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Abstract—While the rise of IoT devices has greatly improved 

connectivity, it has also left networks vulnerable to a number of 

security flaws. This study aims to develop SYN-GAN, a robust 

intrusion detection system (IDS) that safeguards IoT networks 

through the innovative use of Generative Adversarial Networks 

(GANs). In order to enhance the detection of a diverse array of 

evolving attack vectors, SYN-GAN augments training datasets 

with synthetic data produced by GANs. We show that SYN-

GAN is better at detecting both known and new threats by 

performing comprehensive experiments comparing it to 

conventional IDS methods. Based on our research, it seems that 

adding GAN-generated data to the mix increases network 

security by reducing the percentage of false positives and 

improving detection accuracy. This research shows that 

sophisticated machine learning methods have the potential to 

fortify IoT networks against complicated cyber assaults. 

 
Index Terms— Intrusion Detection System, IoT Security, Deep 

Learning, Distributed Denial of Service. 

I. INTRODUCTION 

oT networks face a range of security vulnerabilities, 

largely due to the limitations in resources, weak 

authentication mechanisms, and decentralized architecture. 

Because of these flaws, Internet of Things (IoT) devices can 

be targeted by a wide range of threats, such as DDoS 

assaults, data breaches, and ransomware [1]. Due to the 
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inherent complexity of IoT systems, conventional security 

methods are frequently inadequate, necessitating the creation 

of more sophisticated safeguards [2]. To prevent harmful or 

illegal actions on IoT networks, Intrusion Detection Systems 

(IDS) are crucial. The three main types of intrusion detection 

systems (IDS) are hybrid, signature-based, and anomaly-

based [3]. Anomaly-based systems frequently produce 

significant false-positive rates because they detect 

anomalous behavior, in contrast to signature-based systems 

that depend on known attack patterns. This difficulty 

underscores the necessity for improved detection algorithms 

that can function well in ever-changing IoT settings [4]. The 

two networks that make up GANs—a generator for creating 

synthetic data and a discriminator for differentiating between 

generated and actual data—were initially presented by 

Goodfellow et al. [5]. Synthetic data that is remarkably 

accurate is produced as the generator gets better at fooling 

the discriminator. Image synthesis, data synthesis, and 

security are just a few of the many sectors where GANs have 

found. 

Using ML and DL in intrusion detection systems to 

bolster the safety of the Internet of Things has been the 

subject of multiple research projects. Size of the dataset, 

feature selection, and processing in real-time are common 

obstacles for traditional models. Data augmentation and 

synthetic data generation are only two of the many areas 

where GANs have recently shown promise thanks to their 

development. Previous research has shown that GANs, when 

trained on more representative datasets, can boost IDS 

performance. Using GANs for cybersecurity purposes, such 

as malware analysis and intrusion detection, has been the 

subject of recent study [6]. GANs are beneficial in 

generating synthetic attack data, which helps in training 

IDSs to recognize both known and novel attack patterns. 

One of the key advantages is that GANs can address the 

imbalance in cybersecurity datasets, where attack data is 

often scarce [7]. The SYN-GAN framework, proposed in the 

paper, leverages synthetic data generation to train IDS 

models more effectively. Real-world IoT datasets are often 

incomplete and lack diversity in attack types, making GAN-

generated data critical for improving detection accuracy. 

SYN-GAN helps simulate normal and malicious traffic, 

ensuring a broader range of attack scenarios for training the 

IDS [8]. The synthetic data generated by SYN-GAN is used 

to augment the training process, allowing the IDS to identify 

subtle attack patterns that may not be present in real-world 
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datasets. DDoS attacks are one of the most significant 

