
 

  

Abstract—With the rapid development of indoor positioning 

and navigation technologies, pedestrian indoor positioning has 

become a hotspot in research and applications. However, Wi-Fi 

fingerprint positioning is susceptible to environmental changes, 

leading to unstable positioning accuracy, while Pedestrian Dead 

Reckoning (PDR) suffers from cumulative errors. To address 

these issues, this paper proposes an Adaptive Extended Kalman 

Filter (AEKF) based indoor positioning algorithm integrating 

Wi-Fi and PDR. Firstly, a K-Nearest Neighbors fingerprint 

matching method based on position range constraints is 

designed to enhance the continuity of position estimation and 

reduce positioning errors. Secondly, in the PDR component, 

adaptive peak detection, improved Weinberg step length 

estimation, and quaternion-based heading estimation are 

introduced to reduce cumulative errors. Finally, in the fusion 

stage, an AEKF method is proposed, which employs an 

Adaptive Dung Beetle Optimization (ADBO) algorithm to 

dynamically adjust the covariance matrix of the Extended 

Kalman Filter. Additionally, an adaptive weight adjustment 

mechanism is introduced to dynamically assign observation 

weights based on the quality of Wi-Fi and PDR observations, 

thereby improving the positioning accuracy and robustness of 

the fusion positioning system. Experimental results show that 

the proposed method achieves an average positioning error of 

0.627 m, representing a 19.7% to 66.0% reduction compared to 

single positioning algorithms and other fusion methods. It also 

demonstrates faster convergence and higher positioning 

stability in the cumulative distribution function curve, 

providing a high-accuracy and high-robustness fusion 

positioning solution for indoor positioning systems. 

 
Index Terms—indoor positioning, Adaptive Extended 

Kalman Filter, Wi-Fi fingerprint positioning, Pedestrian Dead 

Reckoning, Adaptive Dung Beetle Optimization. 

I. INTRODUCTION 

ITH the rapid proliferation of mobile devices, 

location-based services have gradually integrated into 
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various aspects of daily life. Pedestrian navigation systems 

typically rely on Global Positioning System signal (GPS) in 

outdoor environments. However, in complex indoor 

environments such as airports, railway stations, and shopping 

malls, traditional GPS struggle to provide accurate, 

continuous, and effective positioning due to signal 

obstruction from buildings and limitations in the power of 

navigation chips [1]. To achieve reliable indoor positioning, 

indoor positioning technologies have been extensively 

developed and applied in recent years. Common technologies 

include Wi-Fi [2], Ultra-Wideband (UWB) [3], Zigbee [4], 

and Bluetooth [5], and others. Among various indoor 

positioning technologies, Wi-Fi and Pedestrian Dead 

Reckoning (PDR) positioning methods have emerged as the 

most practical and easily deployable solutions, owing to the 

widespread adoption of smartphones and WLAN. Wi-Fi 

positioning has gradually become a mainstream indoor 

positioning technique due to its low cost, wide deployment, 

and relatively high positioning accuracy. Among them, Wi-Fi 

fingerprinting method based on Received Signal Strength 

Indication (RSSI) offers advantages such as ease of 

implementation, low cost, and no requirement to measure the 

coordinates of Access Points (APs) or the angle and distance 

between receiver and AP [6]. However, Wi-Fi signal is easily 

affected by environmental interference, leading to significant 

fluctuations in positioning accuracy. PDR, by contrast, 

estimates a pedestrian's real-time step length and heading 

using data from accelerometers, gyroscopes, and 

magnetometers in Inertial Measurement Unit (IMU), and 

calculates current position through cumulative integration [7]. 

Since this approach does not rely on external signals, it 

enables standalone positioning. However, since position is 

calculated recursively, the positioning error increases 

progressively over time. Since Wi-Fi positioning and PDR 

each offer distinct advantages and can both be implemented 

on consumer-grade portable devices, their integration 

presents a promising solution. Wi-Fi positioning can provide 

absolute position references to correct PDR's cumulative 

errors, while PDR can compensate for the limited update rate 

of Wi-Fi in dynamic environments. Therefore, fusing of 

Wi-Fi and PDR is considered an effective approach to 

achieving high-accuracy, stable, and real-time indoor 

positioning, with significant research value and application 

potential. 

To overcome the limitations of single positioning 

technologies in terms of accuracy and stability, researchers 

have conducted extensive studies on Wi-Fi and PDR fusion 

methods and proposed various optimization strategies to 
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enhance system performance. Zhu et al. [8] proposed an 

indoor navigation method based on the fusion of PDR and 

Wi-Fi, in which the gyroscope output from the PDR is used 

as the primary observation. Wi-Fi is then employed to correct 

the positioning, and an Extended Kalman Filter (EKF) is 

finally used to fuse the PDR and Wi-Fi, resulting in more 

reliable and accurate positioning. Qian et al. [9] proposed an 

improved particle filter-based indoor Wi-Fi/PDR positioning. 

The method improves Wi-Fi positioning accuracy through 

sub-region division and K-Nearest Neighbor (KNN), and 

integrates Wi-Fi and PDR using a particle filter, with 

resampling optimized by a clonal selection algorithm. This 

approach effectively improves positioning accuracy. 

Mehrabian et al. [10] proposed an indoor positioning system 

through improved RSSI and PDR methods. Firstly, a 

weight-based optimization filter is used to refine raw RSSI 

values. Then, the RSSI data is processed using KNN, a 

logarithmic path loss model, and a weighted centroid 

approach. Finally, Kalman Filtering (KF) is applied to fuse 

RSSI and PDR, further enhancing positioning accuracy. Liu 

et al. [11] proposed an enhanced Wi-Fi/PDR indoor 

positioning algorithm. A particle swarm optimization 

algorithm is used to optimize the weighted KNN for Wi-Fi 

positioning, and the artemisinin optimization algorithm is 

applied to improve the performance of particle filter-based 

fusion, thereby enhancing the effectiveness of Wi-Fi/PDR 

integration. Chen et al. [12] proposed a PDR/Wi-Fi indoor 

navigation algorithm based on a federated particle filter. In 

this method, PDR and heading information are used in the 

state transition model, while step length and Wi-Fi matching 

results are used in the observation model. The federated 

particle filter is employed to fuse PDR and Wi-Fi, effectively 

reducing positioning errors. Yu et al. [13] proposed a neural 

network-based Wi-Fi/PDR fusion positioning. A long 

short-term memory network is used to learn historical 

pedestrian motion patterns to reduce cumulative errors in 

PDR. Finally, a backpropagation (BP) neural network is 

applied to enhance the performance of the EKF for fusing 

Wi-Fi and PDR, thereby improving positioning accuracy. Xu 

et al. [14] proposed a collaborative adaptive multi-source 

data fusion method for smartphones. In the offline stage, 

Wi-Fi fingerprint data is trained using a Multi-Layer 

Perceptron (MLP). In the online stage, real-time Wi-Fi 

fingerprints are matched, and step length and heading are 

integrated into the PDR to estimate position. Finally, the EKF 

is used to dynamically adjust the weights of individual 

positioning algorithms, further improving positioning 

accuracy. 

The methods mentioned above improve the accuracy and 

stability of indoor positioning by integrating Wi-Fi and PDR. 

However, current Wi-Fi/PDR fusion approaches still face the 

following challenges: 1. Traditional Wi-Fi fingerprinting 

methods often ignore the spatial continuity between positions, 

resulting in large positioning errors. 2. PDR methods are 

sensitive to noise, leading to inaccurate step count estimation. 

In addition, models for estimating step length often lack 

adaptability to gait variations and complex environments, 

resulting in increased cumulative errors. 3. Conventional 

EKF methods assume a fixed covariance matrix, neglecting 

the dynamic variations of indoor environments and the 

time-varying nature of noise. Also, when combining Wi-Fi 

and PDR, the importance of each sensor's data isn't changed 

over time, which can lead to problems if one sensor stops 

working well, making the system less flexible in complicated 

situations. Therefore, we propose an Adaptive Extended 

Kalman Filter (AEKF) based indoor positioning algorithm 

integrating Wi-Fi and PDR, aiming to enhance the 

adaptability and positioning accuracy of the fusion algorithm 

under varying environmental conditions. The main 

contributions are summarized as follows: 

(1) KNN Fingerprint Matching Method Based on Position 

Range Constraints: To address the positioning errors caused 

by the lack of continuity between positions in traditional 

Wi-Fi fingerprinting, this paper proposes a KNN fingerprint 

matching method based on position range constraints. In the 

offline stage, RSSI values are sorted and intersected, 

followed by Gaussian filtering to extract stable signal 

features and construct a reliable fingerprint database. In the 

online stage, the proposed method utilizes information from 

the previous known position to constrain the KNN matching 

range, thereby enhancing spatial continuity between 

estimated positions. The method effectively reduces 

positioning errors and improves the accuracy and stability of 

Wi-Fi positioning. 

