discussed in detail, 

encompassing its performance metrics, predictive accuracy 

and execution time. 

 

A. Precision Analysis 

The Precision Analysis of Segmentation Techniques in Table 

I offers a detailed breakdown of the precision metrics derived 

from various segmentation methodologies employed in lung 

cancer detection. This table serves as a comprehensive 

comparison platform, allowing an in-depth assessment of 

each technique's precision performance in isolating lung 

cancer regions within medical imaging data. 

This analysis strongly highlights the superior performance of 

k-means with csa, The Figure 3. Showcases the Average 

Precision Analysis of Segmentation Techniques, comparing 

the performance of segmentation methods like K-means, K-

means with PSO, ABC, FFA, and K-means with CSA in 

identifying lung cancer regions within medical images across 

various sample sizes. The data illustrates that K-means with 

CSA consistently achieves higher average precision 

compared to other segmentation techniques across different 

sample sizes. Starting at 0.817 and reaching 0.907, K-means 

with CSA consistently outperforms other methods, 

demonstrating its effectiveness in accurately segmenting lung 

cancer regions. This analysis strongly highlights the superior 

performance of K-means with CSA in achieving higher 

average precision throughout different sample sizes, 

establishing it as a robust and reliable method for accurately 

identifying lung cancer regions within medical images. In 

Figure 3 the provided percentages represent the superior 

performance of K-means with CSA in lung cancer 

segmentation compared to other techniques. Demonstrating 

an 11.05% improvement over standard K-means, this method 

stands out for its significant advancements in accurately 

identifying and delineating lung cancer instances. 

 
 

Table I. PRECISION ANALYSIS OF SEGMENTATION TECHNIQUES 

 
Sample 

Images 

K-

Means 

K-

Means 
with 

PSO 

K-

means 
with 

ABC 

K-

means 
with 

FFA 

K-

means 
with 

CSA 

10 0.789 0.835 0.865 0.867 0.878 

20 0.793 0.838 0.874 0.871 0.879 

40 0.8 0.847 0.877 0.876 0.886 

60 0.804 0.854 0.879 0.88 0.89 

80 0.808 0.857 0.885 0.887 0.894 

100 0.809 0.859 0.889 0.888 0.9 

150 0.812 0.868 0.89 0.895 0.902 

200 0.816 0.876 0.896 0.898 0.91 

250 0.823 0.879 0.899 0.903 0.912 

300 0.825 0.884 0.9 0.908 0.916 

350 0.832 0.885 0.905 0.916 0.922 

400 0.833 0.894 0.907 0.921 0.927 

450 0.839 0.899 0.908 0.927 0.935 

500 0.844 0.901 0.911 0.935 0.939 
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Fig. 3. Average precision analysis of segmentation techniques. 

 

Additionally, compared to K-means with PSO, K-means with 

CSA showcases a 4.23% enhancement, highlighting its 

substantial superiority in refining segmentation accuracy. 

Similarly, when compared to K-means integrated with ABC 

and FFA, K-means with CSA exhibits improvements of 

1.63% and 0.94%, respectively. These figures underscore the 

considerable lead of K-means with CSA, emphasizing its 

efficacy in enhancing precision and accuracy in lung cancer 

segmentation over these other specialized methodologies. 

In Figure 4. The provided percentages represent the superior 

performance of K-means with CSA in lung cancer 

segmentation compared to other techniques. Demonstrating 

an 11.05% improvement over standard K-means, this method 

stands out for its significant advancements in accurately 

identifying and delineating lung cancer instances. 

Additionally, compared to K-means with PSO, K-means with 

CSA showcases a 4.23% enhancement, highlighting its 

substantial superiority in refining segmentation accuracy. 

Similarly, when compared to K-means integrated with ABC 

and FFA, K-means with CSA exhibits improvements of 

1.63% and 0.94%, respectively. These figures underscore the 

considerable lead of K-means with CSA, emphasizing its 

efficacy in enhancing precision and accuracy in lung cancer 

segmentation over these other specialized methodologies.