threats to IoT devices due to their resource constraints and 

weak security measures. IoT devices are particularly 

vulnerable as they often lack the necessary computational 

power and security protocols to defend against such attacks 

[9]. Attackers exploit these vulnerabilities to launch large-

scale DDoS attacks, which overwhelm IoT networks and 

disrupt services. Mitigation techniques include anomaly-

based detection methods, which monitor traffic patterns for 

irregularities, but they suffer from high false-positive rates 

[10]. Datasets such as BoT-IoT are often used to evaluate 

the effectiveness of machine learning models in detecting 

these attacks [11]. XGBoost, a powerful gradient-boosting 

algorithm, has been combined with GANs for better 

intrusion detection. The WCGAN (Weighted Conditional 

GAN) framework generates synthetic data to balance classes 

in highly skewed datasets like NSL-KDD and UNSW-NB15, 

which often contain an overrepresentation of normal traffic 

and a lack of attack instances [12]. The XGBoost-WCGAN 

hybrid model improves the detection of minority attack 

classes by generating realistic attack patterns, reducing false 

negatives [13]. Datasets like NSL-KDD and UNSW-NB15 

are widely used benchmarks for evaluating these models, 

offering diverse attack vectors [14]. Random Forest, an 

ensemble learning method, is often combined with GANs to 

improve intrusion detection in IoT networks. The GAN 

generates synthetic attack data to augment the training set, 

while Random Forest efficiently classifies this data by 

constructing decision trees. Studies have shown that 

combining GANs with Random Forest results in improved 

detection accuracy and reduced false-positive rates, 

particularly in IoT networks with dynamic environments 

[15]. This approach has been validated using datasets like 

BoT-IoT, which capture a variety of IoT-specific attacks, 

including DDoS, data theft, and malware [16]. GANs are 

highly effective in predicting cyberattacks in complex 

network environments, where traditional models struggle 

due to the diversity of traffic patterns and attack vectors. A 

study demonstrated the effectiveness of GANs in modeling 

network behaviors and predicting DDoS attacks across 

multiple IoT networks with diverse device configurations 

[17]. The GAN model improves generalization by 

simulating a wide range of potential attack scenarios, 

allowing for better prediction and detection of novel attacks 

[18]. Bidirectional GANs (BiGANs) are an extension of 

traditional GANs and have been applied in cybersecurity for 

detecting network intrusions. The KDD-99 dataset, a widely 

used benchmark for network intrusion detection, has been 

employed with BiGAN models to generate both realistic 

attack traffic and normal traffic for training classifiers. The 

BiGAN framework simultaneously learns a generative model 

and an inverse mapping function, enabling the model to 

perform unsupervised anomaly detection [19]. This reduces 

the need for labeled data, which is often scarce in 

cybersecurity applications [20]. A key challenge in training 

GANs for intrusion detection is the complexity of the loss 

function, which often leads to instability during training. 

Recent research has focused on simplifying the loss function 

to make the model more robust without compromising 

detection accuracy. By using a Wasserstein GAN (WGAN) 

with a simpler loss function, researchers were able to 

improve model convergence and stability, while maintaining 

high detection rates of network intrusions on datasets like 

UNSW-NB15 [21]. One of the most critical challenges in 

cybersecurity is the lack of real-world cyberattack data for 

training machine learning classifiers. GANs have been 

successfully used to generate synthetic datasets that resemble 

real-world attack traffic. This synthetic data can be used to 

train machine learning classifiers without compromising the 

security and privacy of real network environments. For 

example, GAN-generated data has been used to improve the 

detection performance of classifiers trained on the BoT-IoT 

dataset [22]. This approach ensures that classifiers are 

exposed to a diverse set of attack patterns, enabling better 

generalization to real-world scenarios [23]. 

With regard to the employment of latent space reduction 

in a variety of approaches and models, Table 1 provides 

information regarding the dependence on actual training 

data.  "Real Data" refers to the fact that training is dependent 

on data taken from the real world.  The term "synthetic data" 

refers to the process of producing synthetic data, particularly 

through the use of GANs.  Utilization of both actual and 

synthetic data for the purpose of training is referred to as 

combined data.  The amount of datasets that were utilized 

for the evaluation is referred to as the "number of datasets."  

Real-Time Data Dependency is a metric that indicates 

whether or not the model uses real-time data in order to 

achieve correct performance. 
 

