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Abstract—This paper addresses the challenges of feature ex-
traction and classification accuracy in brain-computer interface
(BCI) systems based on motor imagery tasks. We propose the
SAMPN-Network model, which integrates a custom spiking
neural network with a soft attention mechanism (SoftAttention-
Layer), alongside the Simplicityformer classifier that incorporates
a multi-head attention mechanism (MHA). The resulting classifi-
cation algorithm, named Custom Spiking Neural Network Layer
with Soft Attention Mechanism and Multi-Head Attention for
Classification (SNA-MHC), is specifically designed to optimize
classification accuracy in BCI systems. In our approach, raw
EEG signals corresponding to motor imagery (MI) tasks are
first normalized and then transformed into discrete spike trains
using threshold encoding to make them suitable for processing
by Spiking Neural Networks (SNN). These spike signals are
subsequently processed by the SAMPN-Network model, which
performs feature extraction by integrating a soft attention mech-
anism with the SNN module. The SNN module utilizes pulse
neurons to encode and enhance the temporal information in EEG
signals. Concurrently, the soft attention mechanism calculates
attention weights to automatically focus on critical segments of
the EEG signals associated with MI tasks while suppressing
background noise and irrelevant temporal information, thereby
extracting more precise time-series features. Following time-
sequence feature extraction, a Multi-Head Attention Mechanism
performs parallel attention computation across time domain,
frequency domain, and more abstract feature spaces. This
approach captures interdependencies between features across
different dimensions and enhances the discriminative power of
the classifier. Finally, the integrated features are processed by a
Softmax classifier to perform four-class classification of MI tasks.
Experimental results demonstrate that the proposed SNA-MHC
model outperforms existing state-of-the-art models in terms of
classification accuracy on both the TechBrain and BCI Compe-
tition IV2a datasets. Specifically, SNA-MHC achieves an average
classification accuracy improvement of 13.02%, 4.41%, 8.46%,
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15.05%, and 15.88%, respectively, when compared to other algo-
rithmic models. Furthermore, when compared to traditional CNN
and SNN models, SNA-MHC exhibits superior energy efficiency
while maintaining classification accuracy, further validating its
robust performance.

Index Terms—Brain-Computer Interface (BCI), Motor Im-
agery (MI), Spiking Neural Network (SNN), Soft Attention
Mechanism, Multi-Head Attention Mechanism, EEG Signal Clas-
sification

I. INTRODUCTION

BRAIN-Computer Interface (BCI) is a technology that

enables communication between the brain and external

devices by directly capturing and interpreting electrical signals

(EEG), and has garnered significant attention in recent years

[1]. BCI systems offer innovative solutions across various

domains, including neurological rehabilitation, prosthetic con-

trol, and cognitive training. These systems have demonstrated

significant utility in assisting patients with stroke or spinal

cord injuries in rehabilitation and motor function restoration

[2], enabling accurate control of prosthetics for complex tasks

such as grasping and movement [3], and enhancing cognitive

abilities through brainwave feedback systems in patients with

attention deficits and cognitive decline.
Within the BCI domain, Motor Imagery (MI) has emerged

as a prominent research area [4]. MI tasks require subjects

to imagine specific movements without physical execution,

thereby activating the brain’s motor cortex and generating

characteristic electroencephalogram (EEG) signals. This ap-

proach has been widely implemented in neural rehabilitation

[5], prosthetic limb control [6], brain-controlled wheelchairs

[7], drone navigation, and various other applications [8].
Despite significant advancements in MI-based BCI systems,

feature extraction and classification remain fundamental chal-

lenges. Traditional feature extraction methods exhibit inherent

limitations: wavelet transform, while capable of analyzing sig-

nals at different time scales to extract features across frequency

ranges [9] is susceptible to noise interference, particularly

when processing high-frequency components of low signal-

to-noise ratio signals. Fourier transform effectively analyzes

frequency components but erroneously assumes EEG signals

are stationary, thereby failing to capture the non-stationary

characteristics inherent in MI tasks [10]. Additionally, spectral

entropy analysis and autoregressive (AR) models, though

suitable for specific feature extraction [11], demonstrate in-

sufficient feature expressivity when confronted with complex

temporal signals.
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To overcome these limitations, deep learning techniques

have been integrated into BCI systems. Convolutional Neural

Networks (CNNs) have shown promising results in EEG

signal classification through their ability to learn high-level

features [12]. However, CNNs exhibit limitations when pro-

cessing EEG signals characterized by low signal-to-noise

ratios and strong temporal dependencies. Long Short-Term

Memory (LSTM) networks can capture extended temporal

dependencies in time series data, making them more suitable

for EEG signals with pronounced dynamic characteristics [13].