 

 
Fig. 4. Improvement Precision Analysis of Segmentation Techniques. 
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Fig. 5. Average Recall Analysis of Segmentation Techniques. 

 

 

B. Recall Analysis  

In Figure 5, which represents the Average Precision Analysis 

of Segmentation Techniques, K-means with CSA stands out 

with the highest precision value of 0.891 compared to other 

methodologies. This precision metric indicates the accuracy 

in identifying lung cancer instances within the dataset. In 

contrast, alternative techniques like K-means, K-means with 

PSO, K-means with ABC, and K-means with FFA show 

precision values ranging between 0.838 and 0.858. The 

substantial margin between K-means with CSA and other 

methods underscores its superior performance in precise lung 

cancer segmentation. Overall, the figure clearly demonstrates 

that K-means with CSA outperforms other segmentation 

techniques, showcasing its robustness and effectiveness in 

accurate lung cancer instance delineation. In Figure 6. the 

improvement percentages of K-means with CSA over 

alternative segmentation techniques, K-means, K-means with 

PSO, K-means with ABC, and K-means with FFA, 

demonstrate its superior performance in lung cancer 

segmentation. K-means with CSA showcases significant 

enhancements, exhibiting a 6.47% improvement over K-

means, 4.88% over K-means with PSO, 6.17% over K-means 

with ABC, and 3.85% over K-means with FFA. These values 

emphasize the substantial lead of K-means with CSA, 

highlighting its robustness and effectiveness in refining the 

accuracy and precision of lung cancer instance identification 

compared to established segmentation techniques. 

C. F-measure Analysis 

In Figure 7, the Average F-measure Analysis of Segmentation 

Techniques provides insights into the accuracy of various 

methodologies in identifying lung cancer instances within the 

dataset. K-means with CSA notably stands out, showcasing 

the highest average F-measure of 0.899 among the compared 

segmentation techniques, K-means, K-means with PSO, K-

means with ABC, and K-means with FFA. Comparatively, 

other techniques exhibit slightly lower average F-measure 

values: K-means with a score of 0.827, K-means with PSO at 

0.86, K-means with ABC at 0.865, and K-means with FFA at 

0.878. However, K-means with CSA's substantially higher 

average F-measure value signifies its superior accuracy in 

identifying lung cancer instances compared to these methods. 

This indicates that K-means with CSA is better suited for this 

task, offering enhanced accuracy in identifying and 

segmenting lung cancer instances compared to the other 

examined techniques. 

. 

 
Fig. 6. Improvement Recall Analysis of Segmentation Techniques. 
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Fig. 7. Average F-measure Analysis of Segmentation Techniques. 

 

Figure 8, depicting the Improvement F-measure Analysis of 

Segmentation Techniques, showcases the remarkable 

advancements achieved by K-means with CSA over 

alternative methodologies, K-means, K-means with PSO, K-

means with ABC, and K-means with FFA in accurately 

identifying lung cancer instances within the dataset. The 

improvement values emphasize the substantial performance 

gaps favoring K-means with CSA, an impressive 8.74% 

enhancement over K-means, a notable 4.56% lead over K-

means with PSO, a 3.92% improvement over K-means with 

ABC, and a 2.41% leap over K-means with FFA. These 

underscore the consistent superiority of K-means with CSA, 

highlighting its efficacy in refining accuracy and precision in 

lung cancer instance identification compared to other 

methodologies, positioning it as a frontrunner in this domain. 