TABLE 1 

ASSESSING THE DEPENDENCY ON REAL TRAINING DATA AND THE APPLICATION OF LATENT SPACE REDUCTION STRATEGIES IN LITERATURE IN CONTRAST TO 

OUR PROPOSED APPROACH

Method/Model Real Data 
Synthetic 

Data 

Combined 

Data 
Datasets 

Real-Time Data 

Dependency 
Classifier 

WCGAN [12], [16] Intermediate Tall Tall 3-5 

Small 
XGBoost 

Bi-GAN [19], [23] Small 
Tall 

Intermediate 2-3 
Small GAN (Latent 

Space) 

RF + CTGAN [6], [15] Intermediate Tall Tall 3-4 Small Random Forest 

RF + TVAE [6], [7] Intermediate Tall Tall 3-4 Small Random Forest 

CTGAN [6], [15] Small Tall Intermediate 3-4 Small GAN 

RF + GAN [9], [13] Intermediate Tall Tall 3-4 Small Random Forest 

GAN, KNN + GAN Intermediate Intermediate Low 3-4 Small GaussianNB 
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II. METHODOLOGY 

A.  Overview of SYN-GAN 

SYN-GAN consists of three main components: data 

collection, GAN training, and IDS training. Real-world IoT 

network traffic data is collected, comprising both normal and 

attack traffic. This data serves as the foundation for training 

the GAN. The GAN is trained on the collected dataset to 

generate synthetic instances of both normal and malicious 

traffic. The generator creates synthetic samples, while the 

discriminator evaluates their authenticity. The synthetic data 

generated by the GAN is used to augment the training 

dataset of the IDS. This ensures that the NIDS is exposed to 

a wider range of attack vectors 

 

. 
Fig.1: An architecture that generates data using GAN and uses classifiers 

trained on data from NIDS 

 

A generator is a part of the GAN architecture that, when 

fed random noise, creates fake data that looks much like the 

actual Internet of Things traffic.  To train itself to 

differentiate between actual and fake data, the discriminator 

is fed both types of information.  Training the generator to 

produce high-fidelity synthetic data entails switching 

between updating the generator and the discriminator. 

Figure 2 demonstrates that Internet of Things devices and 

networks encounter various risks. To address these 

vulnerabilities, we propose the implementation of a GAN-

based NIDS model at the gateway.  A GAN-based NIDS 

entails training a traditional machine learning model using 

synthetic data generated by a GAN.bThe deployment of the 

trained machine learning model results in minimal latency 

and requires significant computational resources, as it is 

executed without utilizing the GAN model for synthetic data 

generation. The absence of training sessions following the 

deployment of the trained ML model, coupled with the 

minimal computational complexity due to the non-

engagement of GAN post-training, accounts for this 

situation. 

 

 
Fig. 2: Proposed GAN – based NIDS 

 

Primarily, it detects activity from outside the network in 

an effort to prevent remote attacks (including malware, 

reconnaissance, and denial-of-service scams). After then, it 

keeps an eye on the data flowing over the internal network in 

order to foil any attempts by hackers to breach the system 

(such as brute force attacks or illegal access). The model 

alerts the access control system when it detects malicious 

traffic, allowing management to intervene immediately. To 

train its algorithms, the IDS uses both supervised and 

unsupervised methods. It all starts with training the model 

using supervised learning with labelled data (attack and 

normal). After that, new threats are detected using 

unsupervised learning systems that have learnt patterns from 

the synthetic data. 

 

III. EXPERIMENTAL SETUP 

The evaluation of SYN-GAN utilizes well-known datasets 

such as the UNSW-NB15 and NSL - KDD, and NoT-IoT 

datasets which contain diverse attack types and normal 

traffic patterns. 

  

A. UNSW-NB15 Dataset 

The dataset is an extensive compilation intended for the 

assessment of network intrusion detection systems (NIDS).  

Created by the Australian Centre for Cyber Security at the 

University of New South Wales, it seeks to deliver an 

authentic depiction of contemporary network traffic, 

encompassing a variety of attack vectors [27]. The dataset 

comprises typical traffic and several assault types, rendering 

it appropriate for the training and evaluation of intrusion 

detection systems. Traffic was produced in a regulated 

setting, utilizing both authentic and artificial traffic. The 

dataset emulates contemporary network settings using 

several protocols. UNSW-NB15 includes many attack 

categories, including as Denial of Service (DoS), Exploits, 

Fuzzers, Shellcode, Worms, and Generic assaults. The 

dataset consists of 2,540,044 records, divided into a training 

set of 175,341 records and a testing set of 82,332 records.  

