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Abstract—This paper proposes a salient object detection
model (MLFNet) based on extracting multi-level features from
RGB images and depth images. The MLFNet model consists
of two parallel learning networks specific to RGB images and
depth images, as well as a cross-modal shared learning network.
To effectively capture the salient object feature information,
a multi-scale feature extraction module (FEM) is constructed
in two image-specific encoders in this paper. It adopts dilated
convolutions with multiple kernel sizes to perceive both global
and local features of the image, eliminating the differences of
salient objects, thereby enabling the model to effectively locate
salient objects. To effectively integrate the specific features
of RGB images and depth images, this paper constructs a
dual-attention adaptive fusion module (DASM) in the shared
encoder. It adopts channel attention and spatial attention to
learn the specific features of RGB images and depth images,
and then adaptively fuses the two image features through scalar
values, thereby enhancing the shared feature output. In the
shared decoder, this paper constructs a dynamic feature fusion
module (DFM). It enhances the final saliency detection results
by further integrating the specific features of RGB images
and depth images to enrich the shared features. This paper
validates the effectiveness of the MLFNet model on four RGB-
D SOD benchmark datasets. Its highest accuracy rate for
significance detection reached 94.3%, and the average accuracy
rate was 93.1%. The experimental results show that the MLFNet
proposed in this paper can detect complete salient objects in
complex visual scenes. It has better robustness and accuracy
compared with the existing models.

Index Terms—salient object detection, encoder-decoder, fea-
ture fusion, adaptive.

I. INTRODUCTION

SALIENT object detection (SOD) aims to simulate the
human visual attention mechanism and extract the ob-

jects that the human eye particularly focuses on through
a complete detection model [1]. In recent years, salient
object detection has played a significant role in visual tasks
such as person re-identification, weakly supervised semantic
segmentation, and image quality assessment [2–4]. With the
development of the field of computer vision, the demand
for the preservation and transmission of key information in
images has become increasingly prominent. Recent studies
have shown that image saliency detection models based on
deep learning have achieved remarkable results. However,
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the research objects of these models are mainly single-
modal visible light (Red-Green-Blue, RGB) images. RGB
images can provide color or texture information of the target
to be detected, but they lose the three-dimensional spatial
information of the target, which makes the model unable to
obtain accurate salient object detection results in complex
backgrounds such as low contrast. Researchers have found
that introducing depth images can enable models to obtain
more depth information, thus making the RGB-D image
salient object detection model based on visible light and
depth the mainstream approach. Depth images are different
from RGB images in that they can provide spatial prior
information of the target to be detected in the scene, thereby
improving the accuracy of salient object detection. However,
due to the limitations of imaging conditions, RGB images
and depth images will contain a large amount of interfering
information. Therefore, how to eliminate interfering infor-
mation and effectively integrate the specific features of the
two images is of great significance [5].