(2) Improved PDR Positioning: To reduce cumulative 

errors in PDR, an adaptive peak detection method is 

employed for step detection to eliminate interference from 

environmental noise and sensor drift, thereby improving the 

accuracy of step counting. For step length estimation, the 

Weinberg model is improved by introducing acceleration 

variance, enhancing the precision of step length calculation. 

Additionally, a quaternion-based method is adopted for 

heading estimation, which avoids the gimbal lock problem 

associated with Euler angles and reduces computational 

complexity, resulting in more stable and accurate heading 

estimation. 

(3) Adaptive Dung Beetle Optimization Algorithm 

(ADBO): To address the limitations of the original Dung 

Beetle Optimization (DBO) algorithm in terms of global 

search capability, convergence accuracy, and population 

diversity, this paper proposes an improved ADBO algorithm. 

Firstly, population diversity is enhanced by introducing a 

good point set strategy. Secondly, the rolling behavior is 

improved using the multiplication strategy from the 

Arithmetic Optimization Algorithm (AOA), which 

strengthens global search capability and convergence speed. 

Thirdly, the foraging behavior is optimized by adopting the 

joiner position strategy from the Sparrow Search Algorithm 

(SSA), guiding the population closer to the optimal solution. 

Finally, an adaptive t-distribution mutation perturbation is 

introduced to avoid local optima. Experiments on 13 

CEC2005 benchmark functions demonstrate that ADBO 

achieves superior performance compared to five other 

algorithms, particularly in convergence accuracy, speed, and 

global search ability and robustness, demonstrating its 

effectiveness for complex optimization problems. 

(4) AEKF-Based Fusion Positioning Method: In the fusion 

stage of Wi-Fi and PDR, an AEKF-based fusion positioning 

method is proposed. By introducing ADBO to dynamically 

adjust the covariance matrix of the EKF, the filter is made 

adaptive to dynamic environmental changes. Additionally, an 

adaptive weight adjustment mechanism is introduced to 
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dynamically assign observation weights based on the quality

of Wi-Fi and PDR measurements, enhancing the system’s 

fault tolerance to sensor errors. Experimental results in 

typical indoor environments demonstrate that the proposed 

AEKF-based fusion positioning method significantly 

outperforms both single-source positioning algorithms and 

other fusion approaches in terms of positioning accuracy, 

robustness, and adaptability to environmental changes. 

This paper is organized in the following manner: Section II 

introduces the KNN fingerprint matching method based on 

position range constraints. Section III presents the improved 

PDR positioning method. Section IV describes the 

AEKF-based fusion positioning method. Section V discusses 

the experimental validation and result analysis. Finally, 

Section VI concludes the paper. 

II. KNN FINGERPRINT MATCHING METHOD BASED ON 

POSITION RANGE CONSTRAINTS 

Wi-Fi fingerprinting positioning typically uses RSSI as 

fingerprint features and consists of two stages, as illustrated 

in Fig. 1. In the offline stage, reference points (RPs) are 

selected within the target area, and RSSI data is collected to 

establish a mapping between fingerprints and their 

corresponding position coordinates, thereby constructing the 

fingerprint database. In the online stage, a fingerprint 

matching algorithm compares the fingerprint of the test point 

with those in the database to determine the current position 

[15]. The KNN algorithm is widely used for fingerprint 

matching due to its low computational complexity and lack of 

training requirements [16]. 

However, in fingerprint positioning, the RSSI signals 

collected by receiver vary continuously across different 

walking areas, leading to the following two issues: 1. In the 

offline stage, due to fluctuations in signal strength caused by 

sampling time, environmental noise, and obstacles, the 

resulting fingerprint database often lacks stability and 

robustness; 2. In the online matching stage, traditional direct 

positioning methods typically ignore the continuity between 

adjacent positions, thereby affecting positioning accuracy. To 

address these issues, in the offline stage, RSSI signals are 

sorted and filtered using Gaussian smoothing after 

intersection operations, to extract fingerprint data that best 

represent the unique characteristics of the target position. In 

the online stage, a KNN fingerprint matching method based 

on position range constraints is adopted, which effectively 

reduce positioning errors to a certain extent. The specific 

steps are as follows:  

 

Step 1: In the offline phase, according to the size and 

spatial distribution of the target area, i-th RP and j-th AP are 

deployed, with each AP distinguished by its MAC addresses. 

For the i-th RP, a fingerprint entry is generated by collecting 

the RSSI from the j-th AP. After completing data collection at 

all RPs, the offline fingerprint database is constructed. 
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where j is number of APs, and ,i jRSSI  represents the RSSI 

value of the j-th AP at the i-th RP. 

Step 2: First, for each RP, the RSSI list is sorted in 

descending order of signal strength. The top M strongest 

RSSI values are selected as features to ensure the 

representativeness of the fingerprint database. The filtered 

RSSI feature vector for the i-th RP is given by 

,1 ,2 ,( , , , )sorted

i i i i MRSSI RSSI RSSI RSSI=   (2) 

Step 3: Next, intersection operations are performed on 

multiple sampling results for each RP to extract signals that 

consistently appear across all samples. This process helps 

identify the most stable signal features. The intersection set 

of the sampling data for the i-th RP is calculated as: 

( )

1

stable sorted

i i

i

T
tRSSI RSSI

=

=  (3) 

where T represents the number of signal samples in the RSSI 

data. 

Step 4: The RSSI values at the same position tend to follow 

a normal distribution. Therefore, Gaussian filtering can be 

applied to process each set of RSSI data to extract the RSSI 

value with the highest probability. This effectively reduces 

the impact of low-probability and strong interference noise 

on the collected RSSI values. The RSSI for the i-th RP, 

assumed to follow a normal distribution, can be expressed as: 
2( , )stable

iRSSI N    (4) 

The probability distribution function of signal strength can 

be represented as: 
2
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where 𝜇 and 𝜎 represent the mean and standard deviation, 

respectively, and the expression is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  Wi-Fi fingerprint positioning principle. 
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where L represents the number of RSSI samples after 

performing the intersection operation. By transforming the 

formula, it can be normalized to follow a standard normal 

distribution, as follows: 

(0,1)
stable

iRSSI
N

−





 (8) 

The RSSI values with a probability of occurrence within 

90% are selected. By referring to standard normal 

distribution table, the value range can be obtained as: 

1.65
stable

iRSSI −





 (9) 

Through the above steps, the RSSI values of all RPs within 

the range (𝜇−1.65𝜎, 𝜇+1.65𝜎) are used to construct offline 

fingerprint database. 

Step 5: Online Phase: To enhance the correlation between 

each position point, a KNN fingerprint matching method 

based on position range constraints is used. When estimating 

the current position, the user's previously known position is 

utilized to strengthen the association between adjacent 

positioning points, thereby reducing positioning error. Firstly, 

the Euclidean distance between the i-th RP and the target 

positioning point is calculated as: 

2

, , ,
1

( )
n

l i l j i j
j

d RSSI RSSI
=

=  −  (10) 

where ,l jRSSI  is RSSI of the j-th AP at the target positioning 

point. 

Step 6: In the process of continuous signal-based 

positioning, the movement speed of the target is limited. 

Therefore, within a short time interval, the target is not to 

move beyond a certain specific range. Based on this 

characteristic, the target's previous location is recorded, and 

an elliptical area is drawn centered on that position to 

constrain the possible range of the target at the next time step. 

This method effectively captures the movement trend of the 

target, prioritizes RPs in the primary direction, and reduces 

the impact of lateral errors, thereby improving positioning 

accuracy and stability. To achieve this, the distance between 

each RP i and the previous location ( , )pre prex y  is used to 

compute a weight, assigning higher weights to RPs closer to 

the previous position, while weights for distant RPs rapidly 

approach zero. The weight is calculated as follows: 

( ) ( )
2 2

, 2 2

1 2
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4 4

i pre i pre
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x x y y
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 − −
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where ,l iW  is weight of the i-th RP for the target point l; 1d is 

the major axis of the ellipse, aligned with the primary 

direction of the target's movement. The major axis is 

relatively long to cover the main forward movement range of 

the target, reflecting its inertial motion characteristics. 2d is 

the minor axis of the ellipse, perpendicular to the main 

motion direction of the target. The length of the minor axis is 

smaller, limiting lateral displacement and ensuring that the 

weights of lateral RPs decay quickly, thereby reducing 

unnecessary lateral errors. When the target turns or changes 

its direction of movement, the lengths and orientations of the 

major and minor axes can be dynamically adjusted. If the new 

movement direction is opposite to the previous one, the roles 

of the major and minor axes are switched—that is, the 

previous minor axis becomes longer and the major axis 

becomes shorter. This adaptation allows the system to better 

follow the target's movement changes, thus improving both 

positioning accuracy and reliability. The values of 1d  and 

2d  are determined by the target’s actual moving speed 

during the positioning and the frequency of online 

positioning. 