The dataset comprises 49 features, encompassing both 

fundamental attributes (such as packet length and time) and 

content-oriented attributes (including protocol types and 

flags).  The features are intended to encapsulate various 

dimensions of network behavior. 
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B. NSL-KDD Dataset 

The dataset was produced from network traffic collected 

at MIT’s Lincoln Labs.  The dataset comprises both real and 

synthetic data, designed to replicate a range of network 

conditions [28]. The NSL-KDD dataset encompasses 

various attack types, which are classified into four primary 

categories: Denial of Service (DoS), User to Root (U2R), 

Remote to Local (R2L), and Probe attacks. The dataset 

comprises 41 features, encompassing a mix of continuous 

and categorical attributes. The features encompass elements 

like fundamental network attributes, content-driven 

characteristics, and temporal aspects. The NSL-KDD dataset 

is more compact than the previous version, consisting of 

125,973 records. The training set comprises 81,000 

instances, whereas the testing set includes 22,000 instances, 

which promotes a more balanced approach and removes any 

redundant records. 

 

C. BoT-IoT Dataset 

The BoT-IoT dataset is tailored for research focused on 

security within Internet of Things (IoT) networks. This 

framework is designed to accurately represent IoT traffic, 

encompassing both typical behavior and diverse attack 

vectors [29]. The dataset was produced in a simulated 

environment that replicates a smart home scenario, 

incorporating various IoT devices, including smart lights, 

cameras, and sensors. This configuration exemplifies 

standard traffic patterns in IoT networks. BoT-IoT 

encompasses various attack scenarios, classified into 

categories such as DoS Attacks, Port Scanning, Man-in-the-

Middle Attacks, Botnet Attacks, and Credential Theft. The 

dataset includes 43 features that represent various network 

attributes. The BoT-IoT dataset comprises more than 1.5 

million records, offering a substantial resource for the 

training and evaluation of models. 

 The dataset undergoes preprocessing to eliminate noise 

and irrelevant features, thereby enhancing the quality of the 

input data. The GAN is an unsupervised learning model 

architecture in machine learning, noted for its ability to 

identify complex patterns in input data. GAN models are 

characterized by their unique training method known as 

adversarial training, as highlighted by Creswell et al. [31].  

This training method improves the model's capacity to 

identify and generate complex data distributions. 

 

 
 

Fig. 3: Structure of GAN for discriminator performance. 

 

TABLE 2 

 VALUES OF THE GENERATOR AND DISCRIMINATOR ALONG WITH THEIR 

RESPECTIVE LAYER NAMES 

Generator Discriminator 

Layer name Value Layer name Value 

Dense 512 Dense 1024 

LeakyReLU 512 LeakyReLU 1024 

BatchNormalisation 512 Dense 512 

Dense 1024 LeakyReLU 512 

LeakyReLU 1024 Dropout 512 

BatchNormalisation 1024 Dense 256 

Dense 2048 LeakyReLU 256 

LeakyReLU 2048 Dropout 256 

BatchNormalisation 2048 Dense 1 

 

A generator network 𝐺(z; 𝜃𝑏), parameterized by 𝜃𝑏, 

which denotes the weights of the network, is used in the 

GAN framework to create a mapping between the noise 

distribution 𝑝z(z) and the data distribution 𝑝data(x).  

Producing synthetic samples x that are indistinguishable 

from actual data samples is the goal of the generator network 

𝐺(z; 𝜃𝑏).  Concurrently, a discriminator network 𝑷(x; 𝜃𝑑) is 

trained to distinguish between real data samples and fake 

samples generated by the generator network. 

The GAN issue can be expressed as the optimization of 

parameters 𝜃𝑔 and 𝜃𝑑 to minimize the subsequent objective 

function is given by the Eq. (1). 