D. Accuracy Analysis 

The Average Accuracy Analysis of Segmentation 

Techniques, depicted in Figure 9, presents a comparative 

evaluation of diverse methodologies for identifying lung  

cancer regions within a dataset. Among the techniques 

assessed, K-means with CSA emerges as the standout 

performer, showcasing significantly higher average accuracy 

compared to K-means, K-means with PSO, K-means with 

ABC, and even K-means with FFA.  Starting at 81.268, K-

means sets the baseline for accuracy, while K-means with 

CSA remarkably outperforms all other techniques, 

culminating in an accuracy of 93.83. This notable disparity in 

accuracy underscores the robustness and efficacy of K-means 

with CSA in precisely identifying lung cancer regions within 

medical images. The substantial gap in accuracy values 

emphasizes the method's superiority and its potential 

significance in medical diagnostics. This analysis underlines 

the pivotal role of segmentation techniques in medical 

imaging analysis, particularly in lung cancer identification. 

K-means with CSA showcases remarkable promise, offering 

substantially higher average accuracy compared to other 

methodologies considered in this evaluation. 

 

 

 
Fig. 8. Improvement F-measure Analysis of Segmentation Techniques. 
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Fig. 9. Average Accuracy Analysis of Segmentation Techniques. 

 

The Improvement Accuracy Analysis, illustrated in Figure 

10, outlines the substantial performance enhancements of K-

means with CSA over other segmentation techniques like K-

means, K-means with PSO, K-means with ABC, and K-

means with FFA in accurately identifying lung cancer regions 

within datasets. The improvement values vividly illustrate the 

significant strides made by K-means with CSA, showcasing 

an advancement of 15.47% over K-means, 13.63% over K-

means with PSO, 9.29% over K-means with ABC, and 1.63% 

over K-means with FFA. These substantial margins 

emphasize the pronounced effectiveness of K-means with 

CSA in achieving higher accuracy compared to alternative 

methods, particularly in precisely delineating lung cancer 

regions in medical images. This clear distinction in 

improvement values reaffirms the superiority of K-means 

with CSA, indicating its ability to notably enhance accuracy 

in identifying lung cancer instances. This analysis 

underscores the potential of K-means with CSA as a 

promising approach for improving accuracy in lung cancer 

identification, thus offering considerable promise in 

advancing diagnostic precision and subsequent medical 

interventions. 

E. Analysis of Machine Learning based Lung Cancer 

Classification  

To present a comprehensive simulation analysis, the data is 

divided into two distributions using four classifiers. 

70:30 Dataset distribution: In this, 70% of the data is used 

for the training and learning of the system, and 30% is used 

for the direct testing of the system. The performance analysis 

is further, summarized in the next sections.  

80:20 Dataset distribution: In this dataset distribution, 80% 

of the data is used for the training of the system while 20% 

data is reserved for the testing and the performance is 

evaluated for four performance metrics, namely precision, 

recall, f-measure and accuracy. 

F. Precision Analysis 

The precision improvement analysis, as illustrated in Fig 11, 

showcases significant strides made by different machine 

learning models in comparison to the referenced ANN within 

the context of lung cancer classification. The findings reveal 

substantial advancements: 6.89% enhancement over DT, 

4.17% improvement over K-NN, and 2.35% boost over SVM. 

These improvements emphasize the selected methodology's 

efficacy in achieving more precise and reliable lung cancer 

classifications. The varied improvements across algorithms 

highlight their unique strengths and capabilities within this 

specific context. Ultimately, these insights offer valuable 

guidance for tailored model selection, potentially leading to 

more refined and accurate lung cancer diagnosis 

methodologies and improved patient outcomes. 

 
Fig. 10. Improvement Accuracy Analysis of Segmentation Techniques 
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Table II.Analysis of Machine Learning based Lung Cancer Classification 
 

Sample 

Images 

 

DT KNN SVM ANN 

10 0.8641 0.8882165 0.9006303 0.9230567 
20 0.865106 0.8921989 0.902483 0.9269329 

40 0.86868 0.8927591 0.9067354 0.9270733 

60 0.871208 0.8954844 0.9072042 0.9286658 
80 0.872908 0.896837 0.9085074 0.9298326 

100 0.875229 0.8978071 0.9128708 0.9335901 

150 0.877572 0.8990183 0.9150535 0.9377428 
200 0.87849 0.8991941 0.9162113 0.9404841 