Nevertheless, their high computational complexity constrains

their application in real-time BCI systems.

In the classification phase, traditional algorithms display

various constraints. Linear Discriminant Analysis (LDA) per-

forms well in low-dimensional, linearly separable feature

spaces but struggles with highly nonlinear distributions. Sup-

port Vector Machines (SVM) face similar limitations with

linear kernels, though their capacity for nonlinear pattern clas-

sification can be enhanced through nonlinear kernel implemen-

tations [14]. Decision tree algorithms encounter difficulties

managing the strong temporal dependencies in EEG signals,

adversely affecting classification performance [15].

Recent years have witnessed the emergence of Spiking

Neural Networks (SNN) as a significant research focus in EEG

signal processing due to their unique event-driven operational

mechanism [16]. By emulating neuronal pulse discharge be-

havior, SNNs effectively capture the sparse and non-stationary

characteristics of EEG signals, thereby enhancing temporal

feature representation. However, SNNs continue to lag behind

CNNs and LSTMs in high-precision classification tasks, pri-

marily due to limitations in optimization methodologies and

hardware support.

To address these challenges, researchers have proposed

various enhancement strategies. Kheradpisheh et al. (2021)

combined the spatial feature extraction capabilities of CNNs

with the temporal processing strengths of SNNs, significantly

improving EEG signal classification performance [17]. Zheng

et al. (2022) explored the integration of SNN and LSTM

architectures to further enhance classification accuracy by

effectively capturing both long-term dependencies and sparse

temporal features [18]. Additionally, Yao et al. (2023) pro-

posed an architecture integrating SNN with a self-attention

mechanism, substantially improving the model’s ability to

capture critical information in MI tasks [19].

While these advancements have yielded performance im-

provements in SNNs, achieving efficient EEG signal classifica-

tion on low-power devices remains a significant challenge, par-

ticularly in environments with constrained computational re-

sources and stringent power consumption requirements. Such

contexts necessitate more efficient algorithms or hardware

acceleration techniques that maintain classification accuracy

while minimizing energy consumption.

To address these issues, we present a novel approach that

combines a custom spiking neural network with a soft attention

mechanism (SoftAttentionLayer). Additionally, we introduce

SNA-MHC, a four-class classification model for BCI systems

(Multi-CustomSpikeLayer with Soft Attention Mechanism and

Multi-Head Attention). This model is specifically designed to

enhance the classification accuracy of EEG signals in motor

imagery tasks.

The SAMPN-Network feature extraction model process

is shown in Figure 5. SNA-MHC preprocesses the original

EEG signals using the custom spiking neural network and

applies threshold encoding to convert continuous EEG sig-

nals into discrete pulse signals, aligning with the processing

requirements of SNN. This process effectively preserves the

temporal characteristics of EEG signals while minimizing

noise interference. In the feature extraction phase, SNA-MHC

incorporates the SAMPN-network module, which integrates

the SoftAttentionLayer and SNN. Leveraging the biological

properties of spiking neurons, the SNN module encodes the

timing information of EEG signals through pulse activation,

enabling the effective capture of temporal features. The soft

attention mechanism automatically prioritizes the critical sig-

nals related to the motor imagery task and suppresses irrelevant

or noisy signals, thereby significantly enhancing the accuracy

of time-sequence feature extraction. Furthermore, SNA-MHC

employs the Multi-Head Attention Mechanism (MHA) to cap-

ture relationships between different dimensions by performing

parallel computations across multiple feature spaces, including

time and frequency domains. This approach enhances the

model’s global understanding of the data. MHA effectively

models complex dependencies between feature dimensions

by processing multiple attention heads in parallel. Simulta-

neously, it extracts crucial temporal information from diverse

feature spaces, strengthens cross-dimensional feature repre-

sentation capabilities, and provides comprehensive feature

representation for classification tasks, substantially improving

classification accuracy.