 ( ( ; ),G(z; ))
g d

d gmin min V D x
 

                 (1) 

Both the generator and the discriminator undergo repeated 

adjustments while training.  As shown in Figure 3, the goal 

is to improve the discriminator's capacity to differentiate 

between genuine and fake inputs while simultaneously 

increasing the generator's capacity to generate more real-

world data.  With a learning rate (𝛼) of 0.0002, the 

discriminator is trained using the Adam optimizer and binary 

cross-entropy loss.  A batch size of 128 is used during the 

training operation, which lasts for 2000 epochs (𝑁).  In 

Table 2, we can get a summary of the network parameters.  

 

 

D.  Performance Metrics 

The evaluation of the NIDS is conducted through metrics 

including accuracy, precision, recall, F1-score, and the Area 

Under the Receiver Operating Characteristic curve (AUC-

ROC). The metrics offer a thorough assessment of the 

model's efficacy in intrusion detection. Evaluation metrics 

measure the model's effectiveness in terms of classification 

accuracy and error rate. 

 Table 3 outlines the evaluation metrics utilized in this 

study. In these equations, TP represents true positives, TN 

signifies true negatives, FP indicates false positives, and FN 

denotes false negatives. In cybersecurity, Mean Time to 

Detect (MTTD) refers to the average time taken to recognize 

a security incident or breach within an organization's 

network or systems. Our study did not utilize the MTTD 

metric, as we exclusively employed a trained machine 

learning model for network intrusion detection system 

(NIDS) detection. The latency associated with testing the 

trained model for intrusion detection is negligible. 
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TABLE 3 

 METRICS FOR NID CLASSIFIERS 

Evaluation Equation 

Accuracy 
TP TN

TP TN FP FN



  
 

F1 Score 
2

2

TP

TP FP FN 
 

Precision 
TP

TP FP
 

Recall 
TP

TP FN
 

 

 

IV. RESULTS AND DISCUSSION 

A. Performance of NIDS on UNSW-NB15 dataset 

Among the classifiers, the Decision Tree (DT) and K-

Nearest Neighbors (KNN) achieved the highest accuracy, 

both at 90%, indicating their strong predictive capabilities. 

The Support Vector Classifier (SVC) closely followed with 

an accuracy of 89%, showcasing its reliability as well. In 

terms of F1 score, which balances precision and recall, the 

DT and SVC both scored 89, reflecting their ability to 

maintain a good equilibrium between correctly identifying 

positive cases and minimizing false positives. Notably, KNN 

excelled in precision with a score of 91%, demonstrating its 

effectiveness in accurately identifying positive instances. All 

three classifiers—DT, SVC, and KNN—also exhibited high 

recall, indicating their proficiency in capturing actual 

positive cases. The performance of machine learning models 

for NIDS for UNSW-NB15 is shown in table 4. 

In contrast, the Random Forest (RF), Gradient Boosting 

(GB), and AdaBoost (AB) classifiers performed 

significantly lower, with accuracies of 68% and F1 scores 

around 55. These classifiers struggled particularly in 

precision and recall, suggesting that they may not effectively 

differentiate between positive and negative instances. 

Overall, the results suggest that while Decision Tree, KNN, 

and SVC are strong candidates for this classification task, 

the RF, GB, and AB classifiers would benefit from further 

tuning or alternative strategies to enhance their performance. 

 
TABLE 4 

PERFORMANCE OF ML MODELS FOR UNSW-NB15 DATASET 

Classifier Accuracy F1 score Precision Recall 

LR 75 75 75 75 

DT 90 89 90 90 

RF 68 55 78 68 

GB 68 55 76 68 

AB 68 55 53 68 

SVC 89 89 89 89 

KNN 90 89 91 90 

GNB 83 83 83 83 

 

B. Performance of NIDS on NSL-KDD dataset 

The performance metrics of various classifiers illustrate their 

effectiveness in a classification task. The Gaussian Naive 

Bayes (GNB) classifier stands out with the highest accuracy 

at 84%, as well as strong F1 score, precision, and recall 

values of 84, 85, and 84, respectively, indicating its overall 

robustness in identifying positive instances while 

maintaining a balanced performance. Following GNB, 

AdaBoost (AB) performs admirably with an accuracy of 

80%, and it achieves perfect alignment across all metrics, 

including F1 score, precision, and recall, all at 80%. This 

consistency suggests that AdaBoost is effective at both 

identifying positive cases and minimizing errors. The 

performance of machine learning models for NIDS for NSL-

KDD is shown in table 5. 

