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Abstract—Current mainstream methods for human mesh
recovery can now be designed as a single-stage framework
based on transformers and work through a multi-stage pipeline
based on neural networks, thanks to the most recent research
on ViT. This effectively avoids bottlenecks caused by multi-
stage pipelines and the strict requirements for late fusion.
Nevertheless, the majority of current transformer-based single-
stage frameworks lack post-correction capabilities and do
not properly utilize the extra information offered by multi-
view images. This work suggests a comprehensive single-stage
representation model for full-body human mesh recovery that
incorporates multi-view features and optimizes with posterior
probabilities to overcome these shortcomings. First, we extract
high-quality multi-scale features by capturing global corre-
lations using a global encoder. Second, we use RoIAlign to
create a cross-view encoder that integrates multi-view image
characteristics and produces higher-resolution images. Lastly,
the SMPL human joint distribution is used as a physical prior
for posterior probability optimization, and an encoder with
deformable attention is used to improve the regression of hands
and face. The model can now more thoroughly understand the
relative locations of human joints based on the body poses
supplied by multi-view photos, thanks to this enhancement.
The model’s one-step procedure is straightforward but efficient,
and it does not require manual post-processing or datasets
that are exclusively focused on hand and facial features for
training, which naturally prevents irrational human parameter
predictions. Our enhancements show that our upgraded model
has greater generalization performance and faster learning
speed than the baseline model, as evidenced by at least 4.69%,
6.70%, and 3.41% better performance on MPVPE for the body,
hands, and face respectively.

Index Terms—3D human mesh recovery, Cross-view Atten-
tion, Multi-view Fusion, Differentiable RoIAlign.

I. INTRODUCTION

UNDERSTANDING human geometry and successfully
extracting relevant information from a variety of data

sources, including RGB-D cameras and multi-view photos,
are essential components of 3D human mesh recovery, a
critical step in modeling human behavior [1]. More detailed
descriptions of human bodies, including the locations and
shapes of muscles and bones as well as the textures of
skin, can be obtained by consistently refining algorithms[2].
Furthermore, accurate recovery of human facial expressions
and gestures opens the door to further study of human
behavior by revealing human intentions and emotions.

Historically, deep learning-based multi-stage pipelines
would identify faces and hands independently, crop and
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resize each area, increase their resolution, feed them into dif-
ferent networks to predict parameters, and then combine the
outcomes[3]. Although the fine features of faces and hands
can be captured by this copy-paste process [4], the method
becomes computationally difficult when various estimators
are used. Furthermore, because it is impossible to rejoin
various body parts precisely, the impeded communication
between components invariably leads to incompatible config-
urations during fusion, resulting in awkward wrist positions
and 3D rotations that are outside of permitted bounds. Choi
[1] et al. developed an elbow joint twist compensating
fusion as a post-fusion technique to solve these problems. To
improve resilience against complicated backgrounds, zhu [5]
et al. incorporated model-fitting steps during training. Pixel-
aligned implicit functions were presented by Saito [6] et
al.To reconstruct high-resolution clothed human models from
multi-view photos. This method captures precise geometric
aspects of clothing while ensuring consistency across various
positions. The system’s complexity is greatly increased by
the model’s limited comprehension of global structures and
its inability to use post-compensation techniques to rectify
irrational predictions due to the limited local receptive fields.

Recent developments in Vision Transformers (ViTs) have
made it possible for single-stage pipelines to capture intricate
patterns and structures in images globally. Traditional multi-
stage pipelines can be replaced with self-attention mecha-
nisms, which allow all pixels in a picture to be taken into
consideration at once, creating a comprehensive view of the
human body [7]. Using a single-stage pipeline approach, Lin
[8] et al. presented an enriched representation of full-body
human mesh recovery that effectively reconstructs human
models while preserving and improving fine-grained infor-
mation such as gestures and facial expressions. Motivated
by this, we created an MFT transformer that consists of
two decoders tailored to specific local components and a
global encoder. Decoders with cross-attention handle depen-
dencies between multiple views and fuse features, providing
more accurate estimates. Another decoder incorporates a
differentiable RoIAlign cropping scheme to extract part-
specific high-resolution features and uses keypoint-guided
deformable attention to accurately locate and estimate hand
and face parameters. The encoder that uses human tokens as
inputs captures global correlations, predicts human parame-
ters, and provides high-quality feature maps for the decoders.
We suggest three crucial improvement modules to improve
mesh estimation accuracy and model performance to address
the drawbacks of earlier single-stage pipelines that did not
fully optimize long-term sequence long-range dependencies
and did not fully utilize the extra information offered by
multi-view images [9].