Finally, the integrated features processed by MHA are input

to a Softmax classifier to perform four-class classification for

the motor imagery task. Compared to traditional SNN or CNN

models, our proposed SNA-MHC significantly reduces com-

putational complexity while maintaining high classification

accuracy.

II. METHOD

This paper proposes the SAMPN-network model, which

integrates a custom spiking neural network and a soft attention

mechanism (SoftAttentionLayer) for feature extraction, and a

Simplicityformer classifier incorporating a multi-head atten-

tion mechanism (MHA). The SNA-MHC classification algo-

rithm, based on the brain-computer interface (BCI) system, can

efficiently process real-time EEG signals and perform accurate

classification.

Initially, the pre-processed real-time EEG signals were

transformed into discrete pulse sequences through threshold

encoding. This encoding method effectively converts complex

continuous signals into discrete pulse sequences, making them

suitable for processing by spiking neural networks (SNN).

Subsequently, the discrete pulse sequences were input to the

SAMPN-network model, which includes an SNN module,

where they were processed into standard pulse signals using

leaky integrate-and-fire (LIF) neurons.

To fully exploit the key features of EEG signals, a soft

attention mechanism is integrated into the SAMPN-network
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Fig. 1: Structure diagram of SNA-MHC model

module. This mechanism enables the extraction of multi-

dimensional features by applying a weighted strategy that

highlights important information, suppresses redundant fea-

tures, and enhances the quality of feature representation. Fi-

nally, the extracted features were fed into the Simplicityformer

classifier. The multi-head attention mechanism independently

analyzes the input information by computing attention dis-

tributions for each attention head. The final classification is

achieved through the Softmax layer after normalization and

fully connected layer processing. The complete architecture

of the SNA-MHC model is shown in Figure 1.

A. Introduction to Data sets

BCI Competition IV 2a: The BCI Competition IV 2a dataset

consists of electroencephalographic (EEG) signals recorded

from 22 healthy subjects, each performing four distinct motor

imagery (MI) tasks: left hand, right hand, foot, and tongue.

Data acquisition was carried out using 64 EEG channels with

a sampling rate of 250 Hz. Each MI task lasted for 4 seconds,

during which the EEG signals were recorded and labeled

with their respective task categories. A total of 2 minutes of

EEG data were collected per subject, incorporating multiple

repetitions of each motor imagery task. The dataset provides

a rich source for investigating brain-computer interface (BCI)

applications related to motor imagery.

TechBrain Dataset: The TechBrain dataset is a laboratory-

based electroencephalographic (EEG) dataset comprising data

from 20 subjects, with a mean age of 23.4 ± 1.2 years

(subjects 1-20). The dataset includes four motor imagery

tasks: hand grip (task 1), hand open (task 2), wrist flexion

(task 3), and wrist extension (task 4). All participants were

recruited from Liaoning University of Science and Technology

and had no history of neurological disorders. During the

experiment, none of the subjects were under the influence of

any medications. The study was conducted in strict accordance

with the ethical guidelines of the Declaration of Helsinki,

and all participants provided written informed consent prior

to participation.

During the experiment, subjects wore Neuroscan (NuAmps)

electrode caps and sat comfortably in an armchair, relaxing

for 3 minutes. They were instructed to maintain a distance of

50 cm from a 21-inch LCD monitor. EEG data was recorded

using 40-channel Ag/AgCl electrodes (FP1, FP2, F7, F3, FZ,

F4, F8, FT7, FC3, FCZ, FC4, FT8, T3, C3, CZ, C4, T4, TP7,

CP3, CPZ, CP4, TP8, T5, P3, PZ, P4, T6, O1, OZ, and O2)