Other classifiers, such as the Support Vector Classifier 

(SVC) and Gradient Boosting (GB), show respectable 

results with accuracies of 79% and 77%, respectively. SVC's 

precision of 81% highlights its ability to accurately classify 

positive instances, while GB excels slightly in precision with 

a score of 80%. The Decision Tree (DT) and Logistic 

Regression (LR) classifiers both achieve an accuracy of 77% 

and 75%, respectively, indicating moderate performance, but 

they lag behind in F1 score and precision compared to GNB 

and AB. Lastly, the Random Forest (RF) classifier matches 

Logistic Regression with an accuracy of 75%, but offers no 

significant advantage in precision or recall. Overall, GNB 

emerges as the most effective classifier, while AdaBoost 

also demonstrates solid performance, with several other 

classifiers showing promise but requiring further 

optimization to enhance their effectiveness. 

 
TABLE 5 

PERFORMANCE OF ML MODELS FOR NSL-KDD DATASET 

Classifier Accuracy F1 score Precision Recall 

LR 75 80 75 75 

DT 77 77 79 77 

RF 75 75 75 75 

GB 77 77 80 77 

AB 80 80 80 80 

SVC 79 79 81 79 

KNN 78 78 81 78 

GNB 84 84 85 84 

 

 

C. Performance of NIDS on BoT-IoT dataset 

The performance metrics of the classifiers reveal 

outstanding results overall, underscoring their efficacy in the 

classification task. The K-Nearest Neighbors (KNN) and 

Gaussian Naive Bayes (GNB) classifiers stand out with 

impeccable performance, attaining 100% accuracy, F1 score, 

precision, and recall. This impressive outcome demonstrates 

that both classifiers are capable of accurately recognizing all 

positive instances, with no occurrences of false positives or 

false negatives. The results of machine learning models 

applied to the NIDS using the BoT-IoT dataset are presented 

in table 6. 

 In a similar vein, the remaining classifiers—Logistic 

Regression (LR), Decision Tree (DT), Random Forest (RF), 

Gradient Boosting (GB), and AdaBoost (AB)—demonstrate 
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impressive performance, each achieving an accuracy of 

99%. These classifiers demonstrate impressive F1 scores of 

99 or 100, with precision consistently reaching 100% for 

DT, RF, GB, and AB, showcasing their capability to 

flawlessly identify true positives. The Support Vector 

Classifier (SVC) achieves an accuracy of 98%, which is 

slightly lower than some alternatives, yet it still demonstrates 

an impressive F1 score of 99 and maintains a precision of 

100%.  

 The findings demonstrate that all classifiers, especially 

KNN and GNB, show remarkable performance in accurately 

differentiating between classes with minimal error. This 

indicates that the dataset employed is probably well-

organized and appropriate for classification, enabling these 

models to operate at their best. 
TABLE 6 

PERFORMANCE OF ML MODELS FOR BOT-IOT DATASET 

Classifier Accuracy F1 score Precision Recall 

LR 99 99 100 99 

DT 99 100 100 99 

RF 99 100 100 99 

GB 99 100 100 99 

AB 99 100 100 99 

SVC 98 99 100 98 

KNN 100 100 100 100 

GNB 100 100 100 100 

The proposed NSL-KDD model, as indicated in Table 7, 

exhibits moderate performance with a score of 84 across all 

metrics. Although this is lower than other results, it remains 

valuable for demonstrating proof of concept and identifying 

areas for further improvement.  

 The maximum and minimum values on the boxplot are 

elevated, as illustrated in Figure 4. This suggests that the 

boxplot closely resembles the actual data, with the median 

value aligning with the observed data. This boxplot provides 

evidence that our GAN-based synthetic data exhibits greater 

reliability in managing real-world datasets for NIDS 

classification tasks.  
 