The distance between the i-th RP and the target point is 

given by: 

, ,

,

,
1

l i l i

l i M

l i
i

W d
d

W
=


=
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where M is the total number of RPs. 

Step 7: Select the K RP closest to the target point and 

estimate the position based on the weighted results. The final 

target ( , )l lx y position is given by: 

,

,

,
1

1/
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Fig. 2 illustrates the schematic diagrams of KNN-based 

positioning under conventional conditions and with position 

range constraints, respectively. In both subfigures, True Point 

1 represents the target's previous position, while True Point 2 

indicates its current position. The value of K is set to 2. As 

shown in Fig. 2 (a), the conventional KNN-based positioning 

method tends to produce estimates that deviate significantly  

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) Conventional KNN Positioning Matching Method                 (b) KNN Fingerprint Matching Method Based on Position Range Constraints 

Fig. 2.  KNN-based positioning under conventional conditions and with position range constraints. 
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from the actual position. In contrast, Fig 2. (b) demonstrates 

the proposed position range-constrained method, where an 

elliptical region is centered at True Point 1, with predefined 

radii for the major and minor axes. Reference Point 5, which 

lies outside this region, is excluded from the candidate set. As 

a result, the algorithm selects candidate points only within a 

reasonable spatial range. The final estimated position under 

position range constraints is closer to the true current location, 

effectively reducing positioning errors. 

III. IMPROVED PDR POSITIONING 

PDR utilizes data from built-in smartphone sensors such as 

accelerometer, gyroscope, and magnetometer. By combining 

these sensor readings with the pedestrian’s known current 

position, the PDR algorithm can estimate the number of steps, 

step length, and heading direction to achieve localization [17]. 

The principle of PDR positioning is illustrated in Fig. 3. 

Suppose the pedestrian's position at time t-1 is 1 1( , )t tx y− − , and 

during time from t-1 to t the pedestrian moves a distance of tl  

in the direction of heading angle t , then pedestrian's 

position at time t+1: 

1

1

sin

cos

t t t

t t

t

tt

x x l

y y l

−

−

= +


= +
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A. Step Count Estimation Using Adaptive Peak Detection 

In step detection algorithms, methods such as peak 

detection, autocorrelation, and zero-crossing detection offer 

relatively high and stable accuracy in step counting [18]. 

Considering its low computational complexity, this study 

adopts the peak detection method for step estimation [19]. 

The peak detection method leverages the quasi-sinusoidal 

nature of acceleration signals during human walking. A step 

is registered each time a peak is detected, and the 

corresponding timestamp is recorded. However, due to 

external interference and system noise, the output signal may 

contain spikes or false peaks. 

To address this issue, an adaptive peak detection–based 

step estimation method is proposed to suppress noise and 

improve step detection accuracy. The step detection process 

is as follows: 

Step 1: In step detection, the vertical acceleration needs to 

be calculated first. This method removes the gravity 

component from the accelerometer data to extract vertical 

acceleration for step detection. The angle   is calculated to 

convert the gravity acceleration component from the 

smartphone's coordinate system to the vertical acceleration 

component in the Earth coordinate system: 

| |
arctan

| |

z

y

g

g

 
=   

 

  (16) 

where zg  and yg  are the z-axis and y-axis components of 

gravity acceleration, respectively. The vertical acceleration is 

then calculated as: 

vertical
cos( ) sin( )y za a a=  +    (17) 

where za  and ya are the z-axis and y-axis acceleration 

components in the smartphone coordinate system, 

respectively. 

Step 2: Moving average filtering is a simple and effective 

smoothing method. It replaces the current data point with the 

average of several preceding and succeeding data points to 

reduce fluctuations caused by noise. A window size of 5 is set 

to calculate the moving average. The moving average value 

at the i-th point is calculated as: 
2

vertical smooth vertical
2

1
[ ] [ ]

5

i

j i

a i a j
+

= −

=   (18) 

Step 3: Set a sliding window, which is used for segmenting 

and detecting step peaks. The sliding window is calculated as 

follows: 

slide 40
100

f
=   (19) 

where f is the sampling frequency, which is set to 100 Hz. 

Thus, the sliding window records a peak value every 40 data 

points. 

Step 4: Acceleration lower than 0.2×g typically indicates 

minor movements, while acceleration higher than 2× g 

usually represents intense motion or sudden shocks. By 

setting the acceleration range to 0.2× g to 2× g, data 

resulting from minor or intense movements are excluded, 

allowing for more accurate capture of acceleration peaks 

during normal walking. 

vertical smooth0.2 2g a g     (20) 

where 29.794m / sg =  is the gravitational acceleration. A peak 

is detected every slide data points, and the qualified peaks are 

recorded as steps. 

Step 5: It is crucial to prevent the detection of multiple 

peaks within a short period, as these peaks may represent 

false steps caused by device vibrations or slight movements. 

Setting a time interval between two peaks effectively avoids 

detecting multiple peaks in a short time, thereby improving 

the accuracy of step count detection. In standard walking 

patterns, the normal walking frequency ranges from 0.5 Hz to 

2.5 Hz, meaning each step lasts about 0.4s to 2s. First, 

calculate the time interval between adjacent step points: 

Δ current previoust t t= −  (21) 

where currentt is the timestamp of the current step point, and 

previoust  is the timestamp of the previous step point. To prevent 

false detection, the time interval between each step is 

 
Fig. 3.  Principle of PDR Positioning. 
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checked to ensure it falls within the normal range. The 

condition is defined as follows: 

  Δ 2 or Δ 0.4,    

  0.4 Δ 2,    

if t t current step is deleted

if t current step is retained

 

 
 (22) 

B. Improved Weinberg Step Length Estimation 

Commonly used step length estimation models include 

linear, nonlinear models, and machine learning models [20].  

Among them, nonlinear models are based on the statistical 

characteristics of acceleration changes during walking and 

establish a nonlinear relationship with acceleration to 

estimate step length with higher accuracy. These models are 

adaptable to various motion states and have lower complexity 

compared to machine learning models [21]. Typical 

nonlinear models include the Weinberg, Scarlet, and Kim 

models. The Weinberg model is simpler and more efficient 

than the Scarlet and Kim models and demonstrates excellent 

accuracy and stability [22]. Therefore, the Weinberg model is 

adopted. The step length estimated by the Weinberg model is: 

4
max minL K a a=  −  (23) 

where maxa and mina  are the maximum and minimum 

accelerations detected during a step, respectively, and K is a 

constant. 

The Weinberg model typically uses the difference in 

acceleration amplitude to estimate step length but overlooks 

the rate of acceleration change and the degree of fluctuation 

during a step. Therefore, by introducing the acceleration 

variance a , the model's adaptability to different gaits is 

enhanced. The acceleration variance a  is given by: 

( )
2

1

1 N

a i
i

a a
N


=

=  −  (24) 

where 
ia  is the i-th acceleration within k steps, and a  is the 

mean of all accelerations over k steps. The final improved 

Weinberg model is: 

4
max min aL K a a B=  − +   (25) 

where B is a fitting parameter. 

C. Quaternion-Based Heading Estimation 

Common heading estimation methods include the Euler 

angle, direction cosine matrix (DCM), and quaternion 

methods [23]. The Euler angle method directly solves Euler 

angle differential equations, making it easy to understand and 

computationally simple. However, it suffers from the gimbal 

lock problem, where one degree of freedom is lost, leading to 

limited accuracy in attitude estimation [24]. Compared to the 

Euler angle method, the DCM method avoids the singularity 

issue but requires solving multiple differential equations at 

each update, thereby increasing computational complexity. 

The quaternion method, on the other hand, requires solving 

four differential equations for attitude estimation. Although it 

involves slightly higher computational load than the Euler 

method, it offers higher precision, avoids singularities, and 

significantly reduces the computational burden compared to 

the DCM method [25]. 

