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Abstract—Agriculture is one of the indispensable fields for
the survival of mankind. Potatoes also play an important role
in agriculture. Several leaf diseases, including early and late
blight, have a significant impact on the quality and quantity
of potatoes. The manual interpretation of these leaf diseases
is time-consuming and inconvenient. Fortunately, potato plants
use the appearance of the leaves to detect diseases. The early
detection of infections significantly improves productivity. The
early recognition of these diseases from leaf images employs
various image processing and deep learning techniques, signifi-
cantly reducing production losses. The Convolutional Neural
Network (CNN) is the most popular deep learning method
that extensively recognizes leaf diseases from images due to
its incredible and marvelous performance. We use several pre-
trained deep learning models, including VGG16, MobileNetV2,
ResNet50, InceptionV3, Xception, and a proposed novel CNN-
based deep learning model on the plant village dataset to classify
and identify potato leaf early and late blight diseases. We apply
the transfer learning technique to the pre-trained models and
employ data augmentation for the proposed model. Compared
to these pre-trained models, the proposed novel model offers the
lowest loss and highest accuracy for potato leaf disease detection
using fewer parameters and layers. It effectively addresses
the overfitting and underfitting problems that occur in pre-
trained models. It also achieves the best performance with a
test accuracy of 99.67% compared to these pre-trained models
used in the diagnosis of potato leaf early and late blight diseases.

Index Terms—Deep learning, Potato leaf disease detection,
classification, pre-trained models, transfer learning, CNN.

I. INTRODUCTION

OUR survival is dependent upon agriculture. Our country
boasts a diverse range of agricultural food varieties.

Diseases destroy numerous foods and crops. The potato
(Solanum Tuberosum) serves as a fundamental dietary staple
in our nation. Potatoes play a significant part in advancing
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our economy and meeting our food requirements. Diverse
kinds of disease substantially diminish potato yield. The
primary pathogens affecting potato leaves are early blight
(Alternaria Solani) and late blight (Phytophthora Infestans).
These diseases impact potato plants, resulting in significant
economic losses in potato agriculture. To reduce potato
product loss, it is essential to identify the disorders that
necessitate appropriate treatment. Without knowledge of the
specific illnesses affecting potato plants, we will be unable
to implement appropriate measures to mitigate production
losses. We employ diverse machine learning and deep learn-
ing methodologies to identify, locate, and categorize these
disorders. CNN is a prevalent technique for the identification
and classification of various disease categories. Any machine
learning system, such as support vector machine (SVM),
random forest (RF), decision tree (DT), logistic regression
(LR), or artificial neural network (ANN), can classify potato
leaf diseases. However, those machine learning systems re-
quire a different procedure for feature extraction. All machine
learning methods are required to extract the appropriate
features for categorization. Feeding the classifier unprocessed
images will reduce its ability to identify the photographs,
resulting in diminished accuracy. CNN efficiently addresses
the issue by directly extracting features from the images;
hence, it ensures optimal accuracy. In CNN, a distinct feature
extraction technique is unnecessary. It possesses a superior
accuracy rate compared to a conventional classifier and
effectively addresses all of these challenges. We utilized
CNN to identify the disease on potato leaves due to the
exceptional efficacy of the detection method. We conducted a
performance comparison between various pre-trained models
and a custom model to identify a specific disease within a
designated dataset. We utilized five pre-trained models to
evaluate performance.

Large datasets like ImageNet initially train pre-trained
models, which frequently show excellent performance. How-
ever, when applied to new data, they do not consistently
deliver high performance. In contrast, using a custom-
designed model allows us to address this issue effectively.
This approach enables us to fine-tune the model structure
by adjusting parameters and layers to suit the specific
dataset. As a result, we can pinpoint an ideal model for
our particular dataset, which leads to enhanced performance
for the targeted class. Our experimentation with five pre-
trained models alongside our unique proposed CNN model
has confirmed this crucial insight, which is a highlight of our
study. We also employed data augmentation to significantly
enhance our model’s performance, leading to a notable
reduction in model loss. In this context, the custom-designed
model exhibits superior performance on our specific dataset,
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achieving the highest accuracy and the lowest loss when
compared to the pre-trained model. Pre-trained models do
not consistently perform well on specific datasets. Previous
studies have not provided a clear explanation for these issues.
Therefore, previous studies did not present a comparison
between the performance of custom models and different
pre-trained models. Previous studies did not illustrate CNN’s
working process using real-time potato images. We address
this gap by separately demonstrating the performance using
custom and pre-trained models, providing a comprehensive
and well-explained analysis. We also clearly demonstrated
and explained CNN’s working process using real-time potato
image pixels. By utilizing a custom-designed model, we
can determine an ideal model for our dataset, which is not
achievable with pre-trained models. We have provided a clear
explanation of this concept. Our assessment of dataset and
model performance involved experimenting with different
layers and dropout rates. Our goal is to mitigate the issues
of underfitting and overfitting while increasing test accuracy
and reducing test loss for potato leaf disease detection.
The pre-trained models we employed on our specific potato
leaf disease dataset exhibit these two specific issues in
detecting various potato leaf diseases. ResNet50 experiences
under-fitting, whereas VGG16, MobileNetV2, Inception, and
Xception struggle with over-fitting. To address both over-
fitting and under-fitting, we have proposed a novel CNN
model with fewer parameters and layers compared to these
pre-trained models. While increasing the number of hidden
layers to address underfitting is relatively straightforward,
managing overfitting is more challenging. To combat the
overfitting problem, we have employed data augmentation
techniques and incorporated dropout layers into our CNN
model. Our proposed CNN model has outperformed all the
pre-trained models, achieving the highest test accuracy of
99.33% and the lowest test loss of 1.43%.

This research has the following main objectives:
• Develop a deep learning model using CNN for potato

leaf disease detection.
• Utilize transfer learning techniques with various pre-

trained models.
• Detect and classify different diseases of the potato leaf,

such as healthy, early blight, and late blight.
• Enhance the robustness of the model by applying nor-

malization and data augmentation techniques to the
dataset.

• Attempt to minimize loss during the testing phase to
accurately detect potato leaf disease.

• Mitigate overfitting by using data augmentation strate-
gies and incorporating dropout layers.

• Compare the classification accuracy between different
pre-trained models and the proposed CNN model.

• Identify and visualize potato leaf diseases using the
proposed CNN model, demonstrating it as the best-
performing model.

• Develop a mobile application that integrates the pro-
posed CNN model for the real-time detection and diag-
nosis of potato leaf disease.

II. LITERATURE REVIEW

Kumar Sanjeev et al. [1] used an ANN classifier for the
early prediction of potato diseases based on leaf images.