1) Multi-View Fusion Scheme: Collaboratively estimate
2D poses from many viewpoints, assign weights based on
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global correlations[4] to each view’s significance for the
present job. After that, features from various perspectives
are combined to make sure that more important informa-
tion is given more emphasis and less important informa-
tion is downplayed. Fusion with Differentiable ROIAlign:
Upsample feature tokens that convey particular semantic
information into numerous higher-resolution feature maps
via deconvolution layers. Divide the ROIs into multiple
sub-regions and perform ROI mapping. Then, use bilinear
interpolation and average the results.

2) Fusion with Differentiable RoIAlign: Upsampled fea-
ture tokens that convey particular semantic information into
several higher-resolution feature maps via deconvolution lay-
ers. Divide the ROIs into multiple sub-regions and perform
ROI mapping. Then, use bilinear interpolation and average
the results.

3) Deformable Attention Decoder for Low-Resolution
RoIs: This method handles low-resolution ROIs in images by
dynamically selecting randomly distributed sample sites from
input feature maps, as opposed to typical attention techniques
that are limited by fixed sampling positions. To learn a
collection of offsets around each key point and ascertain the
precise sample sites, it selects the center point of the ROI as
the guiding key point for deformable attention.

The goal of this research is to increase the quality of
human mesh recovery in a single-stage Transformer-based
framework by making these enhancements, especially in
areas like hand details, body shape, full-body stance, and
resilience against partial occlusions or blurring. Our approach
lowers the MPVPE metric to 70.34mm on the EHF dataset,
which is a 4.69% improvement over the baseline model.
These findings show that in human mesh recovery tasks,
the suggested improvements produce a model with improved
robustness and detection accuracy.

II. RELATED WORKS

As of right now, the three primary methodologies for
3D human mesh recovery are hybrid, regression, and
optimization-based approaches. By minimizing an objective
function,optimization-based techniques usually take an iter-
ative approach to estimating the parameters of the human
model. Although this approach has the advantage of being
physically sensible, it is computationally costly and prone
to becoming trapped in local optima. As deep learning has
advanced, regression-based techniques have progressively
gained popularity. Two distinct regression-based frameworks
are presented below, along with the issues they must resolve:

A. Multi-stage Pipeline 3D Human Mesh Recovery Algo-
rithm Based on CNN

As deep learning has advanced, regression-based tech-
niques have progressively gained popularity. These tech-
niques, which have end-to-end learning capabilities, use
neural networks to directly predict human model param-
eters from photos. By integrating 2D keypoints with im-
age features, Kanazawa [2]et al.proposed HMR (Human
Mesh Recovery), which employs a regression network to
directly predict 3D posture and shape parameters. Based
on the SMPL model, Kolotouros [10]et al. presented SPIN

(SMPLify-X with a Neural Network), which uses a multi-
stage optimization technique to gradually improve the 3D
human mesh by optimizing position, shape, and deformation
at various levels. A 3D human mesh recovery technique
called Neural Body was proposed by Xu [11]et al. It uses
deep implicit functions to gradually refine the 3D human
mesh by combining time-series data and multi-view inputs.

Although these techniques can quickly provide high-
quality 3D reconstruction results on huge datasets, the com-
bination of several estimators in multi-stage pipelines results
in a system with a high computational cost. Furthermore,
because it is impossible to rejoin various body parts precisely,
restricted communication between components invariably
results in incompatible configurations during fusion, lead-
ing to abnormal wrist positions and 3D rotations that are
beyond of permitted bounds [12]. By creating more intricate
ensemble schemes or elbow joint twist compensating fusion
modules between individual body parts, the aforementioned
techniques aim to overcome these problems. In practice,
nevertheless, this method greatly raises the complexity of the
model system and has little potential to improve and rectify
irrational forecasts.