Therefore, this paper adopts the quaternion method for 

pedestrian heading estimation, converting data collected by 

the accelerometer, gyroscope, and magnetometer into 

quaternion representations. The basic definition of the 

quaternion method is as follows: 

0 1 2 3q q q i q j q k= +  +  +   (26) 

where 0q  represents the rotation magnitude, and 1 2 3, ,q q q  

represent the rotation axis. , ,i j k  are a set of unit imaginary 

numbers representing three mutually orthogonal unit vectors. 

The components of the quaternion satisfy the following 

relationship: 
2 2 2 1i j k i j k+ + =   = −  (27) 

The rotation matrix that represents the quaternion from the 

navigation frame to the body frame is given as follows: 

( ) ( )

( ) ( )

( ) ( )

2 2 2 2

0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2

1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2

1 3 0 2 2 3 0 1 0 1 2 3

2 2

2( 2

2 2

)
n

b

q q q q q q q q q q q q

C q q q q q q q q q q q q

q q q q q q q q q q

q

q q

 + − −


= − +



− +

+ −

− +

− 
 − − + 

 (28) 

The orientation of the smartphone relative to the 

navigation coordinate system, calculated using the rotation 

matrix given in Equation (28), is given as follows: 

( )

( )
( )

( ) ( )( )

( )
( )

( ) ( )( )

1 1

2 3 0 132

1 1 2 2 2 2

0 2 1 3 0 1 2 3

33

1 1 2 2 2 212
0 3 1 2 0 1 3

3

2

32

1

sin sin 2( )

tan tan 2 /

tan tan 2 /

b

n

b

n

b

n

b

n

b

n

pitch C q q q q

C
roll q q q q q q q q

C

C
yaw q q q q q q q q

C

− −

− −

− −




= =



= − = − − − +




= = − − + −



+

−


 (29) 

where pitch represents to the pitch angle, roll to the roll angle, 

and yaw to the heading angle. During the experiment, the 

pedestrian held the smartphone horizontally in front of the 

chest, with the front of the device pointing straight ahead. 

Therefore, this paper directly uses the yaw angle as the 

heading angle. 

IV. AEKF FUSION POSITIONING 

A. ADBO 

The DBO, introduced by Xue et al. in 2023, is a recent 

swarm intelligence method inspired by the natural behaviors 

of dung beetles. These behaviors—rolling, breeding, 

foraging, and stealing—are modeled through different beetle 

types: rollers, breeders, foragers, and stealers, respectively 

[26]. The algorithm updates solutions based on these 

behavioral strategies. The update process is as follows: 

(1) Rolling Behavior: Dung beetles are responsible for 

rolling dung balls to a safe place to hide it. They use celestial 

cues—particularly sunlight and polarized light—for 

navigation to ensure the dung ball rolls along a straight path. 

In the search space, rolling beetles move along a specific path 

and update their positions accordingly. The position update 

of a rolling beetle can be defined as: 

( ) ( ) ( )

( )

1 1 Δ

Δ

i i i

i

w

x t x t k x t b x

X x t X

+ = +   − + 

= −

  (30) 

where t is the current number of iterations, ( )ix t  represents 

the position information of the i-th beetle at the t-th iteration, 
(0,0.2]k   is a constant representing adjustment coefficient, 

b is a random number between (0,1), 
wX represents the global 

optimal position, ΔX is used to simulate the variability in the 

light intensity, and  is a natural coefficient with a value of 

either 1 or -1. 
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When faced with obstacles, dung beetles exhibit a dancing 

behavior to adjust their orientation and seek an alternative 

route. The position adjustment during this behavior is 

described by the following equation: 

( ) ( ) ( ) ( )1 tan | 1 |i i i ix t x t x t x t+ = + − −  (31) 

where  represents the deflection angle, which lies within the 

range [0, ]. When   takes the values 0, π/2, or π, the position 

remains unchanged. 

(2) Breeding Behavior: Female dung beetles roll dung 

balls to safe sites for egg-laying, creating a secure 

environment for their young. Based on this behavior, a 

boundary selection strategy is designed to simulate the 

egg-laying area, as shown below: 

max( (1 ), )

min( (1 ), )

Lb X R Lb

Ub X R Ub

 

 

 =  −


=  +

 (32) 

where Lb  and Ub  denote the lower and upper limits of the 

egg-laying region, X   stands for the current local best position, 

max1 /R t T= − , maxT  is the maximum number of iterations. Lb  

and Ub  represent the lower and upper bounds of the overall 

optimization problem. 

During each iteration, a female dung beetle lays a single 

egg. The boundaries of the egg-laying region are adaptively 

modified, primarily influenced by the parameter R. As a 

result, the breeding beetle's position is also updated 

dynamically throughout the iterations. The corresponding 

position update formula is given below: 

1 2( 1) ( ( ) ) ( ( ) )i i ix t X b x t Lb b x t Ub  + = +  − +  −  (33) 

where 1b  and 2b  represent two independent random vectors 

of size 1D, and D represents the dimension of the 

optimization problem. 

(3) Foraging Behavior: After hatching, young beetles 

emerge from the ground and begin searching for food. To 

guide this behavior, an optimal foraging area is defined, 

helping them locate food more efficiently. The specific 

formula used to determine this foraging region is presented 

below: 

max( (1 ), )

max( (1 ), )

b b

b b

Lb X R Lb

Ub X R Ub

=  −

=  +

 (34) 

where bX represents the global best position, bLb  and bUb  

denote the lower and upper boundaries of the optimal 

foraging region, respectively. Once the optimal foraging area 

is determined. The specific formula used to determine this 

foraging region is presented below: 

( ) ( )1 2( 1) ( ) ( ) ( )b b

i i i ix t x t C x t Lb C x t Ub+ = +  − +  −  (35) 

where 1C  is a random number following a normal distribution, 

and 2C  is a random vector within the range (0, 1). 

(4) Stealing Behavior: Stealing dung beetles steal dung 

balls from other beetles. They do not steal from random 

locations but instead target optimal stealing spots, which are 

areas near the global best position. The position update of a 

stealing beetle is given by: 

( 1) ( ( ) ( ) )b b

i i ix t X S g x t X x t X+ = +   − + −∣ ∣∣ ∣ (36) 

where ( )ix t  represents the position of the i-th stealing beetle 

in the t-th iteration`, g is a random vector of size 1D 

following a normal distribution, and S is a constant. 

Although DBO has significant advantages in optimization 

performance and convergence efficiency, it suffers from 

several limitations, including low population diversity, 

insufficient global search ability, low convergence accuracy, 

and a tendency to fall into local optima. These shortcomings 

lead to inadequate global exploration and local exploitation, 

leaving considerable room for improvement in the overall 

algorithm. To address these limitations, this paper proposes 

an ADBO. First, a good point set strategy is employed to 

enhance population diversity. Second, the rolling behavior is 

improved using the multiplication operation strategy from 

AOA to enhance global search ability and convergence speed. 

Third, the foraging behavior is enhanced by integrating the 

joiner position update strategy from SSA, which helps guide 

the population toward the global optimum and improves both 

convergence speed and accuracy. Finally, in the later stage of 

iteration, an adaptive t-distribution mutation is applied to 

prevent the algorithm from falling into local optima. These 

four strategies are designed to further enhance the overall 

performance of the DBO algorithm. 

1) Good point set for Population Initialization 

Traditional DBO uses the rand function for population 

initialization, which introduces high randomness and 

uncertainty. This often leads to population clustering in the 

early stages, weakening global exploration and causing 

premature convergence to local optima. In contrast, the good 

point set method can uniformly cover the search space with 

fewer sample points. Compared with other uniform 

distribution strategies (such as chaotic mapping and 

quasi-Monte Carlo methods), which rely on randomness and 

often result in uneven sampling, the good point set method 

provides more stable and uniform coverage. To improve the 

algorithm's global exploration ability in the early stages of 

optimization and maintain a uniform population distribution 

throughout the solution space, this study employs the good 

point set method for initializing the population. Its basic 

principle is as follows: 

In a s-dimensional space, consider a unit cube SG , where 

the point set exists as follows: 

     ( ) ( ) ( ) ( )

1 2( ) , ,..., ; 1,2,...,n n n

n sP k r k r k r k k n= =  (37) 

The discrepancy of the point set satisfies 1( ) ( , ) en C r n− +=  , 

where ( )C r，  is a constant dependent only on r  and  (any 

positive number). Let ( )nP k  be the good-point set, and r  be 

the good point. The formula for calculating the point r  is as 

follows: 

2
2cos ,1i

i
r i s

p
=

  (38) 

where p is the smallest prime number satisfying ( 3) / 2p s− . 