250 0.879095 0.9034083 0.9181335 0.9448038 

300 0.883354 0.9050878 0.9227224 0.9465817 

350 0.885535 0.9082404 0.9254794 0.9476081 

400 0.886333 0.9083824 0.929864 0.948793 

450 0.889082 0.9106796 0.9318532 0.9489045 

500 0.891041 0.9114123 0.9351163 0.9505099 

80:20 Distribution 

10 0.8895 0.8940114 0.9120519 0.9239248 

20 0.890698 0.8971519 0.9149486 0.9278771 

40 0.892251 0.8990347 0.9190011 0.9324453 

60 0.892917 0.8999083 0.9194381 0.9336355 

80 0.894016 0.9010292 0.9210351 0.9369384 

100 0.896703 0.9012467 0.9246246 0.9382364 

150 0.897577 0.9050973 0.9271314 0.9389645 

200 0.898354 0.9063255 0.9300074 0.9423829 

250 0.898544 0.908011 0.9317744 0.9457787 

300 0.899793 0.9108408 0.9319673 0.9493111 

350 0.903864 0.912637 0.932505 0.9506963 

400 0.906497 0.9152802 0.9360221 0.9583658 

450 0.908674 0.9196991 0.9371856 0.9655451 

500 0.910693 0.924252 0.9380161 0.9688778 

 

 
Fig. 11. Improvement Analysis of Precision for 70:30 Distribution.  
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Fig. 12. Improvement Analysis of Precision for 80:20 Distribution. 

 

The improvement analysis of precision as represented in 

Figure 12 for an 80:20 distribution presents compelling 

insights into the comparative advantages of proposed ANN 

over various machine learning models. The results showcase 

substantial strides in performance metrics, where the ANN 

method surpasses the other framework by 5.03%, 

demonstrating its robustness and efficacy in capturing 

intricate patterns within the dataset. Notably, the 

improvement over K-NN by 4.08% signifies a considerable 

enhancement in precision, emphasizing the superiority of the 

chosen methodology in handling classification tasks, 

especially in scenarios reliant on proximity-based algorithms. 

 Moreover, the noteworthy 1.82% improvement over SVM 

underscores the nuanced intricacies the selected method 

encapsulates, outperforming a widely-used algorithm known 

for its versatility in high-dimensional spaces. These findings 

not only underscore the effectiveness of the selected approach 

but also emphasize its potential in delivering superior 

precision rates, crucial in domains demanding accurate and 

reliable predictions. 

In Figure 13, the comparison of average recall values between 

the ANN and alternative machine learning techniques across 

the 70:30 and 80:20 distributions highlight distinct 

performance patterns in lung cancer classification., in the 

70:30 distributions, the ANN maintains superior recall at 

0.9240, surpassing DT (0.8862), K-NN (0.8943), and SVM 

(0.9126). Similarly, within the 80:20 split, the ANN 

consistently exhibits higher recall values compared to DT, K-

NN, and SVM. Starting at 0.9486 for ANN, the recall 

decreases gradually for DT (0.9064), K-NN (0.9210), and 

SVM (0.9278).  These findings underscore the ANN's 

consistent advantage in accurately capturing positive 

instances within lung cancer datasets across both 

distributions. 

G. Recall Analysis  

Recall Analysis for lung cancer classification across two 

distributions 70:30 and 80:20 distributions highlight distinct 

performance in lung cancer classification in 70:30 

distribution, The ANN outperforms  

Fig. 13. Average Comparison of Precision.  
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Fig. 14. Analysis of Recall for 70:30 Distribution