The FFNN model, with an accuracy of 96.5%, serves this
purpose. Dr. Tejashree T. Moharekar et al. [2] used a CNN
model for potato leaf disease detection and achieved an
accuracy of 94.6%. Rabbi Mahuma et al. [3] used the pre-
trained DenseNet for potato leaf disease detection with an
accuracy of 97.2%. Mosleh Hmoud Al-Adhaileh et al. [4]
used a CNN architecture for detecting potato late blight
disease, and the model accuracy is 99%. Tahira Nazir et
al. [5] used a deep learning method to classify potato leaf
disease and achieved 98.12% accuracy. Deep Kothari et al.
[6] made a CNN model to find potato leaf disease and tested
it against VGG, ResNet, and GoogleNet on the same dataset.
The CNN model was 97% accurate for the first 40 CNN
epochs. Sindhuja Bangari et al. [7] used a CNN model for
the detection of potato leaf diseases with an accuracy of
99.07%. For leaf disease identification, Dr. N.ANANTHI et
al. [8] used image preprocessing and image enhancement
(CLAHE, Gaussian blur). CNN performed the classification,
and the accuracy was 98.54%. A. Singh and H. Kaur [9]
used SVM for potato leaf disease detection classification,
and the accuracy is 95.99%. N. Tilahun and B. Gizachew
([10]) detected two types of potato diseases, early blight and
late blight, using the pre-trained CNN models MobileNet
and EfficientNet. With EfficientNet, a higher accuracy of
98% is attained than with MobileNet. Using the transfer
learning method, Birhanu Gardie et al. [11] identify potato
disease from leaf images. The comparison of different model
accuracies is shown in this work using the same dataset,
where InceptionV3 acquired the best accuracy at 98.7%. Md.
A. Iqbal and K. H. Talukder [12] used image processing
and machine learning methods to detect potato leaf diseases,
where RF obtained a higher accuracy of 97%. Abdul Jalil
Rozaqi and Andi Sunyoto ([13]) use a customized CNN
model with 4 convolution layers and 4 MaxPooling layers
for potato to recognize the guava leaf disease automatically
at 97% for training data and 92% for validation data using
20 batches at 10 epochs. Md. Asif et al. [14] built a
customized CNN model named the sequential model and data
augmentation technique for potato leaf disease detection. The
customized model achieved the best result with an accuracy
of 97% compared to pre-trained models. R. A. Sholihati et al.
[15] use the deep learning CNN models VGG16 and VGG19
to classify potato leaf disease, and the average accuracy is
91%. Chaojun Hou et al. [16] used the machine learning
method for this process, and the SVM achieved the best result
with the highest accuracy of 97.4%. Al-Amin et al. [17] used
a deep convolution neural network technique to predict potato
disease from leaves with an accuracy of 98.33%. Junzhe
Feng et al. [18] used ShuffleNetV2 to detect potato late
blight disease. Feilong Kang et al. [19] used the machine
learning technique to identify potato blight diseases from
leaf images. Hritwik Ghosh et al. [20] used convolutional
neural networks to recognize and predict potato leaf disease.
P. Enkvetchakul and O. Surinta [21] used two deep CNN
models, MobileNetV2 and NasNetMobile, with the data
augmentation technique. Krishnan et al. [22] detected potato
blight disease from leaf images using machine learning and
compared the performance of three classifiers: SVM, RF,
and ANN. Al-Akkam and Altaei [23] used deep learning
techniques to detect potato leaf diseases. To detect potato
diseases, Islam et al. [24] used segmentation and multiclass
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support vector machines. Liu et al. [25] used a deep learning
CNN model named AlexNet for the detection of apple leaf
disease with an overall accuracy of 97.62%. Arora et al. [26]
used a machine learning method named deep forest for the
identification of disease from maize leaves and compared it
with other methods. The highest accuracy is 96.25% achieved
from the deep forest. Zhang et al. [27] used improved
deep CNN models, e.g., GoogLeNet and Cifar10 models,
to identify maize leaf disease. The obtained accuracy for
GoogLeNet is 98.9% and for Cifar10, it is 98.8%. Howlader
et al. [28] proposed an eleven-layer deep CNN model to
automatically recognize the guava leaf disease, and the
achieved average accuracy is 98.74%. Rangarajan Aravind
and Raja [29] used transfer learning and data augmentation
methods for automated crop disease classification in agricul-
ture. Hassan et al. [30] used the CNN model with transfer
learning techniques to identify many types of plant diseases
from leaf images. Shrivastava and Pradhan [31] used the
transfer learning method to identify diseases in rice plants.
Andrew et al. [32] used a model based on deep learning to
identify crop leaf disease. Srinivasu et al. [33] identified the
skin disease using MobileNetV2. Abuhayi and Mossa [34]
classified the coffee leaf disease using CNN. Vasavi et al.
[35] detected the crop leaf disease using machine learning
and deep learning. Yadav & Jadhav [36] used deep CNN
to create medical images for disease diagnosis. Sun et al.
[37] used CNN to recognize tea leaf diseases. Kundu et
al. [38] used image-processing techniques to identify plant
diseases based on leaf appearance. Shama et al. [39] used
deep learning techniques to detect plant leaf diseases. Md.
Nabobi Hasan et al. [40] used image-processing techniques
to detect plant diseases from leaf images. Mustafa Abed et
al. [41] used machine learning techniques to predict pan
evaporation. Kevin Aliffanova Ardisa et al. [42] used the
CNN method to detect vegetables and produced an accuracy
of 95.78%. Shumpei Takezaki and Kazuya Kishida [43]
used the data augmentation technique to detect abnormal
heart sounds. Using hybrid data mining techniques, Vemuri
Bharath Kumar et al. [44] predicted and categorized diabetes.

III. MATERIALS AND METHODS

To reduce time complexity, we developed a deep learning
model using CNN for potato leaf disease detection with
fewer parameters and layers. This section describes the
different layers and activation functions of the CNN. We also
utilized pre-trained models such as VGG16, MobileNetV2,
ResNet50, InceptionV3, and Xception to classify potato leaf
diseases through a transfer learning process.

A. Process of Potato Leaf Disease Classification
The classification of potato leaf diseases involves the

identification and categorization of diverse diseases impact-
ing potato plants based on visual symptoms observed on
the leaves. We employ several strategies, such as picture
augmentation, to increase the dataset’s diversity and enhance
the model’s performance. It encompasses multiple essential
approaches, including image acquisition, preprocessing, aug-
mentation, feature extraction, and classification. Applications
for feature extraction and classification frequently employ
CNN. Figure 1 illustrates the comprehensive stages involved
in the classification of potato leaf disease.

TABLE I
NUMBER OF LEAF SAMPLES IN THE TRAINING, VALIDATION, AND

TESTING SETS

Label Category Number
Training
Sample

Validation
Sample

Test
Sample

1 Healthy 500 300 100 100
2 Early Blight 500 300 100 100
3 Late Blight 500 300 100 100

Total 1500 900 300 300

1) Image Acquisition: The dataset is essential for iden-
tifying potato leaf diseases. Initially, an appropriate image
dataset must be collected. We employed a curated dataset
from Kaggle, accessible at https://www.kaggle.com/datasets/
muhammadardiputra/potato-leaf-disease-dataset, for our im-
plementation. Kaggle offers a diverse array of online image
repositories. It serves as a prominent repository for several
categories of image collections. We possess three categories
of potato leaf datasets: those exhibiting early blight, those
exhibiting late blight, and those displaying healthy leaves.
Both steep and lowland areas harbor Alternaria solani, the
principal agent of early blight. The unique angular, oval
form of the brown-to-black necrotic lesions is characterized
by concentric rings. Numerous dots coalesce and subse-
quently disperse on the leaves. Phytophthora infestans is the
causative agent of late blight in potatoes, impacting tubers,
leaves, and stems. As the illness advances, the leaf spots
enlarge, proliferate, and ultimately transition from purple-
brown to entirely black. Below the leaf surface, a white
growth becomes apparent. We randomly selected the example
image from our potato leaf disease dataset utilizing Python
programming. This is presented in Fig. 3.

We partitioned the dataset into a training set, a validation
set, and a test set. The dataset comprises 1500 images:
900 designated for training, 300 for validation, and 300
for testing. All datasets about potato leaf disease include
dimensions of 256x256 pixels. Maintaining uniform dataset
sizes throughout training is crucial for illness classification
with CNN. Inconsistent visual dimensions can cause issues
during CNN training. In a CNN, it is essential that each
input image is of uniform dimensions to facilitate efficient
processing by the network. The datasets are presented in
Table I.