By using the good-point-set initialization, the formula used 

for the updated population initialization is presented below: 

 ( )( ) ( ) i

i j j j jx j Ub Lb r k Lb= −   +  (39) 

where jUb  and jLb  represent the lower and upper bounds of 

the j-th dimension, respectively. 

2) Rolling Behavior with Multiplication Operator Strategy 

To enhance the global search capability of DBO, this paper 

replaces the traditional rolling behavior with the 

multiplication operator from the AOA. By introducing this 

operator [27], the position update process achieves more 

efficient global distribution, improving the algorithm's 

exploration ability and flexibility during the search. 

Compared with the original rolling behavior, the 
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multiplication and division operators can perform finer 

scaling and distribution adjustments on the individual’s 

position, thus improving the global search efficiency while 

maintaining diverse exploration, and effectively avoiding 

local optima. The position update formula for the rolling 

behavior is as follows: 

( ) ( ) ( )

(( ) ),

tan 1 |
( )

| ,

b

i

i i i

X MOP Ub Lb Lb m
x

x t x x t m
t

t

   −  + 
= 

+ − −

 

 
 (40) 

where rand(1)= , (0.5,1]m  ,   is the adjustment control 

parameter, set to 0.499 in this paper. The formula for 

calculating the Math Optimizer Probability (MOP) is as 

follows: 

max

( 1) 1 ( )
t

MOP t
T

+ = −   (41) 

where α is a sensitivity parameter, with a value of 5 used in 

this paper. 

3) Foraging Behavior with SSA Followers Strategy 

When small dung beetles move toward the global best 

position, their foraging update strategy is relatively simple 

and highly random, resulting in limited convergence speed 

and accuracy. Inspired by the joiners in SSA, which follow 

the discoverers for foraging, this update strategy is 

introduced into the foraging process of dung beetles to 

enhance the algorithm’s convergence speed and accuracy. 

The position update formula for small beetles during foraging 

is as follows: 

3

2

3

( )
exp( ),

2( 1)

| ( ) ) | ,
2

w

i

i

b b

x

X

X x t pop
Q i

it
pop

x t X A L i+

 −
 

+ = 
 + −  


 (42) 

where 
3pop  denotes the number of small dung beetles, Q a 

random variable following a normal distribution, A is a 1×D 

matrix, with matrix elements being either 1 or -1, 
T T 1( )A A AA+ −= , TA  is the transpose of A, and L is a 1×D 

matrix with all elements equal to 1. 

4) Adaptive t-Distribution Disturbance 

For DBO, population diversity tends to decrease during the 

later iterations, making the algorithm prone to falling into 

local optima. Therefore, an adaptive t-distribution 

disturbance is applied to perturb individuals, enhancing their 

capability to escape local optima. Considering the 

randomness and computational complexity of mutation, only 

the global best individual is perturbed. The updated position 

after adaptive t-distribution mutation is: 

( ( )( 1) ( ) )i i i tr dt t t n t= ++ x x x  (43) 

where ( )trnd   represents the adaptive t-distribution function, 

and t is the current iteration number. 

B. AEKF Fusion Positioning Method 

EKF is a Kalman Filtering (KF) algorithm based on 

nonlinear systems. It linearizes the system by approximating 

nonlinear components and updates both the observation and 

state transition equations. In multi-sensor fusion, EKF can 

integrate the outputs of multiple sensors by leveraging their 

individual measurement models to estimate the system state, 

thereby achieving more accurate and stable localization. At 

present, EKF has already demonstrated promising results in 

Wi-Fi/PDR fusion-based indoor positioning. However, 

traditional EKF assumes that the process noise covariance 

matrix (Q) and the measurement noise covariance matrix (R) 

are fixed values, which is not suitable in dynamic 

environments and negatively impacts positioning accuracy. 

Q represents the uncertainty in the system model (e.g., step 

length errors or disturbances), while R reflects the uncertainty 

in sensor measurements. If Q is too large, the filter will rely 

too heavily on measurements, possibly leading to instability; 

if Q is too small, the filter may respond too slowly. Similarly, 

a large R indicates high measurement uncertainty; a small R 

suggests a strong correlation in the measurements. Moreover, 

in Wi-Fi/PDR fusion positioning, the weight of the 

observation information is also critical to the system. Wi-Fi 

positioning is generally considered absolute, so in the initial 

stage, its observation weight is relatively large. However, in 

real-world environments, Wi-Fi signals are often affected by 

factors such as phone shaking and multipath effects, leading 

to significant measurement errors. Directly incorporating 

such inaccurate Wi-Fi observations into the fusion model 

may seriously degrade the overall positioning accuracy. 

To address the limitations of traditional EKF in terms of 

adaptability and accuracy for indoor positioning, this paper 

proposes an AEKF method. This method introduces ADBO 

to dynamically adjust the Q and R matrices in the EKF, 

enabling the filter to adapt to system and environmental 

dynamics. At the same time, an adaptive weight adjustment 

method is introduced. When the system detects significant 

errors in Wi-Fi positioning results, the observation weight of 

Wi-Fi is reduced in the fusion model to minimize its negative 

impact on the final positioning outcome, thereby ensuring the 

stability and accuracy of the fusion-based localization. The 

implementation of AEKF involves four key steps: state 

prediction, covariance prediction, measurement update, 

adaptive covariance adjustment using ADBO, and adaptive 

weight adjustment. The steps are as follows: 

Step 1: State Prediction: Use the PDR algorithm to predict 

the current state and calculate the predicted value based on 

step length and heading. This step uses PDR data at peak step 

positions to provide an initial state estimate for the next 

Kalman filter iteration. The state transition function is used to 

predict the next state of the system. The current state equation 

is as follows: 

1 1 1

| 1 1| 1 1 1| 1 1 1 1 1 1

1

sin

( ) cos

k k k

k k k k k k k k k k k k

k

x l

X f X W AX W y l W

− − −

− − − − − − − − − − −

−

+ 
 

= + = + = + +
 
 +  





 

 (44) 

where 
| 1k kX −

 is the predicted estimate of the k-th state, f is 

the state transition function, 
kx  and 

ky  denote the position 

coordinates of the k-th state, 
k  represents the heading angle 

of the k-th state, Δ  is the change in heading angle, and 
1kW −
 

is the process noise. 

After linearization, the Jacobian matrix of the state 

transition function is obtained as: 

1 1

1| 1

1 1

1| 1

1 0 cos
( )

0 1 sin

0 0 1

k k

k k

k k

k k

d
f X

A d
X

− −

− −

− −

− −

 
  

= = −
 
  



  (45) 

Step 2: Covariance Prediction: Calculate the state 

covariance matrix based on the predicted state value to 

measure the uncertainty in the prediction result. This 
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covariance matrix incorporates the errors from the PDR step 

length information and provides an estimate of the 

confidence in the predicted state. The predicted covariance 

matrix is updated as follows: 

| 1 1| 1

T

k k k kP A P A Q− − −=   +  (46) 

where 
| 1k kP −

 is the predicted estimate of the covariance matrix 

for the k-th state, and its initial value of 
| 1k kP −

 is: 

0

1 0 0

0 1 0

0 0 1

P

 
 

=
 
  

 (47) 

Q is the process noise covariance matrix, which is 

expressed as follows: 
2

2

2

0 0

0 0

0 0

py

a

px

y w

Q

 
 

=  
 
 







 (48) 

where 2

px  and 
2

py  represent the standard deviations of the 

PDR process for the x-axis and y-axis positions, respectively, 

and 2

yaw  represents the standard deviation of the heading 

angle. 

Step 3: Measurement Update: Update the measurement 

using Wi-Fi fingerprint data. The measurement equation is: 

| 1

1

1

( )

W

W

k k k k k

k

k

k

k

x

y
h X VZ V

l

−

−

−

 
 
 = + +
 
 
  

=


 (49) 

where h(⋅ ) represents the observation function, k

Wx  and k

Wy  

are the position coordinates of the k-th state obtained from 

Wi-Fi fingerprint positioning, 
kV  is the Gaussian noise in the 

measurement process. 
kV  and 

1kW −
 are uncorrelated. 