B. Single-stage 3D Human Mesh Recovery Algorithm Based
on Transformer

Transformer-based models have shown impressive results
in a variety of domains, including computer vision and natu-
ral language processing. In recent years, their distinct benefit
is the global self-attention mechanism, which circumvents
the drawbacks of conventional convolutional neural networks
[13], which are limited to local modeling, by capturing
long-range global dependencies inside input images or point
clouds. Parallel computing is another area in which these
transformers shine. To improve the accuracy of pose esti-
mation, Zhang [14] et al. presented the TransPose model,
which combines 2D keypoints with picture features via cross-
attention processes and employs a multi-head self-attention
mechanism to capture global geometric information in im-
ages. Dosovitskiy [15] et al. employed ViT for global feature
modeling of images and presented a multi-scale feature
fusion mechanism that combines feature information from
many levels to increase the accuracy of posture prediction.
For the model to properly exploit multimodal data, Huang
[16]et al. integrated cross-attention methods to connect 2D
keypoints with picture features, facilitating information trans-
mission between distinct feature spaces. These models are
sensitive to the quality of input photos, which particularly
affects 2D keypoint identification, even though they use
lightweight network topologies. When dealing with a variety
of human shapes and complicated settings, they may not be
able to generalize well enough due to the influence of various
body types, dress styles, or action positions [17]. They also
lack the additional information about human stances that
multi-view photos provide.

III. METHODS

Four important elements of the MFT framework are thor-
oughly discussed in this section: First, we extract high-
quality multi-scale features by using a global encoder to
capture global correlations. This enables us to get a thorough
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Fig. 1. Structure of the Multi-view Fusion Transformer (MFT)

comprehension of the scene at different resolutions. Second,
we create a cross-view encoder that uses RoIAlign to acquire
higher-resolution pictures and integrate multi-view image
characteristics. By utilizing data from many viewpoints, this
integration stage is essential for improving the accuracy of
feature representation [18]. Thirdly, we use fusion with dif-
ferentiable RoIAlign, which uses deconvolution layers to up-
sample lower-resolution feature maps into higher-resolution
pictures. The collected characteristics are sufficiently detailed
for accurate localization and classification tasks thanks to
this procedure. Last but not least, the SMPL body joint
distribution is used as a physical prior for posterior prob-
ability optimization in an encoder with deformable attention
to improve the regression of hand and facial landmarks [19].
A more accurate reconstruction of the human mesh results
from this optimization, which helps the model comprehend
the relative locations of human joints based on the human
postures supplied by multi-view inputs. Figure III illustrates
our MFT architecture.

A. MFT Global Encoder

Given the target prediction image I ∈ IH×W×3, before
being fed into the encoder to obtain global relevance, pre-
processing of the target image is required. Based on the
physical information of the image, which can represent the
perspective, the target image is divided into appropriately
sized patches P ∈ I

HW
M2 ×(M2×3), M is the patch size. These

patches P are then linearly projected through convolution
operations, transforming each patch into a one-dimensional
vector v = Reshape(P)WX ∈ V l×d, This representation
is suitable for subsequent framework processing.

Next, the positional and viewpoint information of the
patches in the original image are added to the one-
dimensional vectors, ultimately obtaining feature tokens T

′

that contain internal dependencies within the target image
data. Prior knowledge about the joints of different parts of
the human body is used as body tokens Tb, which are pre-
defined learnable parameters in the model. To enable the
model to better understand and process information related
to human structure and achieve a more precise description
of human shape, we concatenate the feature tokens T

′
with

the body tokens Tb.
The concatenated tokens T are fed into our global en-

coder, which consists of multiple transformer layers stacked
together. Each encoder layer includes a multi-head self-
attention mechanism that attends to all other positions in the
input sequence, two linear transformations, and a feedfor-
ward network composed of an activation function, residual
connections, and layer normalization.The multi-head self-
attention mechanism projects the input sequence T into
attention triplets (Qi,Ki,Vi):

(Qi,Ki, Vi) = (XWQ
i , XWK

i , XWV
i ) (1)

These triplets are split into h subspaces, such as query Q
being a three-dimensional matrix obtained by reshaping the
input sequence and multiplying it with weight matrices W,
{Q1,Q2, ...Qh} ∈ Vh×l× d

h used to confirm the relevance
between different positions in the sequence. Dot-product
attention is performed in each subspace and the results are
concatenated into context-aware token sequences:

Z = Concat(Y1, Y2, . . . , Yh)W
Z ∈ Rl×d (2)
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including Yi = Softmax

(
QiK

T
i√

d/h

)
Vi ∈ Rl× d

h . The final

sequence is input into a layer normalization sub-layer. This
forms a higher-level, stronger representation form with en-
hanced expressive power. The feature tokens are updated
to T

′
. This process involves using feature tokens derived

from various views to improve the accuracy of body pose
estimation. Afterward, specific tokens related to the face and
hands are extracted and input into a specialized decoder.
This decoder, guided by keypoints, employs deformable
attention mechanisms to generate more detailed feature maps,
which significantly improves the precision of hand and face
regressions.

B. Decoder With Cross-view Attention

To fully exploit multi-view picture information and obtain
precise depth information on human postures, we propose a
cross-view attention strategy to dynamically select and com-
bine significant information from several perspectives. Using
the global encoder, we extract picture properties and tokens
from each perspective. Assuming we have N viewpoints
(typically N=4), each viewpoint contains an image feature
map Fi ∈ IB×C×H×W and tokens T

′
= {Tb,Th,Tf} ∈

IB×Q×D, where: B is the batch size, C is the number of
channels, H and W are the height and width of the feature
map, Q is the number of queries, D is the model dimension.

We use the current viewpoint as target tokens to obtain
better-initialized component tokens than random initializa-
tion. For each viewpoint, we flatten the feature map and
adjust the dimension order, then concatenate them together
as the feature map for the global view:

A,Aweights = MultiheadAttention(Tq,Tk,Tv) (3)

where A ∈ IQ×B×D is the attention output with shape and
Aweights is the attention weight matrix. To enhance the
interaction between viewpoints, all viewpoints’ feature maps
and tokens can directly interact, capturing more complex
cross-view relationships. We set the target viewpoint as query
Tq, other viewpoints’ feature maps as keys Tk and values
Tv and compute the similarity between queries and keys
using the dot-product:

Score(Tq,Tk) =
TqT

T
k√

dk

(4)

where Q is the query matrix, K is the key matrix, and dk is
the dimension of the key vector. Finally, the weighted sum
of value vectors is combined to generate the final attention
output:

Output =
∑
i

softmax(Scorei)Vi (5)

This method seeks to improve the model’s capacity to
analyze and learn from multi-view image features to optimize
the relative positions of human joints, enhance the model’s
perception of human meshes and poses, and improve the ac-
curacy of 3D human mesh recovery under typical background
conditions.

C. Differentiable RoIAlign to Obtain High-Resolution Im-
ages

Traditionally, when processing low-resolution feature
maps of hands and faces in human images to achieve high-
resolution results, methods such as linear interpolation or
transposed convolution are often used [20]. However, these
methods can sometimes lead to issues like checkerboard
artifacts and may not be the optimal choice, especially when
precise control over the upsampling process is required.
Traditional RoIPooling methods apply maximum pooling or
average pooling for each grid to obtain fixed-size outputs.
This pooling process is non-differentiable because it involves
rounding operations, which can cause gradient propagation
problems and potentially lose precise positional information.

To address the aforementioned issues, we propose a differ-
entiable RoIAlign method to obtain high-resolution feature
maps. Specifically, we reshape the output feature tokens T

′

from the full-body encoder and upsample them through trans-
posed convolution layers to multiple higher-resolution feature
maps Thr. We then use FFNs (Feed-Forward Networks) to
regress the feature tokens back to hand and face bounding
boxes. For an input feature map F ∈ IH×W×C, first convert
the RoI bounding box coordinates under the original image
coordinate system to coordinates on the feature map. Assume
the original image size is ((Himg,Wimg), and the feature
map size is (H,W). The RoI coordinates on the feature map
can be calculated using the following formula:

(xmin,ymin,xmax,ymax) =

(
ximg
min

s
,
yimg
min

s
,
ximg
max

s
,
yimg
max

s

)
(6)

Here, s is the downsampling ratio of the feature map relative
to the original image, and the sampling rate. Divide the RoI
into H×W sub-regions. Each sub-region corresponds to one
position on the output feature map. For each RoI sub-region,
select four adjacent points for bilinear interpolation. Let the
top-left corner coordinates of the sub-region be (xp,yp),
then interpolate the four points of the bounding box:

I(xp,yp) =
2∑

i=1

2∑
j=1

aijI(xi,yj) (7)

where I(xi,yj) represents the value at point (xi,yj) on the
feature map and

a11 = (x2 − xp)(y2 − yp)

a12 = (x2 − xp)(yp − y1)

a21 = (xp − x1)(y2 − yp)

a22 = (xp − x1)(yp − y1)

Finally, average the interpolated values for each sub-region
to generate the final multi-scale hand feature map Fh and
face feature map Ff .