2) Image Pre-processing: Prior to the feature extraction of
an image, we implement several image preprocessing tech-
niques to enhance performance, including image resizing,
filtering, noise reduction, color transformation, data augmen-
tation, normalization, and image segmentation. Photographs
of plant leaves are generally characterized by noise after
capture. These distorted visuals are exceedingly difficult to
identify. Consequently, we must eliminate the noise from the
first acquired noisy image collection. It also offers elevated
training accuracy. Afterward, we need to resize the image
to match its original dimensions. If the image dimensions do
not match those specified by the model’s inherent code using
a framework such as TensorFlow, then an error is likely to
occur. Normalization scales pixel values to a uniform range,
often between 0 and 1, facilitating algorithmic learning from
the data. It can accelerate model inference while diminishing
the necessity for model training.
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Fig. 1. Flow diagram of all processes for potato leaf disease detection

Fig. 2. Potato leaf image samples, e.g., Healthy, Early Blight, Late Blight

3) Image Augmentation: Augmentation involves enhanc-
ing the dataset through various approaches. Various ap-
proaches, including rotation, flipping, shifting, random
brightness adjustment, and zooming, augment the number
of images or data in disease categorization. Nonetheless, a
notable distinction exists between image augmentation and
image preprocessing. Both the training and test sets employ
picture preprocessing techniques, while the training data ex-
clusively uses image augmentation techniques. It is impracti-
cal to comprehensively represent an image that encompasses
every conceivable real-world occurrence for a model. By
augmenting the images, we may increase the sample size of
our training data and incorporate novel scenarios that may
be challenging to identify in reality. The model can acquire
knowledge from a broader spectrum of events by augmenting
the training data to generalize across various circumstances.

Image augmentation is a critical strategy for mitigating the
overfitting issue in deep learning. We utilize it to mitigate
overfitting concerns and improve classification precision.
Multiple data augmentation examples are illustrated in Fig. 4.

We specifically employ this augmentation strategy for
training data, not for test data, as the model benefits from
an increased volume of training data. We can employ a data
augmentation strategy to increase the quantity of the dataset,
thereby improving the model’s accuracy. If we possess a
limited dataset, we can utilize this data. We utilize this
information to augment the quantity of photographs. The
increased dataset is illustrated in Table II.

4) Feature Extraction: The feature extraction method is
essential for recognizing patterns in images that assist in
illness identification. This procedure integrates convolutional
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Fig. 3. Potato leaf image samples, e.g. Healthy, Early Blight, Late Blight.

Fig. 4. Potato leaf image samples after augmentation, e.g., Healthy, Early Blight, and Late Blight

TABLE II
NUMBER OF LEAF SAMPLES IN TRAINING, VALIDATION, AND TESTING

SETS AFTER AUGMENTATION

Label Category Number
Training
Sample

Validation
Sample

Test
Sample

1 Healthy 900 700 100 100
2 Early Blight 1200 1000 100 100
3 Late Blight ‘1200 1000 100 100

Total 3300 2700 300 300

and pooling layers to extract significant features, subse-
quently advancing to fully connected layers and softmax
classification layers for decision-making. The softmax classi-
fier generates predictions from the input data by diminishing
dimensionality and removing superfluous information. This
reduction does not compromise any crucial or pertinent
image features, facilitating more efficient processing without
diminishing accuracy. Object recognition and classification
utilize the retrieved features as the basis for a feature vector.

Convolutional neural networks (CNNs) are distinguished by
their ability to directly extract features from source images,
in contrast to other neural networks such as Support Vector
Machines (SVM), Decision Trees (DT), and Random Forests
(RF), which depend on previously extracted features for
classification and do not engage in direct feature extraction.
A CNN retrieves information from the input image for
classification, which is particularly efficient for image-related
tasks. The use of CNNs accelerates learning and enhances the
machine learning process by optimizing the feature extraction
and classification pipeline. This is emphasized in the initial
segment of the CNN operational procedure, as depicted in
Fig. 5.

5) Classification: The process of image categorization
entails assigning an image to a specific category. Our study
categorizes potato leaf diseases into three separate picture
classes. To do this, we use a convolutional neural network
(CNN), which is recognized as the most efficient method of
diagnosing potato leaf diseases, because of its robust feature
extraction abilities. The standard classification procedure
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occurs in the second phase of the CNN workflow, as seen in
Fig. 5.

6) Evaluation and Recognition: In machine learning and
deep learning, we employed many performance indicators
to evaluate the efficacy of potato leaf disease classification
tasks or any classification challenges. We employ a confusion
matrix to accomplish this. It is a recognized standard for
assessing accuracy or error metrics in classification tasks.
We compute the performance metrics of accuracy, precision,
and recall utilizing a confusion matrix. The confusion matrix
presents a summary of actual vs. expected values, including
true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN) in a matrix format. Evaluating a
model’s performance is essential as it indicates the model’s
accuracy and error rate. Various assessment criteria, such as
accuracy, precision, and recall, are available for assessing
a model’s performance. We assess our model utilizing ac-
curacy metrics (test accuracy and test loss). Ultimately, our
suggested CNN model is capable of identifying potato leaf
disease.

B. CNN

Convolutional neural networks consist of three primary
layers: the convolutional layer, the pooling layer, and the
fully connected layer (FC) or dense layer. In addition to
these layers, the stride, padding, and activation functions are
significant concepts in convolutional neural networks.

1) Convolutional Layer: Convolution is the procedure forr
integrating a kernel or filter with an image,which involveses
summation of the products of related pixels in the kernel
and the image. The genuine potato leaf dataset comprises an
array of pixels, facilitating a clearer comprehension of the
convolution process in the Python code. The pixels of the
array are depicted in Fig. 6.

The kernel traverses the entire image. This convolution
approach, with a filter, has been employed to extract charac-
teristics from the original photos. Convolution extracts image
characteristics from a compact square of input data while
preserving the spatial relationships among pixels. Examine
a 5-by-5 image as an example of how convolution interprets
each image as a matrix of pixel values. A standard neural
network links each input neuron to the subsequent hidden
layer. The convolution process is illustrated in Fig. 7.

2) Pooling Layer: The pooling layer aims to decrease the
dimensionality of the feature map, minimize spatial size,
reduce the number of parameters, and mitigate overfitting.
This is encompassed by the hidden layer of CNN. CNN uses
many pooling techniques, including max, average, and sum
pooling. We used the MaxPooling technique. The MaxPool-
ing procedure is illustrated in Fig. 8.

3) Fully Connected Layer: The fully connected layers, or
dense layers, constitute the last levels of the network. They
extract data from the convolution layer post-convolution to
provide output utilizing classifiers such as Softmax, Sigmoid,
etc. The final convolutional layer, called the pooling layer,
transmits the output to the fully connected layer after it
is flattened. The phrase ”fully connected” denotes a link
between each neuron in the lower layer and every neuron
in the higher layer. This procedure is illustrated in Fig. 9.

4) Stride and Padding: The stride refers to the distance
that the filter matrix moves across the input matrix. The
filters advance one pixel per movement with a stride of 1,
and they advance two pixels per movement with a stride
of 2. A longer stride yields reduced feature maps. Padding
is used to preserve the dimensions of the input and output
images. CNN incorporates padding into an image to improve
analytical precision. Zero padding involves augmenting our
input photos with layers of zeros.

5) Activation Function: Deep learning employs many
activation functions for classification, including Sigmoid,
TANH, ReLU, and Softmax. We used the ReLU and softmax
activation functions.

Sigmoid is used for binary categorization. To distinguish
between two distinct categories, we employ the sigmoid
function. It employs a probabilistic methodology to make
decisions with values ranging from 0 to 1. It works exclu-
sively for positive numbers. It is denoted as in (1).

f(x) =
1

1 + e−x
(1)

TANH serves as an additional activation function. In
contrast to sigmoid, TANH has a range of -1 to +1. Using the
TANH function, we may address negative values. The TANH
activation function possesses superiority over the sigmoid
activation function. It functions for both positive and negative
values. It is denoted as in (2).

f(x) = tanh(x) =
2

1 + e−2x
− 1 (2)

We denote ReLU as a Rectified Linear Unit. We employ
an additional process known as ReLU after each convolution
operation. We add ReLU after each convolution operation.
ReLU utilizes a non-linear mechanism. It substitutes each
pixel in the feature map with a zero to eradicate any
negative pixel values. It is a linear function that outputs
the input directly when it is positive but outputs zero when
it is negative. The concealed layer employs it to enhance
computational efficiency and mitigate the vanishing gradient
issue. It is denoted as in (3).

f(x) = max(0, x)

{
0, if x < 0,

x, if x ≥ 0.
(3)

The dense layer uses Softmax to identify multi-class
image groupings. The dense layer must employ the softmax
activation function to detect several classes. It computes the
likelihood of belonging to each category. We shall determine
the actual class according to the highest probability. In a
dataset comprising three image classes—healthy leaf, early
blight, and late blight—the softmax function yields class
probabilities: healthy leaf: 1.5%, early blight: 96%, and
late blight: 2.5%, indicating a prediction of early blight’s
presence. Ultimately, Softmax identifies the image class with
the greatest likelihood. In the last layer of our model, we
employed Softmax as a classifier for the identification of
potato leaf diseases. In a classification problem, the potential
classes or categories are represented by yi, whereas the
input features required for predictions are marked by x, as
illustrated in (4).