In Figure 14, the improvement analysis of recall for lung 

cancer classification showcases how the proposed ANN 

compared to various machine learning models performs. The 

recorded improvement percentages, 4.65% over DT, 2.99% 

over K-NN, and 2.24% over SVM, highlight the superior 

performance of these models in accurately identifying 

positive instances within lung cancer datasets. These 

improvements demonstrate the efficacy of ANN over the 

alternative models in achieving better recall rates compared 

to the baseline. In the realm of lung cancer classification, 

where precise identification of malignancies is crucial, the 

ANN emphasize the potential to better detect cancerous cells

In Figure 15, the comparison of average precision values 

between the ANN and other techniques across 70:30 and 

80:20 distributions is visually depicted. This graphical 

representation illustrates how different machine learning 

models perform concerning precision metrics within these 

specific dataset splits. For the 70:30 distribution, the ANN 

maintains a higher precision starting at 0.9240 compared to 

DT (0.8862), K-NN (0.8943), and SVM (0.9126). Similarly, 

in the 80:20 split, the ANN demonstrates notably higher 

precision values compared to DT, K-NN, and SVM. Starting 

from 0.9486 for ANN, the precision values gradually 

decrease for the other techniques, with DT at 0.9064, K-NN 

at 0.9210, and SVM at 0.9278 The depiction in Figure 16 

underscores the significance of the ANN as a preferred choice 

for precision-driven classification tasks, providing a 

compelling argument for its superiority over DT, K-NN, and 

SVM in terms of precision in the context of this analysis. 

 

H. F-measure Analysis  

The Improvement Analysis for the 70:30 F-measure 

distribution as illustrated in Figure 16 reveals substantial 

advancements of the proposed ANN over the alternative 

machine learning models in lung cancer classification. The 

recorded improvements as 5.57% over DT, 3.74% over K-

NN, and 1.80% over SVM underscore the efficacy of these 

models in achieving higher F-measure values. These 

percentages indicate significant enhancements of ANN in 

precision and recall balance for identifying lung cancer 

instances compared to these techniques. This data emphasizes 

the potential superiority of the ANN over diverse models in 

accurately identifying malignancies within the 70:30 dataset 

split. The Improvement Analysis of F-measure for lung 

cancer classification in the 80:20 distribution shown in Figure 

17 demonstrates a significant advancement of ANN over the 

alternative machine learning models. The reported 

improvement percentages, 4.84% over DT, 3.54% over K-

NN, and 2.03% over SVM highlight these models' superior 

performance in achieving higher F-measure values. These 

findings emphasize the potential of these models to enhance 

the balance between precision and recall in identifying lung 

cancer instances, crucial for accurate diagnoses and improved 

patient outcomes. It provides valuable insights for model 

selection, aiming to achieve better and more comprehensive 

diagnoses in lung cancer classification, thereby potentially 

contributing to improved patient outcomes. In Figure 18, the 

comparison of average F-measure values across the 70:30 and 

 80:20 and distributions represent the performance 

differences among the ANN and alternative machine learning 

techniques in lung cancer classification.
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Fig. 15. Improvement Analysis of Recall for 80:20 Distribution

These metrics shed light on the distinct trends observed 

across both distributions. Within, the 70:30 distribution, the 

ANN maintains a superior F-measure of 0.9311, 

outperforming DT (0.8819), K-NN (0.8974), and SVM 

(0.9146). Similarly, in the 80:20 split, the ANN consistently 

demonstrates higher F-measure values compared to DT, K- 

NN, and SVM. Starting at 0.9462 for ANN, the F-measure 

decreases gradually for DT (0.9025), K-NN (0.9138), and 

SVM (0.9273).  

 

Fig. 16. Average Comparison of Recall. 
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Fig. 17. Improvement Analysis of F-measure for 70:30 Distribution. 

 
 

I. Accuracy Analysis  

The Accuracy Analysis of various machine learning models 

concerning lung cancer classification across two distinct 

distributions 70:30 and 80:20. It provides comprehensive 

view of how different machine learning models perform in 

classifying lung cancer cases across varied data splits.  