At present, in the field of image salient object detection
based on deep learning, according to the two principles of
image information fusion, it is mainly divided into three
categories: RGB-D image salient object detection methods
based on pixel-level fusion, decision-level fusion and feature-
level fusion [6]. The RGB-D SOD method based on pixel-
level fusion adopts a single-branch network structure. At the
input end, it first fuses the RGB image and the depth image,
then extracts the specific features of the image through a
multi-level feature learning network from the fused image,
and finally conducts saliency detection through a saliency ob-
ject generation network. The RGB-D SOD method based on
decision-level fusion adopts a dual-branch network structure.
It uses the specific feature learning networks of RGB images
and depth images to extract the features of the two types
of images respectively. Then, the generated saliency maps
of each are fused using a decision-level fusion strategy to
produce the final saliency map. The RGB-D SOD method
based on feature-level fusion also adopts a dual-branch
structure and fuses the specific features of different levels
of the two images through a cross-modal fusion module,
thereby further enhancing the final saliency detection results.
Since RGB-D SOD methods based on pixel-level fusion and
decision-level fusion directly extract and fuse the original
features from the backbone network without deeply consid-
ering the importance of multi-level features, these methods
are prone to be restricted by low-quality modality data and
redundant cross-modal features. In addition, the dual-branch
network structure of feature-level fusion can fully integrate
the multi-level features of the two images and mine the global
context information in the scene. Therefore, the RGB-D SOD
method based on feature-level fusion has received increasing
attention.
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Due to the fact that the interference information contained
in low quality RGB images and depth images can have a neg-
ative impact on the saliency detection results. To address this
issue, this paper constructs a multi-scale feature extraction
module FEM that incorporates multiple convolutional kernels
and embeds it into the specific feature learning networks for
RGB images and depth images. FEM learns features through
atrous convolutions with multiple kernel sizes to capture
image context information at different scales, thereby ex-
tracting more abundant salient features. To address the issue
that the two types of image features cannot be effectively
fused, this paper constructs a unified dual-attention adaptive
fusion module, DASM. It adopts channel attention and spatial
attention to extract image feature information and cross-fuse
them, thereby enhancing the specific features of RGB images
and depth images. Then, scalar value adaptive fusion of the
two image features is introduced to enhance the output of the
shared network. To fully utilize the specific features of the
two types of images, this paper constructs a dynamic feature
fusion module DFM. It fuses by integrating specific features
of RGB images and depth images into a shared decoder
to enrich the shared features, thereby generating the final
saliency detection result.

II. RELATED WORK

Multimodal feature fusion is a key issue in RGB-D salient
object detection, aiming to effectively integrate the specific
features of RGB images and depth images to enhance the fi-
nal saliency detection performance.The existing fusion meth-
ods can be classified into pixel-level fusion methods, feature-
level fusion methods and decision-level fusion methods.

A. pixel-level fusion methods

Pixel-level fusion-based methods typically adopt a single-
branch network structure as the foundation and concatenate
RGB images and depth images through certain fusion strate-
gies to obtain multi-channel input RGB-D images. Although
simple and efficient, due to the differences in the two types
of image feature information, the pixel-level fusion method
cannot fully utilize the complementarity of RGB images and
depth images. Li et al. [7] fused RGB images and depth
images through a time series cascade approach to improve
the simple cascade strategy. Then, 3D convolution is fully
utilized to learn the complementary information between
RGB images and depth images, and the receptive field of
3D convolution is dynamically adjusted through the spatial
prior information contained in the depth image to optimize
3D convolution, thereby enhancing the feature output of
RGB-D images. Chen et al. [8] also adopted the time series
to cascade two images, thereby generating pseudo RGB-D
images. It adopts an encoder-decoder structure to extract and
fuse features, and designs a new channel attention module to
enhance the learning ability of multimodal features, thereby
improving the final saliency detection results. Zhou et al. [9]
proposed a multi-view saliency detection model, which con-
verts RGB images into multiple perspectives for sampling.
Then, the generated multi-view RGB images are fused with
depth images to map the feature information of RGB images
into 3D space for predicting salient objects.

B. feature-level fusion methods

The method based on feature-level fusion aims to achieve
the fusion of features from RGB images and depth images
through certain strategies. It can achieve better results than
image-level fusion, so current saliency detection models
usually adopt feature-level fusion methods. Early feature
fusion methods typically employed addition or concatenation
strategies, which, although simple to operate, were difficult
to fully utilize the complementary information of RGB
images and depth images. Therefore, how to design a more
efficient feature fusion strategy is the current research focus.
For instance, Zhang et al. [10] proposed a novel bidirec-
tional transfer-select module, which established an interac-
tion relationship of feature information between RGB images
and depth images through a bidirectional structure, thereby
achieving effective fusion of specific features of the two
types of images. Zhou et al. [11] proposed a feature fusion
and reshaping network, which achieves recursive interaction
between RGB image features and depth image features of
adjacent layers through an interaction fusion module and a
multi-scale pyramid module, thereby fully mining the context
information of RGB-D images. Since high-level features
of images contain rich abstract semantic cues and low-
level features have abundant detailed information, a unified
fusion strategy cannot fully utilize the multi-level features
of the two images. Therefore, Yao et al. [12] designed
a dual dilation merging module for high-level features to
fully learn the context information of high-level features. A
feature fusion enhancement module was designed for low-
level features to selectively fuse the channel information
and spatial information contained in the features. Zhu et
al. [13] proposed an adaptive collaborative fusion network,
which adopts a two-stage fusion strategy to integrate low-
level features and high-level features, thereby enhancing the
accuracy of salient object detection.