Predicted class = arg maxiP (yi |x) (4)
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Fig. 5. CNN working process

Fig. 6. Array of pixels from potato leaf samples

6) Dropout Layer: We employ dropout layers to en-
hance test accuracy and mitigate overfitting. This progress
is promising and demonstrates the model’s efficacy in both
the training and testing phases. Dropout, a training method-
ology, randomly disregards specific neurons. The approach
randomly deactivates these neurons. This indicates that the
neuron momentarily nullifies its influence on activating sub-
sequent neurons during the forward pass and refrains from
conveying any weight modifications to it during the backward
trip. A dropout can be applied after both pooling layers,
such as MaxPooling2D, and convolutional layers, such as
Conv2D. Our model utilized a dropout rate of 0.5 in the
fully connected layers.

C. Transfer learning

Effective and precise training of a neural network of-
ten necessitates a substantial dataset. Nevertheless, a more
extensive dataset may not always be available, in which
scenario transfer learning proves to be highly beneficial
and pragmatic for enhancing accuracy. It is a method that
employs a validated training model. It entails utilizing an
established paradigm to address a novel issue. Deep learning
and machine learning are presently prevalent owing to their
capacity to train deep neural networks with minimal data
while attaining superior accuracy. This approach proves to
be highly effective for photo classification when it utilizes
a small dataset with an appropriate model. We utilize the
proficiency of a pre-trained model on an extensive dataset.
Moreover, employing a pre-trained model from an extensive
dataset diminishes training duration, lessens data prerequi-
sites, and typically improves neural network efficacy, even

when data is scarce. We employed transfer learning for the
categorization of potato diseases using pre-trained models.

D. Pre-trained Network Models

We used pre-trained network models, such as VGG16,
ResNet50, MobileNetV2, InceptionV3, and Xception. All
pre-trained models use transfer learning to detect potato leaf
disease. To fine-tune the pre-trained models, we removed
their final classification layer(s) and added our classification
layer(s) with the appropriate number of output units.

1) VGG16 : Only the 16 layers of VGG16 possess
weights, distinguishing them from other algorithms that pre-
dominantly depend on hyperparameters. VGG16 comprises
a configuration of 13 convolutional layers, 5 max-pooling
layers, and 3 fully connected layers. The architecture has
13 convolutional layers and three fully linked layers, total-
ing 16 layers with adjustable parameters. Subsequently, a
softmax layer is implemented, followed by two fully linked
layers, each including 4096 nodes. We utilized pre-trained
network models such as VGG16, ResNet50, MobileNetV2,
InceptionV3, and Xception.

2) MobileNetV2: MobileNetV2 is a convolutional neural
network with 53 layers. It is a more compact and lightweight
network model. A crucial component of MobileNetV2 is the
depthwise separable convolutions found inside the inverted
residual blocks. MobileNetV2 does not have the conven-
tional, completely linked layers at the network’s end that
some other neural network architectures do. Instead, it uses
a final, fully linked softmax layer and global average pooling
(GAP) for classification.

3) ResNet50: ResNet50 is a variant of the ResNet archi-
tecture with 48 convolutional layers, 1 max-pooling layer,
and 1 average pooling layer. It organizes its 50 layers into
5 blocks, each including a series of residual blocks. Each
block integrates a convolutional block with an identity block.
Despite being far deeper than VGG, the model’s actual
weights are fewer than those of the VGG family due to
the utilization of global average pooling instead of the fully
connected layer.

4) InceptionV3: InceptionV3 comprises 48 layers. These
layers comprise convolutional layers, max-pooling layers,
fully connected layers, and auxiliary classifiers. The archi-
tecture is defined by its heavy use of inception modules,
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Fig. 7. Convolution Process

Fig. 8. Applying MaxPooling 2*2 in the Polling Process

Fig. 9. Flattening Process in Fully Connected Layer

which are made up of many parallel convolutional filters with
different kernel sizes.

5) Xception: Xception is a convolutional neural network
with 71 layers. Excluding the first and last modules, the
other 14 modules, each consisting of 36 convolutional layers,
include linear residual connections encircling them. It em-
ploys depth-wise separable convolutions instead of traditional
pooling layers, such as max-pooling or average-pooling. In
the traditional context, it lacks any fully connected layers.
It employs a softmax layer and global average pooling for
classification instead of a fully linked layer.

E. Proposed CNN Model

We proposed a deep learning model employing convolu-
tional neural networks (CNN). The proposed CNN model has
three dense layers and seven convolutional layers. We utilized
a Softmax classifier for the categorization of leaf diseases
in the final layer. We utilized the ReLU nonlinear activa-
tion function in every convolutional layer. This reduced the
likelihood of the vanishing gradient problem and converted
negative numbers to zeros. We employ a pooling layer after
each convolution to reduce computational cost and spatial
dimensions. We mitigate the overfitting issue, enhance the
efficacy of the activation function, and improve convergence
through image downsampling via max pooling. The output
layer, also known as the fully connected or dense layer, uses
a softmax classifier with three outputs to identify the class
of a potato leaf image. The comprehensive architecture of
our suggested CNN model is illustrated in Fig. 10 and the
experimental setup[45].
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Fig. 10. The Proposed CNN Model Architecture and the experiments [45]

1) Input layer

• Our model’s input image size is 256× 256.
• Convolution and ReLU operations using CNN directly

extract features from this input image.

2) Convolutional and pooling layers

• We employ three sets of convolutional layers with
ascending filter sizes (16, 32, 64, and 128) and utilize
ReLU activation functions to capture hierarchical fea-
tures.

• To reduce spatial dimensions, we add MaxPooling lay-
ers after each convolutional layer.

3) Flattening layer

• The flattened layer transforms the output derived from
the convolutional layers into a one-dimensional vector.

4) Fully connected layers

• We add two fully connected layers with 128 and 64
neurons each and use ReLU activation functions to
make feature extraction more in-depth.

• Dropout layers with a rate of 0.5 are inserted after
each fully connected layer to mitigate the over-fitting
problem.

5) Output layer

• Three neurons make up the concluding layer, which
corresponds to the three distinct disease classes: potato
healthy, early blight, and late blight.

• We use the softmax activation function to classify three
types of potato diseases.

6) Model compilation

• To compile the model, we employ the Adam optimizer
in conjunction with categorical cross-entropy loss, a
suitable choice for tasks involving multi-class classifi-
cation.

• Throughout training, we use the accuracy metric to
monitor the model’s performance.

All of the model architectures are summarized in Table III.

We employ categorical cross-entropy as the loss function
and Adam as the optimizer for classification in all mod-
els. We employ a batch size of 32 for categorization in
all instances. We trained all models over 80 epochs. The
hyperparameters utilized for the categorization of potato leaf
disease across all models are presented in Table IV.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This study utilizes many pre-trained models alongside a
suggested deep-learning CNN model for the detection and
classification of potato leaf diseases. We classified potato
leaves into three categories: healthy, early blight, and late
blight. Given that this is a multi-class classification assign-
ment for potato leaves, we utilized a softmax classifier in the
dense layer. All models applied the softmax classifier, main-
tained a constant batch size of 32, and utilized categorical
cross-entropy as the loss function. We trained all models
for 80 epochs using Google Colab to identify potato leaf
diseases.