In Figure 19, the improvement percentages as, 3.14% over 

DT, 1.73% over K-NN, and 1.52% over SVM highlighted in 

the improvement analysis of accuracy within the 70:30 

distribution, demonstrate the superior performance of ANN 

compared to the alternative models in lung cancer 

classification. While the improvements are comparatively 

lower than in some other distributions, they still indicate the 

potential of these models to provide increased accuracy rates  

in identifying lung cancer instances. This underscores the 

importance of exploring ANN over various machine learning 

approaches to optimize accuracy in lung cancer classification 

tasks within different dataset distributions. 

 

 
Fig. 18. Improvement Analysis of F-measure for 80:20 Distribution. 
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Fig. 19. Average Comparison of F-measure. 

 

 

In Figure 20, the improvement values are depicted, 

showcasing 3.99% enhancement over DT, 2.04% over K-NN, 

and 2.34% over SVM compared to the proposed ANN within 

the 80:20 accuracy distribution for lung cancer classification. 

These figures underscore the alternative models' increased 

performance, suggesting the potential of ANN to outperform 

the other models in accuracy rates for identifying lung cancer 

instances. This highlights the significance of exploring 

diverse machine learning models, as depicted in Figure 20. 

To potentially achieve superior accuracy in lung cancer 

classification tasks. 

In Figure 22, the comparison between average accuracy 

values across the 70:30 and 80:20 distributions demonstrate 

the performance variations between the ANN and alternative 

machine learning techniques in lung cancer classification. 

Within, the 70:30 distributions, the ANN starts at 93.15%, 

surpassing DT (90.31%), K-NN (91.57%), and SVM 

(91.75%). Similarly, the 80:20 split, the ANN exhibits higher 

accuracy compared to DT, K-NN, and SVM. Starting at 

95.50% for ANN, accuracy decreases gradually for DT 

(91.83%), K-NN (93.59%), and SVM (93.31%). These 

results highlight the ANN's advantage in accuracy over 

alternative models across both distributions. However, within 

the 70:30 split, all models showcase lower accuracy rates. 

This emphasizes the importance of dataset configurations in 

model performance. While the ANN consistently 

outperforms other models, the comparison indicates the 

potential competitiveness of alternative models in specific 

dataset distributions. Thus, the findings in Figure 21 

underscore the significance of selecting appropriate models 

tailored to dataset characteristics for optimizing lung cancer 

classification accuracy. 

 
Fig. 20. Improvement Analysis Accuracy for 70:30 Distribution. 
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Fig. 21. Improvement Analysis of Accuracy for 80:20 Distribution. 

 

J. Execution Time Analysis 

The execution time for the proposed model is evaluated while 

considering both the training to testing dataset distributions 

in the following section. 

K. Training and Testing Analysis for 70:30 Distribution 

The below graph presents a comprehensive analysis of time 

consumed in Training and Testing phases utilizing a 70:30 

distribution strategy. This distribution method dedicates 70% 

of the dataset for training the machine learning models, while 

the remaining 30% is utilized for direct testing. The analysis 

across this dataset distribution provides invaluable insights 

into the performance and efficacy of the models in lung 

cancer classification. 

L. Overall Training Time Analysis  

Table III showcases the training time analysis across two 

distinct dataset distributions, utilizing 70% and 80% of the 

available data for model training. This comparison aims to 

explore the performance variations and model adaptability 

concerning varying data proportions. Figure 24 and Table III 

present a comparative analysis of the training times for 

various classifiers using 70% and 80% of the dataset for 

model training. The training times are depicted in hours for 

DT, K-NN, SVM, and ANN. In the 70% training scenario, 

the classifiers took 2.79 hours to 2.87 hours for training, with 

ANN requiring slightly more time at 2.88 hours. However, 

when the training data increased to 80%, the training times 

across all classifiers increased, with ANN taking the longest 

at 3.04 hours. This comparison indicates that as the dataset 

size increases, especially with 80% of the data, the training 

time for all classifiers, Particularly ANN, escalates, 

suggesting higher computational demand for training larger 

datasets. Despite its longer duration for training, ANN 

potentially yield superior predictive accuracy and 

demonstrate proficiency in recognizing intricate patterns 

within lung cancer data.  