D. Deformable Attention Decoder for Hand and Face Fea-
tures

While deformable attention mechanisms enable the net-
work to learn from input feature maps to dynamically select
a collection of unevenly distributed sampling sites instead of
adhering to a predefined grid pattern, traditional attention

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2358-2367

 
______________________________________________________________________________________ 



Fig. 2. Deformable Attention Decoder for Hand and Face Features

mechanisms are frequently constrained by fixed sampling
places.

For example, to handle facial features Ff , we first use
the center point of the facial bounding box as the key point
to guide the deformable attention mechanism. Around each
key point, the network learns a set of offsets to determine
the actual sampling positions. The query Q is initialized
as component tokens guided by key points, which are ob-
tained through reference key point features, pose position
embedding, and learnable embedding. Next, by combining
multi-scale feature maps, information can be extracted from
different abstraction levels. Multi-scale Feature Map {Fi}Li=1

are feature maps from different layers, with each layer’s
feature map represented as Fi ∈ IHl×Wl×C.

For each query and each scale, the network predicts a set
of sampling points. These sampling points are around the
reference key point position Pk and have learnable offsets
∆Plk ∈ I2.In multi-head self-attention layers, the query
undergoes multi-head self-attention computation to capture
relationships between queries. In multi-scale deformable
cross-attention layers, multi-scale feature map information
is extracted. Given the query Q and multi-scale feature
map {Fi}Li=1, the deformable attention decoder updates the
representation of the query by computing the relationship
between the query and the corresponding features of each
sampling point:

CA(Q,Fi,Pk) =
L∑

l=1

K∑
k=1

WlkMFi(ϕi(pk) +∆Plk)

(8)
Here, Wlk is the attention weight, M is the linear trans-
formation matrix, ϕi(Pk) represents the offset of the key
point position in the l-th layer feature map, ∆Plk repre-
sents the learnable offset. After processing with multi-scale
deformable cross-attention, the results are further processed
through a feed-forward neural network (FFN), which con-
sists of two fully connected layers with a ReLU activation
function in between. Joint coordinates are derived from
image features through convolution operations. The features
processed by the deformable attention decoder are concate-
nated with these joint coordinates to form body features
as Figure III-C. These body features are then flattened and
passed through a linear layer for dimensionality mapping,
ultimately serving as parameters for the human model.

E. Incorporating SMPL as a Physical Prior for Posterior
Probability Constraints

Since SMPL is trained on a lot of scan data, many unlikely
or severely distorted human configurations are naturally
excluded from its parameter space. Thus, the accuracy and
resilience of body shape and pose estimation can be further
improved by reducing outliers or inaccurate estimations in
forecasts by imposing posterior probability restrictions using
SMPL as prior knowledge. We define the prior distribution
of shape parameters β and pose parameters θ based on
the SMPL model as the prior probability, while the error
between the 2D keypoints predicted from input images and
those generated by SMPL serves as the likelihood function
to construct the posterior probability:

P (β, θ|I) = P (I|β, θ)P (β, θ)

P (I)
(9)

Here, P (I) is the evidence term, which is constant for
optimization problems, so we directly optimize the unnor-
malized posterior probability:

β̂, θ̂ = argmax
β,θ

P (I|β, θ)P (β, θ) (10)

Gradient descent optimization algorithms are used to de-
termine the SMPL parameters that optimize the posterior
probability. To guarantee the physical plausibility of the
final recovered human mesh, extra regularization terms are
introduced during optimization, including the regression loss
of 3D full-body keypoints, 2D full-body keypoints, and
2D bounding boxes of the left/right hands and face. These
constraints are implemented by adding corresponding penalty
terms to the loss function:

L = − log(P (I|β, θ))− log(P (β, θ)) + λ1Lphy

Here, Lphy = Lsmplx + Lkpt3D + Lkpt2D + Lbbox2D and
λ1 is a tuning coefficient. All terms are calculated as L1
distances between ground truth and predictions. Specifically,
Lsmplx provides explicit supervision for SMPL-X param-
eters, whereas Lkpt3D, Lkpt2D, and Lbbox2D represent the
regression losses for 3D full-body keypoints, projected 2D
full-body keypoints, and 2D bounding boxes of the left/right
hands and face respectively.