C. decision-level fusion methods

The decision-level fusion method differs from the pixel-
level and feature-level fusion methods. It adopts a dual-
branch network structure to obtain the saliency detection
results of RGB images and depth images respectively, and
then fuses the saliency detection results of the two images
through a certain strategy. Wang et al. [14] proposed a
dynamic salient object detection framework. It first predicts
the saliency maps of the two types of images, RGB and
depth images, respectively, through two independent feature
extraction networks for RGB images and depth images. Then,
it dynamically generates a weight map using a shared sub-
network to fuse the saliency maps of the RGB and depth
images. In addition, Wang et al. [15] proposed a new multi-
level feature fusion method. It generates the fusion weights
of RGB images and depth images through the method of
reinforcement learning, thereby guiding the fusion of the
saliency results of the two types of images.

III. METHOD
A. Specific feature learning network

1) Structure: Fig. 1 shows the overall framework of the
MLFNet proposed in this paper. MLFNet is composed of a
multi-branch stream network, namely the specific learning
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Fig. 1: Architecture of FFENet. It includes a multi-scale feature extraction module (FEM Section 3.1.2), a dual-attention
adaptive fusion module (DASM Section 3.2.2), and a dynamic feature fusion module (DFM Section 3.2.3). The FEM in
this paper effectively eliminates the differences of salient objects in different visual scenes. This paper’s DASM enhances
the shared feature output. The enhanced features are used to generate the final saliency detection results through DFM.

networks for RGB images and depth images, as well as
the cross-modal shared learning network. Firstly, a specific
sub-network receives the RGB image (H) and the depth
image (D), and then extracts the feature information of the
RGB image and the depth image through two image-specific
encoders. The encoders of the specific sub-networks for RGB
images and depth images are based on ResNet-50 [16], from
which five multi-scale features can be extracted [17], namely
R = {fR

m, m = 1, ···, 5 } and D = {fD
m , m = 1, ···, 5 }. After the

two image-specific encoders extract multi-scale features fR
5

and fD
5 , they are passed to the two image-specific decoders

to generate their respective saliency prediction maps. The
specific decoders for RGB images and depth images are
constructed using the U-Net structure [18]. They enhance the
saliency detection results by integrating multi-scale features
learned by the encoder through residual connections.
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Fig. 2: The proposed a multi-scale feature extraction module.

Due to the significant differences in shape, size and
position of the targets to be detected, some local feature
information will be lost when two types of image features
are extracted by a specific sub-network. To address this issue,
this paper constructs a multi-scale feature extraction module,
FEM. It is naturally embedded into the specific sub-networks

of RGB images and depth images, capturing the salient object
information contained in the two types of images through
dilated convolutions with various kernel sizes, thereby elim-
inating the feature differences of the targets to be detected
in different scenarios.

2) Multi-scale Feature Extraction Module: Current salient
object detection methods typically employ convolutional lay-
ers and pooling layers when extracting specific features from
RGB images and depth images. However, in different visual
scenes, salient objects vary in size, shape and position, which
leads to the loss of some feature information during the
sampling process. To address this issue, this paper constructs
a multi-scale feature extraction module, FEM. It adopts
dilated convolutions with multiple different kernel sizes to
learn the features of RGB images and depth images, in order
to capture the multi-scale features of the two types of images
and thereby eliminate the differences between salient objects.