We utilized five pre-trained models (VGG16, ResNet50,
MobileNetV2, InceptionV3, and Xception) for the identifica-
tion of potato leaf diseases using transfer learning. Although
these models are typically resilient, they may not represent
the most suitable option for every dataset. Pre-trained mod-
els, originally trained on vast datasets, may exhibit poor
generalization to smaller, domain-specific datasets. Conse-
quently, we abstained from employing data augmentation
strategies for these five pre-trained models. Notwithstanding
their elevated training accuracy, these models failed to adapt
effectively to our potato leaf disease dataset. Both the training
and validation accuracy demonstrated deficiencies, and their
performance regarding validation and test accuracy was
disappointing. Evaluating these models with novel data re-
vealed elevated loss performance, indicating potential issues
with overfitting or underfitting. These models significantly
elevated the test loss for potato leaf disease detection.

To mitigate these issues, we implemented a bespoke
CNN model featuring optimized layers and a constrained
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TABLE III
SUMMARY OF THE MODEL USED IN POTATO LEAF DISEASE DETECTION

Model Parameter Layer
Input
Size

Filter
Size

Polling
Activation
Function

Number of
Convolution

Layer

Number of
MaxPool

Layer

Number
of Fully

Connected
Layer

VGG16 138.4M 16 224*224 3*3
2*2

MaxPool
ReLU 13 5 3

MobileNetV2 3.5M 53 224*224
3*3,
1*1

GAP ReLU 43 - -

ResNet50 25.6M 50 224*224 3*3
3*3

MaxPool
ReLU 49 5 1

InceptionV3 23.62 M 48 299*299
3*3,
5*5,
1*1

3*3
MaxPool

ReLU 47 4 2

Xception 22.85M 71 299*299 3*3 GAP ReLU 36 - -

Proposed CNN
Model

233K 10 256*256 3*3
2*2

MaxPool
ReLU 7 7 3

TABLE IV
THE HYPERPARAMETER USED TO DETECT POTATO LEAF DISEASES

Batch Size 32
Epochs 80

Loss Function Categorical Cross Entropy
Optimizer for Model Training Adam

Dropout 0.5
Classifier in Output Layer Softmax

parameter count. Furthermore, to mitigate overfitting, we
enhanced the potato leaf disease dataset with techniques such
as shifting, rotating, cropping, zooming, and shearing. This
enhancement expanded our initial collection from 1500 to
3300 photos. We additionally used a dropout rate of 0.5
in the fully linked layer to help alleviate the overfitting
issue. Our model’s performance was superior to that of
the pre-trained models. It attained a remarkable test accu-
racy of 99.33% and a test loss as minimal as 1.43%. We
substantially enhanced the training and validation accuracy,
thereby resolving the challenges encountered by the pre-
trained models. The quality and quantity of the dataset, along
with the GPU’s processing capacity for model classification,
determine a model’s performance.

Our study presents a graph of training and validation
accuracy, as well as the loss, for all models. Fig. 11 shows
the accuracy and loss plot for VGG16. Fig. 12 shows the
accuracy and loss plot for ResNet50. Fig. 13 shows the
loss plot for MobileNetV2. Fig. 14 shows the loss plot for
InceptionV3. Fig. 15 shows the loss plot for Xception. The
loss plot for the proposed CNN model is shown in Fig. 16.

In Fig. 11, VGG16 attains 70% training accuracy and 79%
validation accuracy during the initial epoch. Thereafter, the
training accuracy consistently increases to 100% by the fifth
epoch, whereas the validation accuracy attains 96%. From the
fifth epoch to the final epoch, the training accuracy constantly
maintains a level of 100%; however, the validation accuracy
exhibits fluctuations. This significant discrepancy between
training and validation accuracy is also apparent in the loss

graph. Notwithstanding the elevated training accuracy, the
model demonstrates diminished validation accuracy, indicat-
ing an overfitting issue.

In Fig. 12, ResNet50 initiates with a training accuracy
of 42% and a validation accuracy of 43% during the initial
epoch. Nonetheless, as training advances, both accuracy
metrics demonstrate enhancement. By the concluding epoch,
the training accuracy has ascended to an amazing 97%,
while the validation accuracy remains at 84%. Both the
mean training accuracy and validation accuracy are below
average. Unfortunately, the loss remains consistently high
for both training and validation across all epochs, making
it unsuitable for our potato leaf dataset. The significant gap
between the training and validation measures is evident. This
model demonstrates inadequate performance in both training
and validation accuracy, signifying an underfitting issue.

In Fig. 13, MobileNetV2 initiates with an 85% training
accuracy and a 96% validation accuracy during the initial
epoch. Nonetheless, as training advances, the model’s effi-
cacy is enhanced. After the fourth epoch, the training ac-
curacy attains 100%, while the validation accuracy stands at
97%. Regrettably, from the fourth epoch onward, the training
accuracy maintains at 100%, whereas the validation accuracy
displays variability. The significant gap between training and
validation accuracy is apparent. Furthermore, the loss graph
displays a similar issue, which is marked by consistently
high loss values in both the training and validation datasets,
making it unsuitable for our potato leaf dataset. Although
the model attains elevated training accuracy, its diminished
validation accuracy indicates a potential overfitting issue.

InceptionV3 initiates with a training accuracy of 62%
and a validation accuracy of 72% in the initial epoch,
as illustrated in Fig. 14. Analogous to MobileNetV2, the
training accuracy progressively ascends and attains 100% by
the seventh epoch, while the validation accuracy stands at
93%. From the seventh epoch onward, the training accuracy
continuously remains at 100%; however, the validation ac-
curacy exhibits fluctuations and fails to attain 100%. The
disparity between training and validation accuracy is readily
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Fig. 11. The Accuracy and Loss Plots Using VGG16

Fig. 12. The Accuracy and Loss Plots Using ResNet50

Fig. 13. The Accuracy and Loss Plots Using MobileNetV2

apparent. The loss graph consistently displays elevated loss
values across all epochs for both training and validation.
Despite attaining the best training accuracy, the model’s poor

validation accuracy indicates an overfitting issue, rendering
it unsuitable for our dataset.

In Fig. 15, Xception exhibits an initial training accuracy of
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Fig. 14. The Accuracy and Loss Plots Using InceptionV3

83% and a validation accuracy of 95% during the first period.
As training advances, the model’s efficacy is enhanced. After
the sixth epoch, the training accuracy attains a flawless
100%, but the validation accuracy is recorded at an admirable
98%. From the sixth epoch onward, the training accuracy
constantly maintains 100%; however, the validation accu-
racy displays fluctuations. The significant disparity between
training and validation accuracy is clearly evident. The loss
graph also indicates the issue, with persistently elevated loss
values for both training and validation datasets. Although
the model attains elevated training accuracy, its diminished
validation accuracy and substantial loss during both training
and validation indicate an overfitting issue, rendering it less
appropriate for our dataset.

Despite the impressive accuracy of all pre-trained models,
issues of overfitting and underfitting render them unsuitable
for our potato leaf disease dataset. To address this challenge,
we developed a specialized deep learning model incorporat-
ing several modifications, such as layer tweaks, dropout lay-
ers, and data augmentation techniques. The proposed CNN
model exhibits a training accuracy of 40% and a validation
accuracy of 44% during the initial epoch, as illustrated in
Fig. 16. Subsequently, the accuracy of both training and
validation progressively improves concurrently while the loss
in both training and validation diminishes. The training accu-
racy attains an impressive 99% by the last epoch, whereas the
validation accuracy stands at 98%. The model consistently
demonstrates suitable training and validation performance
over all epochs, indicating its compatibility with our dataset.
This model provides an appropriately tailored solution for our
dataset by effectively addressing overfitting and underfitting
issues.

The training and validation accuracy graphs indicate that
VGG16, MobileNetV2, InceptionV3, and Xception attained
100% training accuracy; nevertheless, their validation ac-
curacy is comparatively suboptimal. This signifies a case
of overfitting when the models excel on the training data
yet falter with the validation data. Conversely, ResNet50
has inadequate performance in both training and validation
accuracy, indicating an underfitting issue. It does not align

effectively with our particular potato leaf disease dataset,
despite demonstrating outstanding performance on the Im-
ageNet dataset. This illustrates that a model may perform
exceptionally well on one dataset while underperforming on
another.