placed according to the international 10-20 system, with close

contact to the scalp for real-time acquisition of EEG signals

during motor imagery tasks. The signal sampling frequency

was set to 50 Hz, and the data were recorded continuously

in 32-bit precision. Bilateral mastoid electrodes served as ref-

erence electrodes. Throughout the experiment, subjects were

instructed to remain still and avoid any noticeable movements

or vocalizations. The experiment was conducted on a DELL

XPS 8940 microserver equipped with an i7-11700 CPU, RTX

3060Ti graphics card, and 32 GB RAM. Each experimental

session consisted of four motor imagery tasks, each repeated

three times. Subjects completed 10 sets of experiments on the

same day, with a 5-minute break between each set as depicted

in Figure 2.

Fig. 2: Subjects doing the experiment

The timing scheme utilized by the brain-computer interface

system is illustrated in Figure 3. The total sampling time for a

single motor imagery task ranges from 0 to 5 seconds. To

ensure the stability and accuracy of the signal, the period
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from 1 to 4 seconds is selected for signal feature extraction

and classification, as shown in Figure 3(a). Since some motor

imagery tasks may have extended durations, the continuous ac-

quisition of signals is segmented into multiple data segments,

as depicted in Figure 3(b).

Fig. 3: Timing schemes of acquisition the effective single MI

task and continuousMI tasks EEG signals

B. Data Preprocessing

To reduce common-mode noise between electrodes and

enhance the overall quality of the data, the bilateral mastoid

electrodes were used as the reference points for re-referencing.

Independent component analysis (ICA) was then applied to

remove artifacts, such as oculomotor and electrocardiogram

(ECG) artifacts.

Furthermore, the original EEG data were subjected to ran-

dom sampling using resampling data augmentation techniques,

with the option to replace or retain the original sample.

This process aimed to increase the diversity of the data

and improve the robustness of model training. A function,

augment data, was defined to take the original data and labels

as inputs and generate a specified number of augmented

data samples through resampling. For each raw sample, the

function randomly selects data points and determines whether

the same data point can be selected multiple times based

on the ”replace” parameter. This method not only enhances

the model’s adaptability to various data variations but also

effectively expands the size of the dataset.

C. SNA-MHC Classification Model

1) SAMPN-Network Feature Extraction Module: Initially,

the EEG signals for a single motor imagery task were nor-

malized using the Z-score method. The normalization formula

is given as follows:

Xt
normalized =

Xt −min(X)

max(X)−min(X)
(1)

Additionally, the long-term EEG signal is divided into time

windows of fixed length, with the data from each window

being input to the pulse encoder as a sample. This process

transforms the entire time-series signal into a series of in-

dependently processed samples. Let the window length be

denoted as L, and n represent the number of samples. Thus,

each sample xi corresponds to the signal within a specific time

window, and the overall data structure is as follows:

X = {x1, x2, x3, . . . xn} (2)

To convert the continuous EEG signal into a pulse form,

a thresholding method is employed for encoding. The trigger

pulse threshold is set to θ = 1.0 with a sampling frequency

of 500 Hz . At each sampling timet the current signal value

s(t) is recorded and compared with θ. If the signal exceeds

the threshold, a pulse is triggered and set to 1 ; otherwise, no

pulse is triggered, and it is set to 0 . The formula is as follows:

Si(t) =

{
1, if Xi(t) ≥ θ

0, else
(3)

After the motion imagery EEG signal is encoded, it is

converted into a binary discrete pulse signal, which is used as

the input to the SAMPN-network neural network containing

leaky integrate-and-fire (LIF) neurons. LIF neurons process the

input pulse signals by dynamically updating the membrane

potential V (t). Each input pulse causes an increase in the

membrane potential V(t), represented by the weighted ac-

cumulation of signal strength and frequency. Simultaneously,

the membrane potential decays over time, simulating the

charge leakage behavior of biological neurons. A pulse is

triggered (Sk(t) = 1 for neuronal activation) only when V (t)
accumulates to the threshold θ = 1.0, after which it resets to

0 , returning to the integrative state. The processing of LIF

neurons is as follows:

dV j
i (t)

dt
= −V j

i (t) +

N∑
k=1

wikSk(t) + Ij(t) (4)