As shown in Fig. 2, after the specific encoders for RGB
images and depth images extract high-level features fR

5 and
fD
5 , they are passed to the FEM module for sampling. To

extract the rich contextual information of the two types of
images, this paper adopts convolution with multiple dilation
values for feature sampling. In this process, this paper adopts
dilated convolution to expand the receptive field, thereby
effectively capturing the salient features contained in the two
types of images. Then, the captured multi-scale features are
concatenated along the channel direction, and 1×1 convo-
lution is used to process the multi-scale feature maps to
avoid introducing redundant information. In addition, this
paper concatenates the original features with the generated
multi-scale feature maps through average pooling to obtain
more comprehensive feature information. The formula for
processing feature maps using dilated convolutions with
multiple dilation values is as follows:

FEM(f) = σ(Conv1(f), Conv3(f), Conv5(f)) (1)

Where σ (·) represents the Sigmoid activation function.
Conv1, Conv3 and Conv5 represent dilated convolutions with
dilation values of 1, 3 and 5 respectively.
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B. Shared learning network

1) Structure: As shown in Fig. 1, the features extracted
by the RGB image and depth image encoders are fused in the
shared encoder. After the shared encoder fuses to generate
deep-level features f ′S

5 , they are passed to the shared decoder
to generate the saliency map. The shared decoder is also built
based on the U-Net structure and uses residual connections
to associate the multi-scale features extracted by the encoder,
thereby enhancing the output of the shared features. To
effectively integrate the specific features of RGB images and
depth images, this paper constructs a dual-attention adaptive
fusion module (DASM) in the shared encoder. It adopts
channel attention and spatial attention to extract specific
features from RGB images and depth images. Then, the
extracted features are cross-fused to achieve bidirectional
feature calibration. In addition, this paper introduces the
scalar value adaptive fusion calibrated features to further
enhance the accuracy of the shared features. The enhanced
features are fused and passed to the shared decoder, where
the final saliency detection result is generated through the
dynamic feature fusion module (DFM).
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Fig. 3: The proposed a dual-attention adaptive fusion module.

2) Dual-Attention Adaptive Fusion Module: The visual
information provided by RGB images and the spatial prior
information provided by depth images help the model to
more accurately locate the salient object regions. However,
in complex scenarios, most salient object detection methods
assume that the features of the two modalities are perfectly
aligned, which often affects the final detection performance.
To address this issue, this paper constructs a unified dual-
attention adaptive fusion module, DASM. Firstly, it extracts
two types of image feature information through channel at-
tention and spatial attention. Then, it cross-fuses the extracted
RGB image and depth image feature information to achieve
bidirectional calibration of the shared encoder feature output.
Then, scalar values are introduced to adjust the feature
contributions of different branches, so as to adaptively fuse
the two types of image features and thereby enhance the
shared feature output.

As shown in Fig. 3, let the RGB image and depth image
features contained in the mth layer be fR

m and fD
m . This

paper first uses 1×1 convolution to compress the number

of feature channels of the mth layer of the two images to
Cm/2. Then, the specific features of the two images are
processed through a 3×3 convolutional layer with a Sigmoid
activation function, thereby obtaining the normalized feature
maps f ′R

m and f ′D
m. The formulas for obtaining the two types

of normalized feature maps of images are as follows:

f ′R
m = Conv3×3

(
Conv1×1

(
fR
m

))
(2)

f ′D
m = Conv3×3

(
Conv1×1

(
fD
m

))
(3)

After obtaining the normalized feature maps of the two
images, this paper suppresses irrelevant information through
channel attention and focuses on the salient object regions
by using spatial attention, thereby enabling the model to
effectively distinguish salient objects from the background.
In addition, this paper adopts element-wise multiplication
to cross-fuse the attention feature maps of the two images,
so as to fully utilize the complementary features of RGB
images and depth images, thereby enhancing the representa-
tion ability of the shared network. The formulas for learning
feature maps using channel attention and spatial attention are
as follows:

Mc = σ(MLP (f ′
avg) +MLP (f ′

max)) (4)

Ms = σ(Concat(f ′
avg, f

′
avg)) (5)