M. Overall Testing Time Analysis 

This comparison aims to highlight the impact of dataset size 

on model performance during the testing phase. The testing 

time analysis in both Figure 23 and Table III highlights the 

computational durations for various classifiers on lung cancer 

data. Across DT, K-NN, SVM, and ANN, the testing time is 

consistently longer for the 20% testing dataset compared to 

the 30% dataset.  

 

 
Fig. 22. Average Comparison of Accuracy. 
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Fig. 23. Training Time Analysis using 70:30 Distribution

 

For the 30% testing data, the values for DT, K-NN, SVM, and 

ANN are approximately 38.57819, 39.165571, 39.236453, 

and 39.908907 milliseconds, respectively. Conversely, for 

the 20% dataset, the corresponding values are approximately 

38.006227, 39.24751, 39.826375, and 40.445804 

milliseconds. This illustrates that the 20% dataset 

consistently requires more computational time for evaluation 

across all classifiers. Specifically, the ANN classifier exhibits 

notably longer testing durations compared to other techniques 

in both scenarios. These results underscore the impact of 

dataset size on computational load during testing, with larger 

datasets demanding more time for evaluation, and ANN 

showcasing extended testing durations in both 30% and 20% 

dataset scenarios. The testing time analysis demonstrates that 

although the ANN classifier requires more computational 

time compared to other techniques for lung cancer 

classification, it showcases a commendable ability to predict 

lung cancer accurately 

N. Comparative Analysis 

Table V provides a comparative analysis of various classifiers 

across different years, focusing on their Precision, Recall, F-

measure, and Accuracy metrics. This table offers an 

insightful overview of how different classifiers from distinct 

studies perform across these crucial evaluation criteria. The 

Comparative Analysis of Different Classifiers, as depicted in 

Table V, provides an insightful overview of various models' 

performance metrics sourced from different studies across 

multiple years. In 2018, Arulmurugan and Anandakumar 

introduced the FFBPNN, achieving commendable Precision, 

Recall, and F-measure scores of 0.9124, 0.8934, and 0.9028, 

respectively. The subsequent year, Sweetlin et al. presented a 

SVM model with improved Precision, Recall, and F-measure 

scores of 0.9142, 0.9012, and 0.9076535. In 2021, Jena et al. 

introduced the RBCNN with a competitive performance, 

securing scores of 0.9045, 0.9128, and 0.908631 for 

Precision, Recall, and F-measure. 

 

 
Fig. 24. Testing Time Analysis using 70:30 Distribution 

TABLE III. COMPARATIVE ANALYSIS OF THE TRAINING TIMES FOR VARIOUS CLASSIFIERS USING 70% AND 80% OF THE DATASET FOR MODEL TRAINING. 

 

 DT 

(hrs) 

KNN 

(hrs) 

SVM 

(hrs) 

ANN (hrs) 

70% 
Training 

2.793
2157 

2.8102555 2.8509576 2.8798604 

80% 

Training 

2.904

2244 

2.9710403 2.9610269 3.0357692 
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Fig. 25. Overall Training Time Analysis. 

 

The graphical representation provides visual comparison of 

above classifiers overtime, highlighting the consistent the 

trend of advancement in performance matrix particular see in 

the ANN models. However, the most recent studies in 2022 

showcased even more promising results. He et al. introduced 

an ANN, achieving substantial improvements with Precision, 

Recall, and F-measure scores of 0.9298, 0.9321, and 

0.9309486, respectively. Remarkably, the proposed ANN 

model demonstrated further enhancement, reaching 

impressive scores of 0.9437843, 0.9485698, and 0.9461641 

for Precision, Recall, and F-measure. The graphical 

representation in Figure 24 provides a visual comparison of 

these classifiers over time, highlighting the consistent trend 

of advancement in performance metrics, particularly seen in 

the ANN-based models. This comparison underscores the 

evolution and progression of classifier models, emphasizing 

the ongoing efforts to improve predictive accuracy and model 

robustness within this domain. 