IV. EXPERIMENT

A. Environment Setup
The experimental equipment setup are displayed in Table

I. All photos were resized to 512×384 pixels to comply with
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TABLE I
EXPERIMENTAL EQUIPMENT SETUP

Hardware/Frameworks Parameters and Versions

CPU Intel Xeon(R) Gold 6430

GPU NVIDIA RTX 4090

RAM 200GB

Operating System Ubuntu20.04

Program Language Python 3.8

ML Library PyTorch 1.11.0

CUDA 11.3

the model’s input specifications. The computer hardware-
corresponding batch size was set to 8.

B. Experimental Dataset

We have chosen to use EHF as our testing dataset and
Human3.6M and MSCOCO as our training datasets. Our
choice of training datasets excludes extra datasets designed
to improve hand and face mesh recovery, in contrast to earlier
multistage pipeline training methods.

1) Human3.6M: With more than 3.6 million frames of
data, the ”Human 3.6 Million” dataset [21] is one of the
biggest publicly accessible datasets for human pose esti-
mation and is frequently used to train and assess human
pose estimation models. Eleven professional actors—seven
men and four women—perform a range of movements in
this dataset, which includes over 70 action sequences of
various everyday activities like sitting, walking, hugging,
shaking hands, and more. A high-precision Vicon motion
capture technology was used to record each action from four
distinct angles, yielding precise three-dimensional data on
the position of human joints.

2) MSCOCO: More than 330,000 photos from 91 item
categories make up the Microsoft Common Objects in Con-
text (MSCOCO) dataset [22], 80 of which are utilized to train
models. An average of five object instances are annotated
in each image, and each object instance has 17 human
keypoints. Models may learn to identify things in complex
situations thanks to the rich contextual information provided
by the photos, which are taken from real-world scenes.
MSCOCO provides more practical use cases by emphasizing
how items are positioned inside particular contexts and how
they relate to one another. We utilize a pre-trained model on
the MSCOCO dataset to identify each observed individual’s
17 body keypoints using the recently developed 2D pose
estimator ViT-Body-only. We determine the maximum and
minimum values of the identified left and right hand key-
points to generate approximate hand-bounding boxes. The
hand areas are then cropped for additional processing after
these bounding boxes are fine-tuned using an Intersection
over Union (IoU) matching approach to produce accurate
hand bounding boxes.

C. Evaluation Metrics

To objectively evaluate the quality of human mesh recov-
ery and model performance, we use three widely adopted
metrics: MPVPE (Mean Per Vertex Position Error), PA-
MPVPE (Procrustes-aligned Mean Per Vertex Position Er-
ror), and PA-MPJPE (Procrustes-aligned Mean Per Joint
Position Error).

1) MPVPE: MPVPE [23]measures the vertex position
differences between the predicted human mesh and the
ground truth human mesh.

MPVPE =
1

N

N∑
i=1

∥vpred
i − vbfgt

i ∥2 (11)

2) PA-MPVPE: PA-MPVPE [24]involves aligning the
predicted model with the ground truth through similarity
transformations (such as rotation and translation) before
calculating the MPVPE.

PA−MPVPE =
1

N

N∑
i=1

∥R(vpred
i − t)− (vgt

i − tgt)∥2

(12)
3) PA-MPJPE: PA-MPJPE quantifies the differences be-

tween the predicted 3D human joint positions and the actual
joint positions.