We created a customized deep-learning CNN model to ad-
dress these difficulties, optimizing it through the adjustment
of various parameters. Our proposed CNN model achieved
excellent performance for our specific potato leaf disease
dataset. The training and validation accuracy is significant,
indicating a robust model fit.

The pre-trained models employ transfer learning for clas-
sification. These pre-trained models, originally trained with a
comprehensive array of parameters on the ImageNet dataset,
do not undergo retraining of all parameters. It is impractical
to train such a vast number of parameters within a limited
timeframe. Retraining all parameters in our dataset would
lead to increased time complexity. Transfer learning thus
appears as the optimal method for image classification, as
it obviates the necessity of retraining all parameters.

The paper proposed a deep-learning CNN model with
fewer parameters for classifying potato leaf diseases, uti-
lizing data augmentation techniques. We assessed the effi-
cacy of various models in classifying potato leaf disease.
MobileNetV2 achieved an accuracy of 98.67% with fewer
parameters than the others. Xception attained 96% accuracy;
VGG16 reached 97% accuracy; ResNet50 exhibited 80% ac-
curacy, indicating potential underfitting issues; InceptionV3
secured 94.67% accuracy; and the proposed CNN Model
achieved the highest accuracy at 99.67%.

The pre-trained models incorporate both trainable and
non-trainable parameters as a result of transfer learning
implementation. Transfer learning does not optimize all
parameters. A custom model trains all parameters, unlike
transfer learning. During model training, Python scripts can
retrieve these parameters from the model summary. The
accuracy in question refers to the test accuracy derived from
test data after model training.

Table V presents a summary of the test accuracy, layer,
and parameter of all models used in potato leaf disease
identification.
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Fig. 15. The Accuracy and Loss Plots Using Xception

Fig. 16. The Accuracy and Loss Plots Using Proposed CNN Model

TABLE V
COMPARISON AMONG DIFFERENT MODEL RESPECT OF ACCURACY AND PARAMETER

Model Test Accuracy Layer Parameter

Total Parameter Trainable Parameter N on-trainable Parameter

VGG16 97.00% 16 14,789,955 75,267 14,714,688
ResNet50 85.00% 50 23,888,771 301,059 23,587,712

MobileNetV2 98.67% 53 2,503,747 245,763 2,257,984
InceptionV3 94.67%, 48 21,956,387 153,603 21,802,784

Xception 98.00% 71 21,475,883 614,403 20,861,480
Proposed CNN Model 99.33% 10 233,187 233,187 0

The VGG16 model achieved a test accuracy of 97%
on the potato leaf disease dataset, utilizing 75K trainable
parameters across 16 layers. ResNet50, on the same dataset,
attained 85% test accuracy with 301K trainable parameters
and 50 layers. MobileNetV2 reached a test accuracy of
98.67%, employing 245K trainable parameters and 53 layers.
InceptionV3 achieved a test accuracy of 94.67% using 153K
trainable parameters and 48 layers, while Xception attained
98% test accuracy with 614K trainable parameters and 71

layers. In contrast, our proposed CNN model outperformed
all pre-trained models, achieving an impressive test accuracy
of 99.67% with only 233K trainable parameters and 10
layers. While VGG16 has fewer trainable parameters than our
model, its test accuracy and test loss are inferior. Similarly,
MobileNetV2, despite having fewer parameters, falls short in
terms of training accuracy and test loss. Additionally, both
VGG16 and MobileNetV2 exhibit higher layer counts and
greater model complexity compared to our CNN model. No-
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Fig. 17. Comparison of Test Accuracy and Test Loss of the Model

tably, our proposed CNN model combines low computational
cost, minimal layer count, and reduced complexity while
maintaining an optimal number of trainable parameters and
delivering the best accuracy among all the models tested.

Table VI provides an overview of the training accuracy and
loss, as well as the test accuracy and loss for each model.

The pre-trained CNN models shown in Table VI are
used on the same dataset to find diseases in potato leaves
using transfer learning. VGG16, ResNet50, MobileNetV2,
InceptionV3, and Xception are pre-trained models that em-
ploy transfer learning. Additionally, we employ various aug-
mentation techniques to create a tailored CNN model for
the classification of potato leaf diseases on the identical
dataset. Except for ResNet50, all other pre-trained models
exhibit small training losses and achieve 100% training accu-
racy. However, their performance varies concerning the test
dataset. MobileNetV2 attains 98.67% test accuracy with a
test loss of 7.44%, InceptionV3 records 94.67% test accuracy
with a test loss of 29.26%, Xception accomplishes 98% test
accuracy with a test loss of 9.12%, and VGG16 reaches 97%
test accuracy with a test loss of 6.85%. In our unobserved
potato leaf disease dataset, these pre-trained models exhibit
inferior performance due to their significantly higher test
loss. Their reduced test accuracy and increased test loss
indicate overfitting issues despite their exceptional training
accuracy.

However, ResNet50’s operation differs significantly. It
achieves a training accuracy of 97% and a training loss of
9.39%. The test accuracy of ResNet50 is 85%, accompanied
by a high test loss of 48.82%, demonstrating very poor
performance on our dataset. The combination of low training
and test accuracy, along with high test loss, suggests an
underfitting problem. None of the pre-trained models seem to
be well-suited for our potato leaf disease dataset. Our dataset
on potato leaf disease seems incompatible with any of the
pre-trained models.

Our proposed CNN framework, however, significantly
mitigates these issues. It attains an exceptionally low test loss
of 0.8%, resulting in a notable test accuracy of 99.67% and a
training accuracy of 98.71%. Our suggested approach excels
at diagnosing potato leaf disease, especially when confronted
with unfamiliar data. The proposed CNN model effectively
addresses the issue of identifying potato leaf disease. Fig. 17
presents a comparison of test accuracy and loss for all
models.

In the majority of instances, the proposed CNN model

outperforms the pre-trained CNN models regarding accuracy.
Moreover, in the pre-trained models, the test loss increases;
however, in the proposed CNN model, it diminishes by
0.8%, thereby enhancing our model’s performance. The
training accuracy surpasses all pre-trained models, excluding
ResNet50, although the testing accuracy is inferior to that of
our suggested CNN model. Our proposed CNN model attains
the best test accuracy and the lowest test loss.

The confusion matrix analyzed the performance of the
potato leaf disease classification model. It displayed the
performance of our proposed CNN model in identifying three
varieties of potato leaves. In this instance, 0 denotes potato
early blight, 1 signifies potato late blight, and 2 represents a
healthy potato leaf. It matched the actual target values with
the predicted ones for each class of the potato leaf dataset.
It helps us figure out how well our CNN model can tell
the difference between early blight, late blight, and healthy
leaves in our potato leaf disease recognition application.
This matrix displays the performance of each class on the
potato leaf dataset. It delivers outstanding outcomes for the
potato early blight and potato healthy categories in our test
dataset. It also demonstrates excellent performance in the
potato late blight category within the test image dataset. We
can comprehensively evaluate the exceptional performance
of our proposed CNN model in identifying potato leaf
diseases through the confusion matrix. Figure 18 illustrates
the confusion matrix of the proposed CNN model.

The classification report is a table summarizing multiple
evaluation metrics. We use it to evaluate the performance of
our model. It shows a detailed summary of the performance
of our classification model. It typically shows metrics like
precision, recall, F1-score, and support for each class. We
present the classification report for our proposed CNN model,
which evaluates three classes of potato leaves: potato early
blight, late blight, and healthy. Our CNN model demonstrates
excellent performance across all classes, achieving a remark-
able test accuracy of 99.67%. We achieved this performance
by using data augmentation techniques, which required fewer
parameters and layers than other pre-trained models. The
precision, recall, F1-score, and support for our proposed
CNN model on the potato leaf disease dataset are presented
in Table VII. With precision ratings of 100%, 100%, and
98% for the early blight, late blight, and healthy categories,
respectively, the testing findings show how successful the
suggested method is. Likewise, the early blight, late blight,
and healthy categories had 100%, 99%, and 100% recall
scores, respectively. It also scored 100%, 98%, and 99%
F1-scores, respectively, for the early blight, late blight, and
healthy categories. Additionally, the method demonstrated its
resilience and dependability by achieving a weighted-average
accuracy of 100% and a macro-average accuracy of 99% on
the test dataset. The graph of the precision, recall, and F1-
score of our model on the potato dataset is represented in
Fig. 19.