The formula for cross-fusing the specific features of two
images is as follows:

f ′RD
m = Ms

(
f ′R

m

)
⊗Mc

(
f ′R

m

)
⊗ f ′D

m (6)

f ′DR
m = Ms

(
f ′D

m

)
⊗Mc

(
f ′D

m

)
⊗ f ′R

m (7)

Subsequently, in order to fully integrate the features of
different branches, this paper introduces two scalar values, α
and β, and further utilizes adaptive addition to generate the
shared feature output f ′S

m. The formula for shared feature
output is as follows:

f ′S
m = Concat((α× f ′RD

m + β × f ′DR
m ), f ′S

m−1) (8)

The DASM feature output of the mth layer will be associated
with the output result of the (m-1)th layer, thereby generating
the final shared feature output.

3) Dynamic Feature Fusion Module: In the shared de-
coder, this paper constructs a multi-level feature fusion
module DFM. It improves the accuracy of salient object
detection by integrating the rich shared features learned from
two image-specific decoders.

The goal of multi-level learning is to extract and integrate
information from different levels of abstraction: high-level
features have rich abstract semantic information, while low-
level features have rich fine-grained information. Therefore,
this paper designs a unified multi-level feature fusion mod-
ule, DFM. It enhances the feature output of the shared
encoder by integrating the features learned in the specific
decoders of RGB images and depth images into the shared
decoder. As shown in Fig. 4, the m-th layer of the shared
decoder has the shared feature f ′S

m, as well as the features
fR
m and fD

m learned by the specific decoders for RGB images
and depth images respectively. The entire process is shown
in the figure. First, the shared feature f ′S

m is concatenated
with the specific feature fR

m of the RGB image at the same
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level and the specific feature fD
m of the depth image, thereby

enriching the shared feature representation by leveraging
the specific features of the two images. Then, this paper
adopts Deformable Convolution (D-conv) [19] to learn the
enhanced shared features. By introducing learnable offsets in
the receptive field, the sampling points of the convolutional
kernel are shifted, making the receptive field more concen-
trated on the salient object region. After obtaining the output
features of the Deformable Conv, the shared features f ′S

m of
the previous layer are associated through residual addition,
thereby outputting the final result of salient object detection.
The formula for generating the final result of salient object
detection f ′

result is as follows:

fresult = D − conv(Concat(f ′SR
m , f ′SD

m )) + f ′S
m (9)

Unlike DASM, DFM enriches the shared features by
fusing the specific features extracted from the RGB image
and depth image decoders, while DASM forms the shared
features by fusing the specific features of the two images in
the shared encoder.

IV. EXPERIMENTS
A. Datasets

This paper mainly evaluates the proposed RGB-D salient
object detection model on four widely used datasets, in-
cluding NJU2K, NLPR, SIP and DES. Among them, the
training set is composed of 1,485 pairs of RGB-D images
from NJU2K and 700 pairs of RGB-D images from NLPR.

B. Evaluation metrics

This paper evaluates the performance of the model through
the four most commonly used performance metrics in the
field of RGB-D image salient object detection, including:
Mean Absolute Error (MAE), F-measure (Fβ), S-measure
(Sα), and E-measure (Em). In an RGB-D image salient
object detection model, larger Fβ , Sα and Em, as well as a
smaller MAE, are expected.

Mean Absolute Error:It is used to calculate the aver-
age pixel absolute error between the normalized predicted
saliency map and the ground truth map. Its calculation
formula is:

MAE =
1

W ×H

∑W
x=1

∑H
y=1 |p (x, y)−G (x, y)| (10)

Among them, p (x, y) is the saliency result map detected
by the model, and G (x, y) is the real saliency result map
manually annotated.

F-measure:It is mainly used to evaluate the comprehensive
predictive performance of the model. Fβ is expressed as

the weighted harmonic mean of precision and recall, and
its calculation formula is:

Fβ =

(
1 + β2

)
Precision×Recall

β2Precision+Recall
(11)

Among them, the balance parameter β2 = 0.3.
S-measure:It is mainly used to evaluate the structural

similarity between the ground truth map and the predicted
saliency map, and its calculation formula is:

Sα = αSo + (1− α)Sr (12)

Among them, So represents target perception, Sr represents
regional perception, and α∈[0, 1] is a weighting parameter,
which is set to 0.5 by default.