Where N is the number of neurons, wik is the input weight,

and Ij(t) is the external input.
Next, the timing pulse signals from the LIF neurons were

input to the soft attention mechanism module. The soft at-

tention mechanism computes the feature importance score for

each time point by dynamically modeling the characteristics

of the pulse signal in the time dimension. These scores

were used to adjust the timing pulse weights in the feature

map, emphasizing the contribution of critical moments to

the overall task. Finally, the weighted features can capture

task-related temporal patterns more effectively, enhancing the

discriminative power of the model. The formula is as follows:

ei = tanh (Wehi + be) (5)

The score result is converted into attention weight through

Softmax function, the formula is as follows:

ai =
exp (ei)∑T
j=1 exp (ej)

(6)

Finally, the time series features output by LIF neurons were

weighted and summed using attention weights to get the final

features. The formula is as follows:

c =

T∑
i=1

aiahi (7)
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Fig. 4: Weight distribution after attention module scores

The SAMPN-Network feature extraction model process is

shown in Figure 8.

2) Simplicityformer Classification Module: Multi-Head At-

tention (MHA) is a technique used to enhance a model’s ability

to capture dependencies over long distances. This mechanism

decomposes the input signal into multiple attention ”heads,”

each independently focusing on different characteristic di-

mensions of the input data. These heads perform attention

calculations in parallel, allowing each to capture information

from different feature subspaces of the input data. The outputs

of the attention heads are then integrated to form a richer,

more comprehensive representation, thereby improving the

model’s capacity to represent the input data. This section

aims to utilize multi-head attention mechanisms to explore the

complexity of electroencephalography (EEG) and enhance the

comprehensiveness of feature extraction through the parallel

processing of multi-dimensional subspaces. The formula can

be expressed as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (8)

Among them, Q,K, and V are Query, Key, and Value

matrices respectively, and dk is the dimension of the key

vector.

During the training process, to ensure the stability of the

network and the generalization ability of the optimized model,

Layer Normalization is introduced after each multi-head atten-

tion module. This step adjusts and scales the activation values

of the input layer. Its mathematical expression is as follows:

LayerNorm(x) = γ

(
x− μ

σ

)
+ β (9)

Where μ and σ represent the mean and standard deviation of

the data, respectively. and γ and β were learnable parameters.

Through layer normalization, the internal covariate shift is

reduced, leading to more stable network training.

The deep structure of the model consists of several fully

connected layers, which introduce nonlinearity through the

Rectified Linear Unit (ReLU) activation function. Specifically,

after each fully connected layer performs the linear transfor-

mation, the ReLU activation function is applied to perform

a nonlinear transformation of the output. The formula is as

follows:

ReLU(x) = max(0, x) (10)

Where the linear output y = W · x + b = W of the fully

connected layer (where W is the weight matrix, x is the input

vector, and b is the bias vector) provides input for subsequent

processing by the nonlinear activation function, mapping the

input features to the target dimension. The ReLU activation

function enhances the network’s ability to capture complex

patterns by preserving positive values and suppressing negative

ones. It also mitigates the vanishing gradient problem, thus

improving the training efficiency of deep models.

The output layer of the model uses a dense layer with a

Softmax activation function to convert the final feature vector
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Fig. 5: SAMPN-Network feature extraction model process

into a probability distribution for the predicted class. The

formula is as follows:

softmax (xi) =
exi∑
j e

xj
(11)

Where xi is the input of the i-th neuron in the output layer.

The denominator is the sum of the exponents of all output

categories, ensuring that the sum of the output probabilities

equals 1.

The overall model is optimized using the Adam optimizer,

which combines the advantages of momentum and adaptive

learning rates. It employs update rules based on the estimation

of the first-order and second-order moments of the gradients,

effectively adjusting the update step size for each parameter.

This ensures both high efficiency and stability during training.