Our proposed CNN model outperformed all other pre-
trained models, with the greatest test accuracy of 99.33% and
the lowest test loss. It successfully mitigated the overfitting
problem by integrating a dropout layer of 0.5 into the
fully linked layers and other data augmentation methods.
MobileNetV2 produced the optimal outcome, attaining an
accuracy of 98.67% while utilizing fewer parameters than
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TABLE VI
TRAINING ACCURACY AND LOSS, TEST ACCURACY AND LOSS COMPARISON

Model Technique
Training

Accuracy(%)
Training
Loss(%)

Test
Accuracy(%)

Test
Loss(%)

Model Fit

Transfer
Learning

Data
Augmentation

VGG16 Yes No 100.00 0.03087 97.00 6.85 Overfit
ResNet50 Yes No 97.00 9.39516 85.00 48.82 Under fit

MobileNetV2 Yes No 100.00 0.00006 98.67 7.44 Overfit
InceptionV3 Yes No 100.00 0.00155 94.67 29.26 Overfit

Xception Yes No 100.00 0.00018 98.00 9.12 Overfit
Proposed CNN Model No Yes 98.71 3.35295 99.67 0.8 Good fit

Fig. 18. The confusion matrix of our proposed CNN model

Fig. 19. Comparison chart of the precision, recall and F1-score for three
potato leaf classes using our proposed CNN model

other pre-trained CNN models. Conversely, ResNet50 had
the least effective performance among the models in our
dataset. The pre-trained models faced difficulties associated
with overfitting and underfitting. Overfitting occurs when the

TABLE VII
CLASSIFICATION REPORT OF OUR PROPOSED CNN MODEL

Precision Recall F1-score Support
Early blight 1.00 1.00 1.00 205
Late blight 1.00 0.99 0.98 199

Healthy 0.98 1.00 0.99 126
Accuracy 1.00 530

Macro avg 0.99 0.99 1.00 530
Weighted avg 1.00 1.00 1.00 530

training accuracy increases, but the test accuracy significantly
decreases. Underfitting occurs when both training and test
accuracy are inadequate. Except for ResNet50, all pre-trained
models attained elevated training accuracy; nevertheless,
their test accuracy was comparatively poor, accompanied
by considerable test loss. Nonetheless, our suggested CNN
model successfully addressed these challenges, attaining the
highest test accuracy and the lowest test loss. It exhibited
exceptional performance with an accuracy of 99.67% on the
test dataset, utilizing data augmentation approaches while
employing fewer parameters and layers than other pre-trained
models. Our proposed CNN model attains the highest test
accuracy in the identification of potato leaf diseases. It is
illustrated in Fig. 20.
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Fig. 20. Recognition of potato diseases from the leaf using Proposed CNN
Model

Fig. 21. Sample of potato leaf dataset collected from regional fields

To help untrained farmers accurately identify potato ill-
nesses and implement appropriate treatment measures, we
created a mobile application. Our application has improved
potato yields by facilitating accurate disease classification. To
verify its reliability, we evaluated the application using actual
photos obtained from nearby potato farms. Several images of
potato leaves are collected from various potato fields to test
our mobile application. Sample images from the real-time
dataset are shown in Fig. 21.

It presents the confidence level for each category after clas-
sifying potato leaf images. It precisely recognizes previously
unobserved potato leaf images, indicating that our suggested
CNN model successfully reduces overfitting. The subsequent
images depict the interface of the Android application that
identifies three categories of potato leaf conditions: early
blight, late blight, and healthy. The application consistently
differentiates between sick and healthy leaves. We evaluated
the Android application with both web-derived photos and
real-time images captured in the field. Clean, closely taken,
and noise-free photos significantly increase classification
accuracy and boost confidence levels. However, distorted or
ambiguous images significantly diminish confidence levels.

Figure 22 demonstrates the potato early blight recognition
using the mobile application. In this case, all three images
are correctly classified as early blight, but with varying
confidence levels. The first image is very clear, resulting in
100% confidence. However, the other two images are less

Fig. 22. Potato early blight recognition using mobile application

Fig. 23. Potato late blight recognition using mobile application

clear, leading to lower confidence scores compared to the
first one.

Figure 23 demonstrates the recognition of potato late
blight using the mobile application. Similar to early blight,
late blight is correctly identified across all images. How-
ever, the confidence levels differ due to variations in image
quality. The first and third images are clear, achieving 100%
confidence, while the remaining image is noisy and reversed,
resulting in reduced confidence levels during identification.

Fig. 24. Potato healthy leaf recognition using mobile application

Fig. 24 demonstrates the potato leaf recognition using the
mobile application. The first and second images are sharp
and clear, resulting in 100% confidence. In contrast, the third
image was taken from a distance and contains additional
objects in the frame, making it less clear and causing a lower
confidence score compared to the first two images.

We tested the app using unseen images with class labels
from external websites to identify any potential errors. For
new and unseen data, the model’s confidence may decrease,
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while for training data, the confidence remains consistently
high. An ideal model should accurately predict class labels
for unseen data while maintaining high confidence. In our
case, the model successfully predicts the correct class labels
for most of the unseen data. However, in some cases,
although the confidence is lower, the predictions remain
accurate.

The main contribution is focused on our study.
• We introduce a convolutional neural network (CNN)

model that uses fewer parameters and methods to clas-
sify potato leaf diseases.

• Normalizing pixel values to a range of 0 to 1 and
enriching the data with techniques like random flipping,
shifting, zooming, brightness enhancement, rotation,
and shearing improve the model’s robustness.

• We address the issues of underfitting and overfitting to
increase the efficacy of our proposed CNN model.

• We employ batch normalization, data augmentation, and
dropout layers to enhance convergence and mitigate
overfitting in our proposed CNN model.

• The pre-trained models utilize transfer learning to detect
potato leaf disease.

• The fundamental criteria for evaluating all models are
tested loss and accuracy.

• We compare the accuracy of pre-trained models with
the suggested CNN model.

• The proposed CNN model surpasses previous pre-
trained models by mitigating overfitting and underfit-
ting, achieving the maximum test accuracy of 99.67%
and the lowest test loss of 0.8%.

• Our proposed CNN model significantly reduces test loss
in comparison to pre-trained models used in potato leaf
disease recognition.

• The proposed CNN model accurately identified potato
leaf disease and demonstrated strong performance on
our test dataset.

• We create a mobile application utilizing our proposed
CNN model and evaluate it on a potato leaf data set
sourced from a local potato field.

V. CONCLUSION AND FUTURE WORK

This study employs leaf samples to distinguish between
healthy and infected potato leaves, focusing on early and
late blight. We attain this distinction by using a deep learn-
ing methodology, utilizing five transfer-learning models in
conjunction with a bespoke CNN model augmented by data
enhancement approaches.

However, adjustments to several parameters and layers
enabled our suggested CNN model to perform the task more
efficiently. This change markedly diminished the overfitting
problem that had consistently plagued the pre-trained models.

We suggested a CNN model that excels in detecting potato
leaf diseases, attaining maximum accuracy with low loss.
Among the pre-trained models, VGG16 and MobileNetV2
yielded robust results while necessitating fewer parameters
than their counterparts. Xception and InceptionV3 exhibited
notable performance; nonetheless, ResNet50 was the least ef-
fective on our dataset. Nonetheless, all the pre-trained models
demonstrated a certain level of overfitting. In contrast, our
CNN model effectively addressed this issue, surpassing the

pre-trained models in both test accuracy and test loss by
employing data augmentation approaches.

