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Abstract—The paper presents discussions on
privacy-preserving federated learning integrated with
homomorphic encryption towards healthcare frameworks. This
paper will further develop scalable, robust, and practical
models for preserving privacy within federated learning. The
interest of this work is in protecting sensitive medical
information during model training on Skin Cancer MNIST:
HAM10000 with a pre-trained ImageNet model based on
ResNet50 architecture. Enabling the TenSEAL library will be
performed in this context for data augmentation and
homomorphic encryption. A federated learning framework is
implemented where a few clients are trained on the model of
their local dataset while keeping the data privacy via encryption.
Our proposed PPFL-E for the detection of skin cancer achieved
an extraordinary test accuracy of 91%, with further benefits
achieved through augmentation and tuning of hyperparameters.
Performance is computed in terms of a set of key performance
metrics: confusion matrix, classification report, and temporal
model performance. Compared to the state-of-the-art, our
approach shows very significant advantages in both privacy and
accuracy. From these results, one may expect the huge potential
of homomorphic encryption for significantly boosting data
privacy and security in healthcare, allowing complex, efficient,
federated learning applications for medical domains.

Index Terms—Deep Learning Techniques, Federated
Learning, Homomorphic Encryption, Healthcare Data Security,
Privacy- Preserving, Medical Image Classification, Skin Cancer
Detection

1. INTRODUCTION

AFETY of medical data privacy is a major challenge in

the modern-day digitized society because the more this
sector of health diagnosis depends on data for support and
assistance, the more data is required. Discoveries in machine
learning and deep learning enable the processing of
voluminous data very efficiently, further supporting precise
results. That also involves access to sensitive data, which
means significant concern about patients' privacy and the
security of personal information [1]. Federated learning is the
new approach to training machine learning models on
dispersed data with no need to pool data into a single location.
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The process involves training the model on edge devices such
as smartphones or medical equipment, with only updated
parameters sent to the central server. In this way, privacy is
well protected, and data leakage is extremely unlikely [2].
However, there has always been a huge challenge as to how
to keep secure data used in updating and fetching parameters
between devices and a central server. Homomorphic
encryption helps to solve this problem since computation can
be performed on data without needing decryption.
Concerning this, with this method, sensitive information in a
federated learning process may have high security, as stated
by [3]. The following are the RQs studied in this research:

RQI1. To what extent does homomorphic encryption
enhance the privacy of health data in federated learning
processes?

RQ2. How does federated learning impact model
performance in terms of accuracy and efficiency?

RQ3. What are the potential security challenges associated
with applying homomorphic encryption in healthcare
federated learning systems?

This paper proposes a deep learning framework that
integrates federated learning with homomorphic encryption
and investigates its efficiency on a medical dataset pertaining
to skin cancer. It will present a performance comparison
between the proposed model and traditional methods in terms
of accuracy, efficiency, and security metrics that will
evidence the advantages of methodologies introduced for the
preservation of healthcare data privacy and building trust in
modern technologies in this very important field.

II. LITERATURE REVIEW

Homomorphic encryption enables the computational
operation of encrypted data without needing to decrypt it,
thereby safeguarding data privacy. Fully homomorphic
encryption was first described by Craig Gentry in 2009,
theoretically solving arbitrary processing of ciphertexts [4].
Further optimizations since then have significantly enhanced
homomorphic encryption's efficiency and practicality,
bringing it closer to real-world applications [5]. Data privacy
in healthcare is crucial; therefore, numerous studies focus on
the application of homomorphic encryption to secure patient
data during machine learning processes. In the work by
Zhang et al. titled "Homomorphic Encryption-Based
Privacy-Preserving Federated Learning in IoT-Enabled
Healthcare System," it was demonstrated how homomorphic
encryption can secure patient data in a federated learning
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model with minimal compromise to usability [6]. This study
integrates homomorphic encryption with federated learning,
allowing loT-based healthcare devices to share data securely
and support collaborative analysis without disclosing
sensitive information. The overall system architecture
utilizes homomorphic encryption to structure model updates
in a privacy-preserving manner, ensuring that individual
patient data remains confidential.

In this context, Yao, Jing et al. discuss the use of
homomorphic encryption for protection against private affine
functions, enabling multiple medical institutions to securely
participate in collaborative learning. The scenarios under
consideration involve healthcare practitioners who
collaboratively develop machine learning models based on
aggregated patient data from contributing institutions while
ensuring that sensitive information at the individual level is
highly protected [7].

Other significant areas of interest include the challenges
associated with the use of homomorphic encryption,
primarily related to computational overhead, but with
potential for optimization to achieve efficient encrypted
computations. They also highlight practical use cases
demonstrating how homomorphic encryption enhances
healthcare data analysis while only marginally impacting
model performance. Eduardo et al., conducted an in-depth
study on the complexities homomorphic encryption may
encounter in distributed healthcare and provided viable
solutions. Their work examines the practical issues regarding
the adoption of homomorphic encryption for distributed data
across various institutions, focusing on feasibility and
scalability in real-world applications [8].

The authors emphasize certain homomorphic encryption
schemes and their respective applications across different
categories of health data and computational activities. They
also propose a framework that combines homomorphic
encryption with other methodologies to preserve privacy,
addressing security and scalability challenges. The authors'
techniques have been rigorously tested against various
healthcare datasets, demonstrating improvements in security
and performance.