Calculate the Jacobian matrix of the observation function: 

| 1

1| 1

1 0 0

( ) 0 1 0

0 0 0

0 0 1

k k

k k

h X
H

X

−

− −

 
 
 = =
 
 
 

 (50) 

The Kalman gain is given by: 
1

| 1 | 1( )T T

K k k k kK P H H P H R −

− −=     +  (51) 

where R is the measurement noise covariance matrix, 

expressed as: 
2

2

2

2

0 0 0

0 0 0

0 0 0

0 0 0

wx

w

l

y

yaw

R

 
 
 =
 
 
  









 (52) 

where 2

wx  and 2

wy  are the standard deviations of the x-axis 

and y-axis in Wi-Fi fingerprint positioning, respectively, 
2

l and 2

yaw  are the standard deviations of the PDR step length 

and heading, respectively. 

Update the state estimate using the observed 

measurements: 

| | 1 | 1( ( ))k k k k K k k kX X K z h X− −= +  −  (53) 

Update the noise covariance matrix of the k-th state: 

| | 1( )k k K k kP I K H P −= −    (54) 

Step 4: Adaptive Covariance Adjustment Using ADBO: 

ADBO is used to dynamically adjust the Q and R matrices of 

EKF in real-time, minimizing the deviation between EKF 

estimates and actual values. Through multiple iterations, 

EKF achieves optimal Q and R matrices and thereby obtains 

the optimal state estimate. The core of ADBO is the fitness 

function, which constrains the optimization process to enable 

Q and R matrices to effectively reflect the dynamic changes 

in system and measurement noise. Therefore, the root mean 

square error (RMSE) is selected as the fitness function for the 

algorithm. By choosing RMSE as the fitness function, ADBO 

can find a more desirable solution in optimizing the EKF, 

thereby improving the accuracy and reliability of the model 

in indoor positioning. The specific definition is as follows: 

( )
2

| 1
1

1
( )

N

k k k
k

f Z h X
N

−
=

=  −  (55) 

where kZ  is the actual measurement value at time k, | 1( )k kh X −  

is the EKF’s estimated observation model, N is the total 

number of observations. The Q and R matrices cannot be 

directly optimized by ADBO as a whole; each diagonal 

element in Q and R is optimized by ADBO.ADBO begins by 

randomly initializing the diagonal elements, and then 

iteratively updates them to the next generation, where each 

updated value is compared to obtain the optimal solution. The 

optimal values are then integrated to form the final optimized 

covariance matrices. This optimization process is repeated 

until the maximum number of iterations is reached. The 

adaptive covariance update steps of ADBO are as follows: 

(1) Initialization: Initialize the standard deviations of the Q 

and R matrices as the diagonal elements, forming the initial 

dung beetle population. Each beetle is a candidate set of 

diagonal elements for Q and R, and these standard deviations 

are used as the initial values for the optimization process. 

Then, initialize fitness values, set the best fitness in the 

current generation as the current optimal position, and set the 

overall best fitness as the global optimum. 

(2) Position Update: Update the positions of dung beetles 

based on the four behaviors defined in ADBO: rolling, 

breeding, foraging, and stealing. For example, the rolling 

behavior in ADBO is defined as: 

( ) ( ) ( )
11

11

11 11 11

(( ) )

1

,

ta | |
)

n ,
(

b

Q k
Q k Q k

Q MOP Ub Lb Lb m

mQ k

   −  + 
= 

+ − −

 

 
 (56) 

(3) Matrix Generation: Construct the Q and R covariance 

matrices using the outputs of ADBO. 

(4) State Update: Perform Use the optimized Q and R 

matrices with actual observation data to perform the EKF 

measurement update step and update the system state 

estimates. 

(5) Fitness Calculation: Compute the current fitness value 

and update the current and global optimal positions. 

(6) Iteration check: If the maximum number of iterations is 

reached, the algorithm terminates and outputs the optimal Q 

and R matrices; otherwise, return to (2). 

Step 5: Adaptive Weight Adjustment: Before fusing Wi-Fi 

and PDR positioning results, the error between the Wi-Fi 

positioning and the PDR positioning result is compared with 

a threshold. The error function is defined as: 

( )e X Z HX= −  (57) 

where Z represents the real-time observation information, 

and HX represents the predicted state information. 
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Under normal circumstances, when e(X) is smaller than 

the set positioning difference threshold of  , it is assumed 

that the observation error meets the fusion requirements, and 

the observation weight in the fusion model remains 

unchanged. If e(X) exceeds  , the observation error is 

considered large. Given that PDR has strong autonomy and 

high short-term positioning accuracy, a method is needed to 

reduce the observation information weight, making the 

positioning result lean more towards PDR. To achieve this, 

an adaptive weight factor   is computed piecewise to 

dynamically adjust the weight of the observation information. 

Let the thresholds be set as 
0k =   and 

0 3k =  , then the 

values of   is given as follows: 

1
0 1

1 0

0

1

( )
, ( )

1, ( )

1
, ( )

4

k e X
k e X k

k k

e X k

e X k

−
  −


= 


 



 (58) 

If the dynamic adjustment of the initial observation weight 

is R, then after applying the weight adaptation factor, the 

weight becomes * R . In this paper, the position error 

threshold is set to 1.5 m, which corresponds to the walking 

distance between two Wi-Fi positions for a pedestrian. This 

ensures the effectiveness of the adaptive adjustment 

mechanism and prevents the positioning difference threshold 

from being set too small, which would fail to correct the 

accumulated PDR errors, thereby impacting the positioning 

accuracy of the fusion model. The workflow of AEKF is 

shown in Fig.  4. 

C. Positioning Evaluation Metrics 

To comprehensively evaluate the performance of each 

positioning algorithm, select four commonly used error 

statistical indicators as evaluation metrics for system 

positioning accuracy: Average Positioning Error (APE), 

Standard Deviation (STD), RMSE, and Cumulative 

Distribution Function (CDF). 

At the i-th point, the positioning error is measured by the 

Euclidean distance between the actual Position and its 

estimated counterpart, and is computed using the following 

formula: 

2 2( ) ( ˆ )ˆ
i i i i iE x x y y= − + −  (59) 

APE: Reflects the average level of overall positioning 

deviation. The smaller the APE, the higher the positioning 

accuracy. The formula is: 

1

1 N

i

i

MPE E
N =

=   (60) 

STD: Measures the variability of positioning errors. A 

smaller STD indicates more stable results. The formula is as 

follows: 

2

1

1
( )

N

i

i

STD E MPE
N =

= −  (61) 

RMSE: Reflects the overall magnitude of error and is more 

sensitive to large errors. It is calculated using the following 

formula: 

2

1

1 N

i

i

RMSE E
N =

=   (62) 

CDF: CDF is used to demonstrate the algorithm's 

performance under different error levels. The x-axis 

represents the positioning error, while the y-axis represents 

the cumulative probability. The slope of the curve reflects 

positioning accuracy: the steeper the slope, the higher the 

cumulative probability within that error range, and the better 

positioning accuracy. The applied formula is shown below: 

CDF( ) ( )c p E c=   (63) 

where CDF( )c  denotes the probability that the positioning 

error E c  occurs, and c is a given constant. 

V. EXPERIMENT AND RESULT ANALYSIS 

A. Experimental Environment 

In this experiment, eight MERCURY-MW305R routers 

were used as Wi-Fi signal transmitters, and a Huawei 

smartphone equipped with RSSI collection software and 

PDR data acquisition tools was used as the receiver. The test 

area consisted of an L-shaped corridor with a length of 15m 

in the north-south direction and a width of 15m in the 

east-west direction. The deployment scenario is shown in Fig. 

5. Eight APs were installed as signal sources at a height of 

approximately 2.5m above the ground. After setting up the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.  Flowchart of the AEKF-based fusion positioning algorithm. 
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signal sources, RPs were established using a grid-based 

method. The corridor area was uniformly divided into grids 

with a spacing of 1 m × 1 m, and the intersections of the grid 

lines formed the RPs. A total of 104 RPs were deployed. 

Offline RSSI data were collected at each RP to construct the 

Wi-Fi fingerprint database by mapping RSSI values to 

corresponding coordinates. During the online phase, the 

experimenter held the smartphone flat against the chest and 

walked at a constant speed to facilitate consistent data 

collection across position states. Both Wi-Fi and PDR data 

were collected at a sampling rate of 50 Hz. The total number 

of steps taken was 30, resulting in 31 position states. 

B. Performance Evaluation of ADBO 

To thoroughly evaluate the optimization performance and 

robustness of ADBO, it is compared with four other 

algorithms: the multi-strategy improved Dung Beetle 

Optimization algorithm (CRCDBO) [28], chaotic map DBO 

(CMDBO) [29], DBO [26], SSA [30] and Black Kite 

Algorithm (BKA) [31]. These six algorithms are tested on the 

first 13 benchmark functions of the CEC2005 suite [32]. 