E-measure::It integrates local pixel evaluation and image-
level evaluation, mainly calculating the statistical characteris-
tics of the ground truth map and the predicted saliency map
at the image level and the pixel matching degree in local
regions. Its calculation formula is:

Em =
1

W ×H

∑W
i=1

∑H
j=1 ϕ (i, j) (13)

Here, W and H represent the width and height of the image
respectively. ϕ (i, j) indicates a diagonal matrix.

C. Quantitative Comparison

To fully verify the effectiveness of the MLFNet model,
this paper compares it with five outstanding salient object
detection models, including SPNet [20], SPSN [21], RD3D
[22], AFNet [23], and PopNet [24]. The specific results
are shown in TABLE I. The model proposed in this paper
achieved the best F-measure on all four datasets. For DES,
NLPR, and NJU2K, the key metric MAE achieved the best
results among the comparison models. The experimental
results show that the MLFNet proposed in this paper can
effectively fuse the features of RGB images and depth images
to achieve the best overall performance in the key MAE and
F-measure indicators. Fig. 5 presents the comparison results
of the F-measure curves of the MLFNet model proposed in
this paper with those of other salient object detection models
such as SPNet, SPSN, RD3D, AFNet, and PopNet.

When the threshold is low, the model tends to predict
more samples as positive, which may lead to a higher recall
rate and a lower precision rate. As the threshold increases,
the model becomes more cautious in predicting the positive
class, which in turn affects the F-measure value. As shown
in Fig. 5, the model proposed in this paper effectively
improves the detection accuracy and achieves the best F-
measure curve.
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TABLE I: Quantitative comparison with RGB-D SOD models.↑ (↓) denotes that the higher (lower) is better. This paper
use the mean absolute error (M), Fβ , Sm, and Em as evaluation metrics.

Dataset DES NLPR NJU2K SIP

Metric M↓ Fβ↑ Sm↑ Em↑ M↓ Fβ↑ Sm↑ Em↑ M↓ Fβ↑ Sm↑ Em↑ M↓ Fβ↑ Sm↑ Em↑

SPNet .017 .939 .935 .970 .022 .928 .928 .958 .033 .927 .918 .944 .047 .912 .887 .923
RD3D .018 .931 .934 .971 .022 .919 .927 .957 .033 .920 .916 .947 .046 .898 .885 .924
SPSN .016 .941 .938 .972 .023 .910 .923 .958 .032 .912 .912 .943 .042 .896 .890 .934
AFNet .022 .920 .922 .948 .020 .925 .936 .968 .032 .928 .926 .958 .043 .909 .896 .939
PopNet .018 .937 .939 .957 .021 .923 .924 .952 .029 .928 .917 .951 .044 .909 .889 .925
Ours .016 .943 .931 .963 .020 .930 .931 .960 .029 .933 .927 .954 .044 .916 .896 .931

Fig. 5: F-measure curves for different thresholds, for DES, NLPR, SIP, and NJU2K.

D. Ablation studies

Table II presents the results of the ablation experiments
of the benchmark model adopted in this paper, along with
the addition of the FEM module, DASM module, and DFM
module. This paper adopts the key indicators MAE and F-
measure for evaluation.

TABLE II: Quantitative evaluation for ablation studies.

NJU2K

Baseline FEM DASM DFM M↓ Fβ ↑

✓ 0.033 0.927
✓ ✓ 0.032 0.927
✓ ✓ 0.031 0.931
✓ ✓ 0.031 0.929
✓ ✓ ✓ ✓ 0.029 0.933

The data in TABLE II indicate that: 1) The FEM mod-
ule utilizes dilated convolutions with multiple kernel sizes

to extract image features, capturing more comprehensive
contextual information and thereby enhancing the saliency
detection results. 2) The DASM module learns the features
of RGB images and depth images through two types of
attention, and effectively fuses the features of the two images
in an adaptive manner, thereby achieving the highest F-
measure index. 3) In the shared decoder, the DFM module
employs dynamic convolution to extract salient features and
integrates specific features of RGB images and depth images
to enrich the shared features, thereby enhancing the saliency
detection results. 4) By further integrating the three modules,
the model in this paper achieved the best results.