For this study, we employed a publicly accessible dataset.
We intend to create a custom dataset by gathering photos
of healthy and damaged potato leaves from multiple potato
fields. We intend to enhance accuracy and minimize loss with
this augmented and customized dataset. Furthermore, we
anticipate the integration of software and hardware solutions
for enhanced precision and real-time outcomes. We intend
to work with additional pre-trained models to create a more
robust one for improved accuracy.

ACKNOWLEDGMENT

This work was supported by the Computer Science and
Engineering Discipline, Jashore University of Science &
Technology.

REFERENCES

[1] K. Sanjeev, N. K. Gupta, W. Jeberson, and S. Paswan, “Early pre-
diction of potato leaf diseases using ann classifier,” Oriental Journal
of Computer Science and Technology, vol. 13, no. 2, 3, pp. 129–134,
2021.

[2] T. T. Moharekar, U. R. Pol, R. Ombase, T. J. Moharekar et al.,
“Detection and classification of plant leaf diseases using convolutional
neural networks and streamlit,” International Research Journal of
Modernization in Engineering Technology and Science, vol. 4, no. 7,
pp. 4305–4309, 2022.

[3] R. Mahum, H. Munir, Z.-U.-N. Mughal, M. Awais, F. Sher Khan,
M. Saqlain, S. Mahamad, and I. Tlili, “A novel framework for potato
leaf disease detection using an efficient deep learning model,” Human
and Ecological Risk Assessment: An International Journal, vol. 29,
no. 2, pp. 303–326, 2023.

[4] M. H. Al-Adhaileh, A. Verma, T. H. Aldhyani, and D. Koundal,
“Potato blight detection using fine-tuned cnn architecture,” Mathemat-
ics, vol. 11, no. 6, p. 1516, 2023.

[5] T. Nazir, M. M. Iqbal, S. Jabbar, A. Hussain, and M. Albathan,
“Efficientpnet—an optimized and efficient deep learning approach for
classifying disease of potato plant leaves,” Agriculture, vol. 13, no. 4,
p. 841, 2023.

[6] D. Kothari, H. Mishra, M. Gharat, V. Pandey, M. Gharat, and
R. Thakur, “Potato leaf disease detection using deep learning,” Int.
J. Eng. Res. Technol, vol. 11, no. 11, 2022.

[7] S. Bangari, P. Rachana, N. Gupta, P. S. Sudi, and K. K. Baniya, “A
survey on disease detection of a potato leaf using cnn,” in 2022 Second
International Conference on Artificial Intelligence and Smart Energy
(ICAIS). IEEE, 2022, pp. 144–149.

[8] N. Ananthi, K. Kumaran, V. Madhushalini, S. G. Moorthi, and
P. Harish, “Detection and identification of potato plant leaf diseases
using convolution neural networks,” Eur J Mol Clin Med, vol. 7, no. 4,
2020.

[9] A. Singh and H. Kaur, “Potato plant leaves disease detection and clas-
sification using machine learning methodologies,” in IOP Conference
Series: Materials Science and Engineering, vol. 1022, no. 1. IOP
Publishing, 2021, p. 012121.

[10] N. Tilahun and B. Gizachew, “Artificial intelligence assisted early
blight and late blight potato disease detection using convolutional
neural networks,” Ethiopian Journal of Crop Science, vol. 8, no. 2,
2020.

[11] B. Gardie, S. Asemie, K. Azezew, and Z. Solomon, “Potato plant
leaf diseases identification using transfer learning,” Indian Journal of
Science and Technology, vol. 15, no. 4, pp. 158–165, 2022.

[12] M. A. Iqbal and K. H. Talukder, “Detection of potato disease using
image segmentation and machine learning,” in 2020 International
Conference on Wireless Communications Signal Processing and Net-
working (WiSPNET). IEEE, 2020, pp. 43–47.

[13] A. J. Rozaqi and A. Sunyoto, “Identification of disease in potato
leaves using convolutional neural network (cnn) algorithm,” in 2020
3rd International Conference on Information and Communications
Technology (ICOIACT). IEEE, 2020, pp. 72–76.

[14] M. K. R. Asif, M. A. Rahman, and M. H. Hena, “Cnn based
disease detection approach on potato leaves,” in 2020 3rd International
Conference on Intelligent Sustainable Systems (ICISS). IEEE, 2020,
pp. 428–432.

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2411-2428

 
______________________________________________________________________________________ 



[15] R. A. Sholihati, I. A. Sulistijono, A. Risnumawan, and E. Kusumawati,
“Potato leaf disease classification using deep learning approach,” in
2020 International Electronics Symposium (IES). IEEE, 2020, pp.
392–397.

[16] C. Hou, J. Zhuang, Y. Tang, Y. He, A. Miao, H. Huang, and S. Luo,
“Recognition of early blight and late blight diseases on potato leaves
based on graph cut segmentation,” Journal of Agriculture and Food
Research, vol. 5, p. 100154, 2021.

[17] M. Al-Amin, D. Z. Karim, and T. A. Bushra, “Prediction of rice
disease from leaves using deep convolution neural network towards
a digital agricultural system,” in 2019 22nd International Conference
on Computer and Information Technology (ICCIT). IEEE, 2019, pp.
1–5.

[18] J. Feng, B. Hou, C. Yu, H. Yang, C. Wang, X. Shi, and Y. Hu,
“Research and validation of potato late blight detection method based
on deep learning,” Agronomy, vol. 13, no. 6, p. 1659, 2023.

[19] F. Kang, J. Li, C. Wang, and F. Wang, “A lightweight neural network-
based method for identifying early-blight and late-blight leaves of
potato,” Applied Sciences, vol. 13, no. 3, p. 1487, 2023.

[20] H. Ghosh, I. S. Rahat, K. Shaik, S. Khasim, and M. Yesubabu,
“Potato leaf disease recognition and prediction using convolutional
neural networks,” EAI Endorsed Transactions on Scalable Information
Systems, vol. 10, no. 6, 2023.

[21] P. Enkvetchakul and O. Surinta, “Effective data augmentation and
training techniques for improving deep learning in plant leaf disease
recognition,” Applied Science and Engineering Progress, vol. 15, no. 3,
pp. 3810–3810, 2022.

[22] P. Patil, N. Yaligar, and S. Meena, “Comparision of performance of
classifiers-svm, rf, and ann in potato blight disease detection using leaf
images,” in 2017 IEEE International Conference on Computational
Intelligence and Computing Research (ICCIC). IEEE, 2017, pp. 1–5.

[23] D. Tiwari, M. Ashish, N. Gangwar, A. Sharma, S. Patel, and S. Bhard-
waj, “Potato leaf diseases detection using deep learning,” in 2020
4th International Conference on Intelligent Computing and Control
Systems (ICICCS). IEEE, 2020, pp. 461–466.

[24] M. Islam, A. Dinh, K. Wahid, and P. Bhowmik, “Detection of potato
diseases using image segmentation and multiclass support vector
machine,” in 2017 IEEE 30th Canadian Conference on Electrical and
Computer Engineering (CCECE). IEEE, 2017, pp. 1–4.

[25] B. Liu, Y. Zhang, D. He, and Y. Li, “Identification of apple leaf
diseases based on deep convolutional neural networks,” Symmetry,
vol. 10, no. 1, p. 11, 2017.

[26] J. Arora, U. Agrawal et al., “Classification of maize leaf diseases from
healthy leaves using deep forest,” Journal of Artificial Intelligence and
Systems, vol. 2, no. 1, pp. 14–26, 2020.

[27] X. Zhang, Y. Qiao, F. Meng, C. Fan, and M. Zhang, “Identification
of maize leaf diseases using improved deep convolutional neural
networks,” Ieee Access, vol. 6, pp. 30 370–30 377, 2018.

[28] M. R. Howlader, U. Habiba, R. H. Faisal, and M. M. Rahman,
“Automatic recognition of guava leaf diseases using deep convolution
neural network,” in 2019 International Conference on Electrical,
Computer and Communication Engineering (ECCE). IEEE, 2019,
pp. 1–5.

[29] K. Rangarajan Aravind and P. Raja, “Automated disease classification
in (selected) agricultural crops using transfer learning,” Automatika:
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