Among these functions, F1-F7 are unimodal test functions 

used to evaluate the convergence speed and accuracy of the 

algorithms, while F8-F13 are multimodal functions with a 

single global optimum and multiple local optima, designed to 

evaluate the algorithm’s ability to escape local optima. The 

names, dimensions, search ranges, and optimal values of the 

CEC2005 benchmark functions are reference in [32]. To 

ensure experimental reliability, each algorithm was 

independently run 30 times, and the average convergence 

accuracy and standard deviation were used as evaluation 

metrics. The experimental results are shown in TABLE I, 

where bold values indicate the best performance. 

From the results in TABLE I, ADBO is observed to A 

outperforms the five comparison algorithms in terms of 

optimization accuracy and achieves optimal results for all 13 

CEC2005 benchmark functions. When solving functions 

F1 、F2、F3、F4、F9、F10 and F11, both ADBO and CRCDBO 

reached theoretical optimal values for mean convergence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         
Fig. 5.  Experimental Scenario. 

TABLE I  

COMPARISON OF RESULTS FOR DIFFERENT ALGORITHMS 

NO Criterion ADBO CRCDBO CMDBO DBO SSA BKA 

F1 
Mean 0 0 7.40E-142 8.11E-126 1.00E-66 8.56E-100 

Std 0 0 1.04E-141 1.14E-125 1.42E-66 1.21E-99 

F2 
Mean 0 0 4.66E-68 1.42E-66 1.12E-31 4.27E-47 

Std 0 0 8.08E-68 2.46E-66 1.93E-31 8.16E-47 

F3 
Mean 0 0 4.07E-122 6.91E-117 1.63E-30 1.09E-97 

Std 0 0 7.02E-122 1.19E-116 2.83E-30 1.55E-97 

F4 
Mean 0 0 1.50E-54 2.37E-54 1.73E-36 1.38E-52 
Std 0 0 2.60E-54 2.60E-54 2.81E-36 2.39E-45 

F5 
Mean 4.78E-07 4.30E-04 2.57E+01 2.56E+01 1.03E-06 2.78E+01 
Std 7.89E-07 7.32E-04 1.71E-01 5.28E-01 8.25E-07 8.96E-01 

F6 
Mean 1.23E-14 1.61E-11 1.04E-03 1.24E-03 2.08E-11 1.07E+00 

Std 1.09E-14 1.48E-11 3.13E-04 6.06E-04 1.80E-11 2.09E-01 

F7 
Mean 8.49E-05 1.44E-04 1.02E-03 1.37E-03 1.72E-03 3.78E-04 

Std 5.00E-05 1.62E-04 8.80E-04 9.45E-04 2.69E-03 1.79E-04 

F8 
Mean 1.26E+04 1.14E+04 1.11E+04 8.23E+03 8.28E+03 9.76E+03 

Std 2.81E-10 1.87E+03 2.32E+03 2.32E+02 7.47E+02 1.20E+03 

F9 
Mean 0 0 0 0 0 0 

Std 0 0 0 0 0 0 

F10 
Mean 4.44E-16 4.44E-16 4.44E-16 4.44E-16 4.44E-16 4.44E-16 

Std 0 0 0 0 0 0 

F11 
Mean 0 0 0 0 0 0 

Std 0 0 0 0 0 0 

F12 
Mean 2.03E-14 4.24E-12 1.22E-04 5.19E-05 1.09E-12 8.46E-02 

Std 2.37E-14 6.84E-12 4.02E-05 4.36E-05 1.77E-12 4.02E-02 
F13 Mean 4.88E-14 5.23E-11 7.84E-03 1.40E-02 5.60E-12 1.81E+00 

 Std 8.20E-14 7.53E-11 6.25E-03 1.05E-02 2.80E-12 5.11E-01 
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accuracy and standard deviation, significantly surpassing the 

other algorithms. For functions F5、F6、F7、F12 and F13, 

ADBO achieved improvements of 1 to 14 orders of 

magnitude compared to the other five algorithms, with both 

its average convergence accuracy and standard deviation 

ranking first, better than all the others. For the F8 function, 

only ADBO achieved the theoretical optimal value. To 

visually demonstrate the difference in optimization 

capabilities between ADBO and the other five intelligent 

algorithms, the convergence curves for some benchmark 

functions are shown in Fig. 6. From Fig. 6, it is evident that 

whether it is a unimodal or multimodal test function, ADBO's 

convergence curve is consistently at the lowest position, and 

compared to other algorithms, ADBO achieves good 

optimization accuracy with fewer iterations. Therefore, 

ADBO's global search capability and ability to escape local 

optima are generally superior to those of the other algorithms. 

Based on the experimental results from TABLE I and Fig.6, it 

can be concluded that ADBO exhibits excellent optimization 

performance and stability in both global exploration and local 

exploitation, with superior optimization accuracy, solution 

speed, and robustness when solving different test functions 

compared to DBO, other improved DBO algorithms, and 

other algorithms, validating ADBO's effectiveness in solving 

complex problems. Since tuning of the matrices Q and R in 

EKF is essentially a parameter optimization problem, and 

swarm intelligence optimization algorithms are an efficient 

means for solving such problems. Therefore, ADBO was 

used to optimize Q and R in EKF in this study. 

C. Analysis of Position Range-Based Restricted KNN 

Fingerprint Matching Method 

 

1) Analysis of K Value Selection 

In the KNN fingerprint matching method based on position 

range constraints, the selection of parameter K has a 

significant impact on positioning accuracy [33]. A smaller K 

may be affected by RSSI noise and outliers, resulting in 

larger positioning errors. Conversely, a larger K may 

introduce reference points that are far from the target location, 

reducing positioning accuracy. Therefore, an experimental 

analysis is conducted to evaluate the effect of different K 

values on positioning accuracy to determine the optimal 

range for K. The selection of K is shown in Fig. 7. 

In the process of analyzing the selection of K value, it was 

found through multiple sets of experimental data that the 

optimal positioning results can be obtained when K is 

between 3 and 5. Therefore, in the subsequent experiments of 

this paper, the value of K is set to 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
Fig. 6.  Convergence curves of different algorithms on selected benchmark functions. 

. 

 
Fig. 7.  Selection of K Value. 

 
. 

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2429-2444

 
______________________________________________________________________________________ 



 

2) KNN Fingerprint Matching Method Based on Position 

Range Constraints 

To verify the positioning performance of the KNN 

fingerprint matching method based on position range 

constraints, the positioning results were compared with KNN 

[34], Random Forest (RF) [35], and MLP [14]. The specific 

results are shown in Fig. 8, and TABLE II summarizes the 

comparison of APE, RMSE, and positioning time for each 

algorithm. The experimental results show that the KNN 

fingerprint matching method based on position range 

constraints effectively reduces interference caused by noise 

and position error during the fingerprint matching process by 

introducing spatial constraints based on known positions, 

thereby improving positioning accuracy. Moreover, it 

maintains a low level of computational complexity, 

demonstrating strong real-time advantages. Therefore, the 

KNN fingerprint matching method based on position range 

constraints achieves a good balance between accuracy and 

real-time performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. Experimental Analysis of Improved PDR Positioning 

 

1) Step Count Estimation Using Adaptive Peak Detection 

In this experiment, the adaptive peak detection method is 

used for step estimation to ensure capture of step counts. As 

shown in Fig. 9, the adaptive peak detection method 

significantly improves step detection accuracy compared to 

the traditional method. The adaptive approach achieved 

nearly 100% accuracy in step counting, while the traditional 

method detects 5 false steps beyond the actual number of 

steps taken. In contrast, the adaptive method effectively 

reduces false step detections caused by external interference, 

thereby enhancing both the accuracy and robustness of PDR 

positioning. 

2) Improved Weinberg Step Length Estimation 

An improved Weinberg step length estimation method is 

adopted, which estimates step length by calculating the 

difference between the maximum and minimum acceleration 

values, and introduces acceleration variance as an additional 

feature to enhance the model's adaptability and robustness. 

To verify the accuracy of the model, a subject was instructed 

to walk at a constant speed with a fixed step length of 0.6 m. 

Fig. 10 shows the step length estimation results obtained 

from four different models: Weinberg, Scarlet, Kim, and the 

improved Weinberg model. The improved Weinberg 

demonstrates superior accuracy and stability. Compared with 

the other three models, it yields smaller errors and exhibits 

smoother curve fluctuations. Based on experimental findings, 

the values of K and B are assigned as 0.364 and 0.105, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8.  Results of Four Wi-Fi Fingerprint Positioning Algorithms. 