PA−MPJPE =
1

M

M∑
j=1

∥R(jpredj − t)− (jgtj − tgt)∥2

(13)

D. Experimental Results

Taking inspiration from Hand4Whole and MMT, we take
OSX as the basis for this research and progressively add more
enhancement modules. The findings of the ablation study
below show how important and beneficial these modules
are. While the incorporation of a differentiable RoAlign
improves high-resolution image processing to improve the
clarity of hand and face estimations, the ablation experiments
demonstrate that the cross-view attention decoder added
in this paper effectively improves the model’s accuracy
for human body pose estimation. Furthermore, the model’s
capabilities are improved by posterior probability restrictions,
which efficiently speed up the regression of different losses.

The suggested improved model continuously performs bet-
ter in terms of accuracy and stability than the baseline model.
These outcomes confirm the suggested model’s accuracy and
efficacy in 3D human mesh recovery. The model in this
study performs better in human stance, face, and hand mesh
recovery when compared to the baseline model, confirming
the efficacy of the modifications made.

Given that OSX, the baseline model, has a straightforward
design and performs well across a variety of benchmarks,
it is important to think about whether MFT can effectively
regress parameters and lessen departure from ground truth
despite adding complexity to the system. Thus, we recorded
different losses during their training processes, such as 2D
coordinate loss, joint coordinate loss, shape parameter loss,
pose parameter loss, and so on, and compared the present
MFT with the basic model without the addition of a cross-
view attention module. Figure IV-D, which displays the loss
variation of both approaches during the training process,
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TABLE II
COMPARISON OF EVALUATION METRICS AMONG MODELS ON EHF

Method MPVPE(mm) PA MPVPE(mm) MPJPE(mm) PA MPJPE(mm)

ALL Hands Face ALL Hands Face Body Hands Body Hands

SMPLify-X 88.6 55.4 44.9 59.7 14.5 7.3 - - 87.6 13.5

ExPose 77.1 51.6 35.0 54.5 12.8 5.8 - - 62.8 12.7

FrankMocap 107.6 42.8 - 57.5 12.6 - - - 62.3 12.6

SPIN 81.5 49.6 38.1 58 14.2 5.7 - - 102.9 -

PIXIE 89.2 42.8 32.7 55.0 11.1 4.6 91.0 - 61.3 -

Hand4Whole 79.2 43.2 25.0 53.1 12.1 5.8 79.2 39.8 53.1 12.8

OSX 73.8 40.7 26.4 48.7 15.9 6.0 74.7 - 45.1 -

MFT(Ours) 70.34 39.1 25.3 45.5 13.2 6.7 70.44 40.2 49.1 18.06

Fig. 3. Comparison of the Loss changes with the
baseline(without the cross-view attention module)

illustrates the results. During iterations, both curves displayed
random fluctuation characteristics rather than any discernible
upward or downward tendencies. It is clear that compared to
MFT, the baseline approach without the cross-attention mod-
ule showed greater volatility and overall losses. MFT with
the cross-attention module was noticeably better, particularly
in the early phases of iteration, when there were fewer than
5000 iterations. This research leads us to the conclusion that
the cross-attention module must be included and that it can
successfully improve model performance.

The performance and different metrics of our MFT and
the baseline model OSX are compared in the second section.
First, we train both models on the same datasets (MSCOCO
and Human3.6M), and then we evaluate each model’s metrics
(MPVPE, PA-MPVPE, MPJPE, and PA-MPJPE) using the
EHF dataset. Second, we compare the two models’ loss
variations throughout training to examine how they change
over time.

As shown in Figure IV-D, during the initial iteration
phase, there is not much difference in performance and
regression efficiency between our model MFT and OSX.
However, our model demonstrates a faster rate of reducing
losses, thereby enhancing performance, with less fluctua-

Fig. 4. Comparison of the Loss summary and changes with
the baseline(OSX)

tion in losses, indicating a more stable parameter learning
process. Subsequently, we summarize the performances of
several outstanding models in the domain of 3D human
mesh recovery on the EHF dataset as shown in Table II.
This comparison allows us to evaluate the effectiveness and
superiority of our proposed MFT model against existing
state-of-the-art models, providing insights into its capabilities
and potential areas for improvement.