TABLE 7 

EXISTING METHODS AND OUR PROPOSED METHOD COMPARED 

ON THE DATASETS USED IN THIS STUDY. 

Dataset Accuracy Precision Recall F1 score 

UNSW-NB15 - 81 81 81 

NSL-KDD - 96 99 98 

BoT-IoT - 99 99 99 

NSL-KDD 91 87 98 92 

NSL-KDD – 99 100 99 

UNSW-NB15 90 80 98 88 

BoT-IoT – 99 99 99 

UNSW-NB15 90 91 90 89 

(Proposed) NSL-

KDD 
84 85 84 84 

BoT-IoT 100 100 100 100 

 

 

 
Fig. 4. Box plots were used to analyze UNSW-NB15 dataset properties such dur, dpkts, sbytes, and spkts. The box plots show real and fake data 

differences, ending GAN training. 
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Fig. 5. Comparison of network intrusion detection systems (NIDs) classification performance 

 

 
Fig. 6. NSL-KDD dataset categorization performance comparison of network intrusion detection systems (NIDs). 
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Fig. 7. The categorization performance of network intrusion detection systems (NIDs) using the BoT-IoT dataset. 

 

 

Synthetic data creation for NIDS applications is made 

more efficient using the distribution-based GAN network, 

which ensures a more precise approximation of real-world 

data distributions. Making it possible for the network to 

generate artificial data accomplishes this.  Figures 5, 6, and 

7 demonstrate the results of training eight classifiers on 

synthetic datasets and evaluating their performance across 

different datasets. When tested on the UNSW-NB15 dataset, 

the Decision Tree (DT) and K-Nearest Neighbors (KNN) 

models both outperformed the competition with 90% 

accuracy rates. With 80% and 84% accuracy rates, 

respectively, AB and GNB outperformed other models on 

the NSL-KDD dataset. When tested on the BoT-IoT dataset, 

KNN and GNB both achieved remarkable accuracy rates of 

100%. Aside from the NSL-KDD dataset, KNN performs 

better on the majority of datasets. The results prove that the 

suggested GAN-based synthetic data is reliable and strong 

enough to train NIDSs to spot irregularities in real-world 

datasets. Achieving excellent accuracy rates across varied 

datasets, this technique effectively produces intrusion 

detection systems that decrease security threats in network 

environments. 

 
 

V. CONCLUSION 

The SYN-GAN framework provides a fresh approach to 

enhancing intrusion detection in IoT contexts by utilizing 

GAN-based synthetic data. Utilizing synthetic data allows 

for this to be achieved.  One major drawback of machine 

learning approaches is that they can't learn models without 

using real-world data. Rare, hard-to-obtain, and potentially 

hampered by ethical and privacy concerns, this resource is 

invaluable. In order to tackle these problems, we offer a 

GAN-based framework in this article.  According to our 

findings, network intrusion detection systems (NIDS) can 

train ML models using completely synthetic data generated 

by GANs. The current corpus of literature does not contain 

substantial research on this subject. Our group has proven 

that synthetic data generated from three datasets—UNSW-

NB15, NSL-KDD, and BoT-IoT—is beneficial for training 

NIDS. The traditional use of real-world data for NIDS 

training has been questioned due to the fact that our method 

has shown promising results that are similar to those from 

real-time datasets. Our study outperformed previous research 

on the UNSW-NB15 dataset with respect to accuracy (90%) 

and precision (91%), recall (90%), and F1 score (89%). In 

the NSL-KDD dataset, we achieved an accuracy of 84%, a 

precision of 85%, a recall of 84%, and an F1 score of 84%. 

It is worth mentioning that with the BoT-IoT dataset, all 

parameters achieve perfect ratings. These outcomes are 

competitive, and often even better than, those derived from 

real-time data, demonstrating the potential benefits that 

synthetic data could offer to this sector. By tackling the 

challenges of data lack and imbalance, SYN-GAN 

significantly improves the accuracy and robustness of IDS.  

In the future, this methodology will be used to develop the 

GAN architecture and examine its application to real-time 

Internet of Things security scenarios. 
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