III. RESULT AND ANALYSIS

A. Experimental Settings

In this experiment, the MNE library was used to preprocess

the original motor imagery (MI) task EEG signals, and the

TensorFlow framework was employed to construct a neural

network for solving the EEG signal classification problem. The

experiment was conducted on a DELL microserver equipped

with an 11th-generation Intel® Core™ i7-11700 processor

(2.50 GHz), an NVIDIA GeForce RTX 3060 Ti graphics card,

and 80 GB of RAM. The experimental data for a single subject

were run on the constructed network model for 200 epochs,

with the batch size and learning rate set to 128 and 0.01,

respectively. Each subject’s data was divided into training

and test sets with a ratio of 85:15. Stratified five-fold cross-

validation was applied to split the training set to ensure that

the proportion of each class in each fold remained consistent

with that of the original training set. The model proposed in

this paper was experimentally compared with the 3D-CNN

and LSTM classification model (3D-CLMI) [20], the self-

attentional pulsed neural network time-channel joint attention

(STCA-SNN) [21], the non-iterative pulsed neural network

classification model with attention (NiSNN-A) [22], the end-

to-end pulsed neural network model (HR-SNN) [23], and the

feature coding-based CNN classification model (CNNs) [24].

B. Experimental Results

The highest classification accuracy of the SNA-MHC model

proposed in this paper is 93.89% on the BCI Competition IV

2a dataset, with an average classification accuracy of 92.80%.

Compared to the 3D-CLMI, STCA-SNN, NiSNN-A, HR-

SNN, CNNs, DFI-HCNN, and CNN-LSTM models, the classi-

fication accuracy of SNA-MHC increased by 10.48%, 3.13%,

8.44%, 15.22%, 13.09%, 4.17% and 11.01% respectively.

Additionally, the standard deviation of the SNA-MHC model

is only 0.69, compared to the 3D-CLMI, STCA-SNN, NiSNN-

A, HR-SNN, and CNNs models. This indicates that the SNA-

MHC model not only achieves significant improvements in

classification accuracy but also demonstrates more stable data

adaptability and generalization.

In the TechBrain dataset collected from the laboratory, the

highest classification accuracy of the SNA-MHC model was

93.83%, with an average classification accuracy of 93.37%.

Compared to other methods, the classification accuracy of

the SNA-MHC model improved by 13.02%, 4.41%, 8.46%,

15.05%, 15.88%, 5.62%, and 13.02% respectively. Addition-

ally, the SNA-MHC model has a standard deviation of only

0.43, highlighting its significant advantages in adaptability and

generalization.
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TABLE I: Comparison of Classification Performance of Different Models on BCI Competition IV 2a Dataset

Subjects 3D-CLMI STCA-SNN NiSNN-A HR-SNN CNNs DF-HCNN CNN-LSTM
SNA-MHC

(Ours)

1 83.36 90.32 83.27 79.04 77.69 86.23 83.24 93.66
2 83.48 92.00 82.58 77.58 79.07 90.22 82.37 91.88
3 83.74 89.86 85.85 76.16 78.45 88.64 80.55 93.75
4 81.91 91.29 82.75 77.91 78.04 92.85 80.73 92.50
5 81.51 87.64 83.30 76.30 81.12 91.09 81.14 93.83
6 82.83 86.04 85.49 77.74 81.74 88.34 83.76 92.90
7 81.50 90.30 85.51 79.50 81.44 88.97 81.92 92.79
8 81.42 89.00 83.48 76.39 79.20 88.47 80.17 92.30
9 82.12 91.12 85.14 78.24 79.96 86.38 82.75 93.25
10 80.70 87.05 86.81 75.59 79.42 88.16 81.35 93.89
11 82.47 89.58 86.13 78.76 77.72 88.26 80.91 91.77
12 82.97 91.12 82.57 77.55 78.05 87.66 81.72 91.50
13 82.78 91.54 84.40 76.78 82.24 88.61 82.48 92.36
14 81.81 87.34 84.92 79.28 80.61 88.36 83.12 91.77
15 82.20 90.85 83.20 76.87 80.89 87.47 79.83 93.83

AVG(%) 82.32 89.67 84.36 77.58 79.71 88.63 81.79 92.80
SD 0.71 3.20 1.88 1.39 2.25 2.53 1.73 0.69

TABLE II: Comparison of Classification Performance of Different Models on TechBrain dataset