As shown in table II, Based on the experimental results,
our proposed Transformer-based approach for 3D human
mesh recovery achieved an MPVPE of 70.34 mm, with
minor reductions in the hand and face areas, achieving
50.1 mm and 27.3 mm respectively. Our MFT also showed
excellent performance in PA-MPVPE, with full-body, hand,
and face PA-MPVPE scores of 45.5 mm, 13.2, and 6.7
respectively; similarly impressive results were observed in
MPJPE, with body and hand MPJPE scores of 70.44 and 40.2
respectively. Compared to PIXIE, improvements in MPVPE
across body, hand, and face areas were 14.95%, 14.80%, and
16.51% respectively; compared to Hand4Whole, improve-
ments in MPVPE across these areas were 11.19%, 15.97%,
and 9.2% respectively; compared to OSX, improvements in
MPVPE across these areas were 4.69%, 6.70%, and 3.41%
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Fig. 5. Comparison of the performance with other models

Fig. 6. Performance of MFT on Daily Life Images
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TABLE III
COMPARISON OF HAND METRICS MPVPE OBTAINED BY MODELS THAT

PREDICT 3D WRIST ROTATION FROM VARIOUS FEATURES ON EHF.

Input for 3D wrist prediction MPVPE ( Hands )

Body 50.6

Body + Hand GAP 45.2

Body + All hand joints 43.4

Body + feature joints (Ours) 39.1

TABLE IV
COMPARISON OF WHOLE-BODY METEICS PA MPVPE, OBTAINED BY

MODELS THAT TAKE VARIOUS INPUT COMBINATIONS FOR THE 3D JOINT
ROTATION PREDICTION ON EHF.

Input for 3D joint rotations PA MPVPE ( All )

GAP feat 59.2

Joint feat 52.3

2D joint coord 49.2

3D joint coord 47.1

3D joint coord.+joint feat.(Ours) 45.5

respectively, To provide the translation more intuitively as
shown Figure IV-D. Improvements were also noted in other
metrics such as PA-MPVPE and PA-MPJPE albeit to a lesser
extent. These results indicate that the proposed improvement
strategy effectively enhances the model’s performance and
improves its overall capabilities as shown in Figure IV-D.

The table III shows that relying only on body information
to forecast 3D wrist rotation has a poor effect. The model’s
prediction accuracy has increased by the addition of the hand
GAP features. Accordingly, the prediction effect of the model
can be further improved by include information about all
hand joints. The accuracy of 3D wrist rotation prediction
steadily improves with input feature optimization and enrich-
ment. With the MPVPE value reaching 39.1, which is almost
22% lower than the baseline model that solely uses body
information, Ours approach which was specifically suggested
in this study—achieved the best prediction result by carefully
choosing feature joints. This demonstrates that appropriate
feature selection and use are crucial for enhancing model
performance in the direction of 3D human mesh recovery.

The table IV shows that using GAP characteristics alone
to predict 3D joint rotation has a poor result. The model’s
prediction accuracy has increased when joint characteristics
were added, but much more may be done. Accordingly,
using 2D joint coordinate data can improve the model’s
predictive power even more. Prediction accuracy can be
further increased by using 3D joint coordinates as opposed
to 2D joint coordinates. The accuracy of 3D joint rotation
prediction can be greatly increased by our approach, which
combines 3D joint coordinates with joint characteristics. The
error is reduced by 24% when compared to the baseline

model that uses GAP features and by 8% when compared to
the baseline model that uses only 3D joint coordinates. This
demonstrates that our approach may successfully increase 3D
human mesh recovery accuracy and decrease error.

In addition to highlighting the benefits of using the cross-
view attention module in our MFT framework, this evaluation
also demonstrates how effective it is at enhancing model
stability and performance efficiency when compared to the
baseline method.

V. CONCLUSION

Without utilizing extra hand- or face-specific datasets [25],
we obtain state-of-the-art performance across six benchmarks
in our study, addressing the shortcomings of single-stage
models in processing multi-view images [26]. Our contri-
butions are put into practice clearly and effectively.

To improve the quality of 3D human mesh recovery, the
changes suggested in this research are essential. By offering
more detailed descriptions of body postures and shapes
and encouraging the interpretation of human intentions and
emotions through gestures and facial expressions[27], human
mesh recovery contributes to a richer knowledge of human
geometry. Models can be further investigated and optimized
in future studies to fully utilize richer datasets for improved
performance. Furthermore, incorporating additional cutting-
edge deep learning methods may improve the models’ effi-
cacy and adaptability in subsequent applications.
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