 

 
TABLE IV. TESTING COMPARATIVE ANALYSIS FOR VARIOUS CLASSIFIERS. 

 

 

 
 

 

 
 

 

 
 

 

 

 
Fig. 26. Overall Testing Time Analysis. 
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TABLE V. COMPARATIVE ANALYSIS OF VARIOUS CLASSIFIERS ACROSS DIFFERENT YEARS. 
 

Referred Work Classifiers Precision Recall F-measure 

Arulmurugan and 

Anandakumar (2018) [33] 

FFBPNN 0.9124 0.8934 0.9028 

Sweetlin et al. (2019) [98] SVM 0.9142 0.9012 0.9076535 

Jena et al. (2021) [106] Region-based Convolutional Neural Network (RBCNN) 0.9045 0.9128 0.908631 

He et al. (2022)  [37] ANN 0.9298 0.9321 0.9309486 
Proposed ANN 0.9437843 0.94856

98 

0.9461641 

 

 
 

Fig. 27. Comparative Analysis of Parameters. 

 

 

 
 

Fig. 29. Comparative Analysis of Accuracy. 
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Fig. 30. Comparative Analysis of Parametric Values. 

 

Figure 29. Comparative analysis of accuracy, presents a 

comprehensive overview of accuracy across different 

classifiers reported in various studies spanning from 2018 to 

2022. The depicted accuracy values showcase the 

performance of each classifier in different research works. In 

2018, Arulmurugan and Anandakumar introduced FFBPNN 

with an accuracy of 92.6%. Sweetlin et al. in 2019 reported 

an accuracy of 92.15% using SVM. Jena et al. in 2021 

introduced Region-based Convolutional Neural Network 

(RBCNN) with an accuracy of 88.84%. Subsequently, He et 

al. in 2022 proposed an ANN classifier achieving an accuracy 

of 94.6%. Notably, the Proposed ANN in outperformed 

previous classifiers, reaching an accuracy of 95.496861, 

indicating significant advancements in classification 

accuracy compared to earlier methods. This comparison 

underscores the progression and enhancements achieved in 

accuracy by different classifiers over the referenced years. 

V. CONCLUSION 

Utilizing the Lung Image Database's meticulously annotated 

CT scan images, this study employed advanced image 

analysis techniques. The Scale Invariant Feature Transform 

(SIFT) expedited feature extraction, significantly reducing 

processing time in subsequent classification phases. This 

comprehensive assessment spanned diverse dataset 

distributions (70:30 and 80:20), shedding light on the efficacy 

of various machine learning models for lung cancer 

classification. Among the models examined, the ANN 

consistently stood out, demonstrating unparalleled 

performance in accurately identifying and delineating lung 

cancer instances. Across both dataset distributions, the ANN 

showcased exceptional metrics: recall (0.9240 / 0.9486), 

precision (0.9240 / 0.9486), F-measure, and accuracy 

(93.15% / 95.50%), surpassing Decision Trees, K-Nearest 

Neighbors, and SVM. Moreover, this study emphasizes the 

critical alignment of model selection with dataset 

configurations to optimize accuracy, providing a strategic 

pathway for refining lung cancer diagnostic systems and 

potentially enhancing patient outcomes. Additionally, it 

reaffirms the significance of integrating k-means with CSA 

for highly precise lung cancer segmentation, further 

bolstering the study's credibility and offering avenues for 

future research and implementation. In essence, this 

investigation substantiates the ANN's efficacy in lung cancer 

classification, underlining the pivotal role of advanced 

segmentation techniques. The study's findings offer crucial 

insights for advancing diagnostic approaches and treatment 

protocols in combating this formidable health challenge. The 

execution time analysis and comparative analysis also 

justified the effectiveness of the proposed lung cancer 

detection and classification. Despite of the fact that utilization 

of ANN in the methodology resulted in slight increase in the 

training and testing time. However, it can be overlooked due 

to overall improved performance owing to the involvement 

of ANN. 
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