Subjects 3D-CLMI STCA-SNN NiSNN-A HR-SNN CNNs DF-HCNN CNN-LSTM
SNA-MHC

(Ours)

1 79.74 88.66 85.76 75.44 77.65 88.91 77.48 92.59
2 79.88 86.48 84.29 78.51 76.47 88.89 80.15 91.55
3 80.16 86.00 85.71 75.40 76.14 88.45 78.27 92.80
4 80.06 89.36 81.06 78.46 79.73 86.35 81.62 91.62
5 79.87 90.35 85.53 75.40 74.37 84.27 79.51 92.78
6 79.91 88.41 84.58 78.62 76.12 82.29 77.12 93.20
7 79.06 87.31 83.33 77.60 80.12 87.63 79.86 93.06
8 79.80 86.56 81.16 76.58 77.71 85.69 78.94 91.56
9 80.11 86.15 84.42 77.85 75.52 86.49 80.72 93.83
10 78.32 90.22 83.17 77.91 75.00 86.54 81.23 91.74
11 78.44 86.24 83.06 77.61 74.12 87.71 78.36 92.72
12 79.49 90.06 84.29 76.71 76.44 84.78 80.27 92.07
13 78.27 85.48 84.01 79.81 75.49 88.99 79.64 91.94
14 78.23 88.91 84.87 75.98 77.04 88.67 77.93 92.24
15 78.74 89.19 84.40 78.52 75.44 85.59 82.08 92.80

AVG(%) 79.35 87.96 83.91 77.32 76.49 86.75 79.35 92.37
SD 0.53 2.74 1.92 1.58 2.83 3.68 2.69 0.43

After 200 iterations of training, the classification accuracy

of the model on the training set stabilized at approximately

92%, while the classification accuracy on the test set ulti-

mately stabilized at about 92.80%. The average classification

accuracy of the model is 92.37%. The experimental results

demonstrate that, by combining the threshold-coded pulse

signal conversion, the SNN integrated with the soft attention

mechanism for feature extraction, and its suitability for multi-

head attention mechanism classification tasks, the SNA-MHC

model exhibits significant advantages in classification tasks on

both the BCI Competition IV 2a dataset and the self-collected

dataset. It demonstrates superior performance, adaptability,

and generalization for the four-class motor imagery (MI) task.

C. Ablation experiment Settings
To explore the role of each component in the SNA-MHC

model, an ablation experiment was conducted. This paper

evaluates the contributions of resampling, the Spiking Neural

Network (SNN), and multi-head attention mechanisms, estab-

lishing the following classification models:
1. TSNS (SNA-MHC without Soft Attention): The soft

attention mechanism was removed from the original SNA-

MHC model, while the threshold coding, custom pulse neural

network, and multi-head attention mechanism (MHA) modules

were retained. This model was used to assess the ability of

the soft attention mechanism to enhance the model’s focus

on sparse temporal features and the importance of feature

weighting selection.

2. TSNM (SNA-MHC without MHA): The multi-head at-

tention mechanism (MHA) was removed, with the threshold

coding module, custom pulse neural network, and SoftAtten-

tionLayer retained. While the model can still extract some

features, its ability to focus on key information was reduced,

especially when processing complex signals, leading to weak-

ened classification performance.

3. TSNDA (SNA-MHC without Data Augmentation): The

resampling techniques for data augmentation were removed,

retaining the threshold coding module, soft attention mecha-

nisms, custom pulse neural networks, and multi-head attention

mechanisms. The model was trained directly with the original

MI task EEG signals. The removal of the data enhancement

strategy negatively impacted the model’s generalization ability

to different subjects, resulting in a decrease in classification

accuracy.
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Fig. 6: Histogram of accuracy of two data sets

Fig. 7: Changes in the accuracy of the two data sets in different comparison experiments

4. TSNSE (SNA-MHC without Spike Encoding): The

threshold coding module was removed, and the custom pulse

neural network, SoftAttentionLayer, and multi-head attention

mechanism (MHA) were retained. Without pulse encoding,

the model’s ability to capture the temporal features of EEG

signals for MI tasks was significantly reduced, leading to a

considerable drop in classification performance.