 
. 

 
Fig. 9.  Results of Four Wi-Fi Fingerprint Positioning Algorithms. 

TABLE II 
PERFORMANCE COMPARISON OF WI-FI FINGERPRINT MATCHING 

ALGORITHMS 

Method APE/m RMSE/m 

Positioning 

Time/s 

KNN 

RF 
MLP 

Proposed method 

2.033 

1.879 
1.845 

1.835 

2.874 

2.693 
2.623 

2.603 

28.6 

41.7 
52.4 

34.8 

 

 
 

 

 
Fig .10.  Step Length Estimation Results. 
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E. Fusion Positioning Experiment Analysis 

Wi-Fi fingerprint positioning is a single-point positioning 

method and does not suffer from cumulative errors. However, 

due to the instability of Wi-Fi signal reception and the low 

sampling frequency, Wi-Fi fingerprint positioning results 

often show position jumps, which are reflected in the 

trajectory as discontinuous and unsmooth paths. In contrast, 

PDR positioning is a relative positioning method. It offers 

high sampling frequency and trajectory continuity, resulting 

in smoother positioning results. However, it is prone to 

cumulative error over time. To address these limitations, 

AEKF is used to fuse the positioning results from Wi-Fi 

fingerprinting and PDR to achieve more accurate pedestrian 

localization. The fusion experiment setup is consistent with 

the previous Wi-Fi fingerprinting and PDR experiments. In 

an L-shaped corridor, the subject walks at a constant speed 

while collecting Wi-Fi RSSI and smartphone-based PDR 

sensor data for positioning. 

The experiment compares the performance of Wi-Fi 

fingerprint positioning, PDR, KF, EKF [8], the method in 

reference [14], AEKF optimized by DBO (DEKF), and this 

paper proposed AEKF fusion positioning algorithm. The 

positioning trajectories in the L-shaped corridor are shown in 

Fig. 11, and the single-point positioning errors are presented 

in Fig. 12. TABLE III presents a comparison of APE, STD, 

RMSE, maximum single-point error, and minimum 

single-point error under different algorithms under the same 

experimental environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11.  Comparison of Positioning Trajectories. 

 
Fig. 12.  Single Point Positioning Error. 

 TABLE III 
AVERAGE POSITIONING ERROR OF DIFFERENT ALGORITHMS 

METHOD APE/m STD/m RMSE/m 
MAXIMUM 

SINGLE-POINT 

ERROR/m 

MINIMUM 

SINGLE-POINT 

ERROR/m 

Wi-Fi 
PDR 

1.835 
1.264 

2.652 
1.861 

2.603 
2.250 

4.219 
2.933 

0.447 
0.025 

KF 1.163 1.677 2.041 2.009 0.129 

EKF [8] 1.109 1.478 1.848 1.672 0.068 

Reference [14] 0.966 1.275 1.600 1.193 0.036 

DEKF 

AEKF 

0.751 

0.627 

1.096 

0.968 

1.329 

0.814 

1.269 

0.814 

0.101 

0.060 
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As shown in Fig. 11 and Fig. 12 and TABLE III, Wi-Fi 

positioning results exhibit significant error fluctuations and 

severe position jumps, The APE is 1.837 m. The PDR 

positioning suffers from cumulative errors as steps increase, 

reaching a final error of 2.933 m and an APE of 1.264 m. In 

comparison, KF and EKF alleviate some of the errors by 

fusing Wi-Fi and PDR data, reducing the APE to 1.163 m and 

1.109 m, respectively. The method in reference [14], which 

dynamically adjusts the weights of individual sources within 

the EKF framework, achieves more effective multi-source 

fusion with an APE of 0.966 m. Although this method 

improves accuracy, the error fluctuations are still not fully 

suppressed. To further enhance the accuracy and robustness 

of fusion positioning, this paper incorporates intelligent 

optimization into the EKF framework. Specifically, two 

optimization variants using DBO and ADBO are proposed to 

dynamically tune the EKF state covariance matrix, 

improving the filter's adaptability to environmental changes. 

Additionally, an adaptive weighting mechanism dynamically 

adjusts the fusion ratio between Wi-Fi and PDR based on 

real-time observation quality, further enhancing system 

stability in varying conditions. Among them, the DEKF 

improves the error propagation process to a certain extent, 

achieving an APE of 0.751 m, and outperforms other fusion 

methods across multiple metrics. In contrast, the AEKF 

optimized by ADBO retains strong global search capabilities 

and further enhances the convergence precision of the 

covariance matrix through strategies such as good point set 

initialization and adaptive t-distribution perturbation, 

demonstrating superior robustness and adaptability to 

dynamic environments. Experimental results demonstrate 

that AEKF achieves APE of 0.627 m, STD of 0.814 m, 

RMSE of 1.027 m, a maximum error of 1.193 m, and a 

minimum error of 0.060 m. It effectively suppresses both 

Wi-Fi position jumps and PDR cumulative drift, significantly 

improving overall positioning accuracy and stability. 

The APE only reflects the mean level of accuracy and does 

not capture the overall error distribution, making it 

insufficient to fully evaluate the robustness of the positioning 

system. To provide a more comprehensive evaluation of the 

system’s robustness, the CDF is introduced for analysis. Fig. 

13 shows a comparison of the CDF curves for AEKF and six 

other methods. In terms of high-precision performance 

within 1 m, AEKF has 80% of the errors within 1 m. DEKF 

has 76% of the errors within 1 m, the method in reference [14] 

has 71% within 1 m, KF has 65% within 1 m, EKF and PDR 

each have 64% within 1 m, while Wi-Fi has only 40% of the 

errors within 1 m. These results demonstrate that the 

proposed method outperforms all six alternatives in both 

accuracy and robustness. In addition, AEKF achieves the 

lowest maximum positioning error of 1.21 m. The maximum 

errors of the method in reference [14], DEKF, EKF, KF, PDR, 

and Wi-Fi are 1.36 m, 1.51 m, 1.73 m, 1.98 m, 2.33 m, and 

2.35 m, respectively. These findings indicate that AEKF 

exhibits a more concentrated CDF curve across different 

positions, along with faster convergence and greater stability, 

confirming its superior error distribution performance 

compared to the other methods. 

Overall, AEKF exhibits strong performance in various 

respects. Compared with other algorithms, AEKF leverages 

adaptive ADBO-based adaptive covariance adjustment and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

adaptive weight adjustment mechanisms, enabling better 

adaptability to complex and dynamic indoor environments, 

while effectively integrates multi-source positioning 

information from Wi-Fi and PDR. AEKF achieves superior 

results across multiple error evaluation metrics and CDF 

distribution curves, demonstrating its promising potential for 

improving both accuracy and stability in indoor positioning 

applications. 

VI. CONCLUSION 

To address the challenges of large positioning error 

fluctuations in Wi-Fi fingerprint positioning and the 

cumulative errors over time in PDR, this paper proposes an 

AEKF based indoor positioning algorithm integrating Wi-Fi 

and PDR. In the Wi-Fi positioning component, a KNN 

fingerprint matching method based on position range 

constraints is introduced to enhance the continuity of 

positioning points and effectively suppress error jumps in 

Wi-Fi positioning. In the PDR positioning component, an 

adaptive peak detection, an improved Weinberg step length 

estimation method, and quaternion-based heading calculation 

are employed. These enhancements not only improve step 

detection accuracy and adaptivity in step length estimation 

but also avoid the gimbal lock problem inherent in Euler 

angle calculations, thereby reducing cumulative errors. 

During the fusion positioning, an ADBO-based dynamic 

optimization is introduced to adaptively adjust the state 

covariance matrix in EKF, enhancing the filter’s adaptability 

to environmental changes. At the same time, an adaptive 

weight adjustment mechanism is incorporated to dynamically 

tune the observation weights based on the quality of Wi-Fi 

and PDR measurements, further enhancing the robustness 

and stability of multi-source information fusion. 

Experimental results demonstrate that the proposed AEKF 

fusion positioning method significantly improves positioning 

accuracy and stability in typical indoor environments. 

Future research will aim to incorporate more types of 

multimodal sensor data, such as UWB, Bluetooth, and 

barometers, to leverage the complementary strengths of 

various sensors in different environments. Additionally, the 

multi-source information weighting strategy will be further 

optimized to enhance positioning accuracy and adaptability 

in complex and dynamic scenarios. These improvements are 

expected to contribute to more reliable and scalable solutions 

for real-world applications. 

 
Fig. 13.  CDF of Positioning Errors. 
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