E. Qualitative Comparison

Fig. 6 presents the visualization comparison results of the
MLFNet proposed in this paper with RGB-D SOD models
such as SPNet, SPSN, RD3D, AFNet, and PopNet on four
benchmark datasets. The first column, the second column
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Fig. 6: The visual comparison results between the model in this paper and the other models: SPNet, RD3D, SPSN, AFNet,
and PopNet.

and the ninth column are respectively the RGB images,
depth images and ground truths in the dataset. The closer
the visualization results are to the ground truth, the better
the detection results of the model are. Columns 3 to 8
respectively present the visualization results of SPNet, SPSN,
RD3D, AFNet, PopNet and the model proposed in this paper.

By comparing the visualization results of lines 1 and 2,
it can be observed that the model proposed in this paper
can effectively locate the salient regions in indoor scenes,
thereby detecting complete salient objects. By comparing
the visualization results of lines 3 to 4, it can be observed
that the salient objects generated by the model in this paper
can effectively eliminate the interference of background
information. By comparing the visualization results of lines
5 and 6, it can be observed that the model proposed in this
paper can describe the hollow parts of the salient objects in
detail. By comparing the visualization results in lines 7 to 9,
it can be observed that the model proposed in this paper also
has a significant effect on multiple salient objects in outdoor
scenes.

The experimental results show that: The model in this
paper can accurately locate the salient regions, effectively
distinguish salient objects from the background, and the

generated saliency detection results are closer to the ground
truth provided by the dataset. Compared with other models,
the model proposed in this paper has good robustness and
applicability in complex visual scenes.

V. CONCLUSION

Salient object detection, as an important preprocessing
step in computer vision, can effectively filter out the key
information in images, and thus has received increasing
attention. However, in complex scenarios, the feature infor-
mation contained in low-quality images often has a negative
impact on saliency detection. Therefore, even with spatial
information as an aid, the existing methods still struggle to
efficiently locate the salient regions. To effectively enhance
the accuracy of saliency detection, this paper proposes an
end-to-end MLFNet saliency object detection model. It ef-
fectively eliminates the influence of low-quality feature infor-
mation by perceiving multi-level features of RGB images and
depth images, thereby significantly improving the accuracy
of saliency detection.

Compared with the baseline model, MLFNet captures the
context information of the target to be detected in the two
images through the multi-scale feature extraction module,
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thereby effectively eliminating the differences in target fea-
tures. Then, through the cross-learning of specific features
of RGB images and depth images by channel attention and
spatial attention, and the adaptive fusion of the specific
features of the two images, the shared features are enhanced.
Finally, a dynamic feature fusion module is adopted to further
integrate the specific features of RGB images and depth
images, thereby enhancing the final saliency detection results.
During the experiment, the key indicators were effectively
improved. The experimental results show that the MLFNet
model proposed in this paper has good stability in various
visual scenes. Compared with other RGB-D SOD models,
the model proposed in this paper can effectively integrate the
specific features of RGB images and depth images, and the
generated saliency detection results are closer to the ground
truth provided by the dataset.

Although significant achievements have been made in
salient object detection that integrates depth information,
there are still many aspects that deserve further research:
1) RGB-D SOD algorithms based on deep learning are
highly dependent on the quantity and quality of pre-training
datasets. To address this issue, the latest imaging and an-
notation technologies can be adopted to collect high-quality
datasets, thereby supporting the research of saliency detec-
tion algorithms. 2) Research different supervision strategies,
such as unsupervised learning, weakly supervised learning,
semi-supervised learning and other algorithms, to reduce the
dependence of feature learning networks on data.
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