1) Ablation Results:

IV. CONCLUSION

This paper presents SNA-MHC, a four-class classification

algorithm for brain-computer interfaces based on motor im-

agery, which integrates a custom spiking neural network with

the SoftAttentionLayer. The Simplicityformer classifier, based

on the multi-head attention mechanism (MHA), is employed.

Initially, the SAMPN-network architecture, which combines

spiking neural networks and soft attention mechanisms, is

used to extract features from pre-processed EEG signals. The

spiking neural network module simulates the transmission of

neural impulses, effectively capturing the temporal depen-

dencies of EEG signals, while the soft attention mechanism

enhances the focus on key features by dynamically weighting

critical time segments. Subsequently, the Simplicityformer

classifier, which leverages the multi-head attention mechanism,

is employed to process multiple feature subspaces in parallel,

capturing rich contextual information and improving the cor-
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Fig. 8: Diagram of ablation chamber

TABLE III: Comparison of Classification Performance of

Different Models in Ablation Experiments on Datasets

Subjects TSNS TSNM TSNDA TSNSE SNA-MHC(Ours)

1 87.03 86.39 89.78 81.65 92.59
2 87.63 85.75 89.77 84.10 91.55
3 88.13 86.54 90.48 82.24 92.80
4 88.43 87.41 88.33 81.19 91.62
5 89.03 85.66 88.52 83.07 92.78
6 89.23 87.47 89.68 81.03 93.20
7 89.43 86.66 89.23 82.46 93.06
8 89.63 85.42 90.55 80.29 91.56
9 89.93 86.43 89.33 80.92 93.83
10 88.73 85.66 88.83 82.45 92.80

AVG(%) 88.72 86.34 89.45 81.94 92.37
SD 3.34 0.69 0.71 1.09 0.73

relation between features. The introduction of the multi-head

attention mechanism not only enhances feature understanding

but also improves the classification accuracy and robustness of

the model. Finally, a Softmax classifier is used for the four-

class classification of motor imagery tasks.

Experimental results on the BCI Competition IV 2a dataset

and the TechBrain dataset demonstrate that the SNA-MHC

algorithm significantly outperforms other comparison methods

in classification tasks. On the BCI Competition IV 2a dataset,

the average classification accuracy of SNA-MHC is 92.80%,

with a standard deviation of 0.69, which is substantially higher

than that of other comparison methods (3D-CLMI: 82.32%,

STCA-SNN: 89.67%, NiSNN-A: 84.36%, HR-SNN: 77.58%,

CNNs: 79.71%, DFI-HCNN: 88.63%, CNN-LSTM: 81.79%).

Compared with other methods, the classification accuracy of

SNA-MHC on the BCI 2a dataset improved by 10.48% (3D-

CLMI), 3.13% (STCA-SNN), and 8.44% (NiSNN-A), respec-

tively, and by 15.22% (HR-SNN) and 13.09% (CNNs). On

the TechBrain dataset, the average classification accuracy of

SNA-MHC is 92.37%, with a standard deviation of 0.43, again

outperforming the comparison methods (3D-CLMI: 79.35%,

STCA-SNN: 87.96%, NiSNN-A: 83.91%, HR-SNN: 77.32%,

CNNs: 76.49%). Compared to the other methods, the clas-

sification accuracy of SNA-MHC on the TechBrain dataset

improved by 13.02% (3D-CLMI), 4.41% (STCA-SNN), and

8.46% (NiSNN-A), respectively, and by 15.05% (HR-SNN)

and 15.88% (CNNs).

The results of the ablation studies show that the spiking

neural network module in the SAMPN-network, the soft

attention mechanism, and the multi-head attention mechanism

in the Simplicityformer play crucial roles in enhancing the

model’s performance. By analyzing each module individually,

the results demonstrate that each component is essential in

capturing temporal features, enhancing focus, and integrating

information. The experimental findings confirm that the SNA-

MHC algorithm exhibits excellent performance and gener-

alization capabilities in the four-class motor imagery task,

providing strong support for the practical application of brain-

computer interface systems.
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