Training occurs in a decentralized manner in federated
learning. As early as 2016, Google broadly defined it as a
method for training machine learning algorithms across a
large number of decentralized devices or servers, which hold
local samples, without the need to share the actual data. This
approach addresses key issues related to privacy and security
in federated learning, ensuring compliance with regulatory
standards. Since its inception in 2016, federated learning has
been widely used in various fields, particularly in healthcare,
as it allows collaborative learning while maintaining data
confidentiality [9,10]. Within healthcare, federated learning
(FL) offers a chance to develop machine learning models by
utilizing data spread across different hospitals and
institutions, thereby negating the need for centralized data
repositories. This method not only enhances diagnostic tools
and treatment strategies but also complies with stringent
privacy regulations, including the Health Insurance
Portability and Accountability Act (HIPAA) [11]. Martin
Johns et al. provide concrete evidence of FL's applicability in
medical imaging, showing that this technology enhances

model performance while effectively preserving privacy [12].

They illustrate that FL can train deep models on private and
disjoint medical images across various institutions with high
accuracy, while ensuring the confidentiality of patient data.
The authors have identified the inherent communication and
computation challenges within the architecture of FL and
proposed an optimization technique to address these issues.
At the same time, Shruthi Ramesh et al. have investigated the
use of FL in analyzing electronic health records (EHRs).
Their findings indicate that FL improves model performance
while maintaining robust data security and preventing the
leakage of sensitive patient information [13]. This paper
suggests a strong and responsible structural approach to
advancing FL, capable of modeling distinct features in EHR
data, known for its significant heterogeneity and sensitivity.
This work presents a comprehensive framework that
evaluates various models developed within the federation,
where multiple predictive tasks related to disease diagnosis
and patient outcome predictions have shown significant
improvements in accuracy and reliability compared to
traditional centralized methods. Future extensions of these
studies can also incorporate additional techniques that
enhance the security of federated learning in healthcare.
Integrating homomorphic encryption (HE) to enable
federated learning is a highly effective method for facilitating
secure and privacy-preserving data analytics in healthcare
systems. This combination allows healthcare professionals to
collaboratively develop machine learning models using
decentralized datasets while ensuring that sensitive patient
data remains confidential. This approach promotes security
and significantly boosts analytical capabilities within
healthcare systems [14].

Most of the literature highlights the pragmatic benefits of
applying HE in FL for a wide range of applications.
Specifically, the works of Martin Johns et al. and Jing Yao et
al. have shown through experiments that privacy-preserving
federated learning systems, enhanced by homomorphic
encryption, can achieve significant gains in both data security
and model performance [15]. In fact, Johns et al. considered
such hybrid approaches applied to the field of medical
imaging, showing that the application of HE combined with
FL can provide significant protection of patient data in the
training, with maintained diagnostic accuracy.

Yao et al. extensively tested the applicability of those
methods by looking into a range of healthcare scenarios and
presenting empirical results that prove the efficiency of their
proposed approaches [16]. In addition, the works developed
by Eduardo B. Fernandez and his group, and those of S.
Ramesh and her colleagues, address the challenges that arise
when trying to deploy advanced homomorphic encryption
solutions in real-world healthcare settings. The
above-mentioned studies point to some feasible approaches,
hence offering meaningful insights into the transformational
potential of homomorphic encryption and federated learning
in health data analytics [13].

Fernandez et al. [8] discussed the scalability of HE and its
contribution to making FL resilient and efficient. The authors'
contribution overviews developing a framework that can
balance security and performance related to large-scale
applications in healthcare. In another related work, Ramesh
et al. [13] discussed the design challenges of EHR and
proposed an integrated FL. scheme with fully homomorphic
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encryption to ensure data privacy.

Bian et al. proposed, for the first time, in 2023, a new
detection of COVID-19 using FL together with blockchain
and pre-trained models. Some major challenges in the
healthcare area are solved concerning the guarantee of
credibility and privacy of data using FL participants with full
HE along with differential privacy techniques. Moreover,
blockchain documentation enhances the strength and
traceability of everything. The researchers indicated notable
enhancements in the performance of their model, attaining an
accuracy rate of 85.00% for predicting positive COVID-19
cases and 85.06% for identifying severe instances. These
findings highlight the efficacy of their approach in managing
and processing sensitive medical data securely while
maintaining accuracy [17].

The most important achievement in the crossroads of HE
and FL relates to the work presenting FedML-HE by Jin et al.
in 2023. This is a framework that enhances the efficiency of
privacy-preserving federated learning by encrypting only the
most sensitive model parameters, hence significantly
reducing typical heavy computational and communication
loads for HE. For example, the researchers have indicated
that FedML-HE is particularly effective for large
foundational models such as ResNet and BERT. While
training BERT, it can achieve as high as a 40x overhead
reduction. In addition, FedML-HE provides extensive
scalability and adaptability, making it highly suitable for
practical healthcare applications with a high demand for
confidentiality around patient data [18]. Zhou et al. suggested
a privacy-enhanced FL by incorporating HE across the entire
model training process. Their scheme focuses on ensuring
comprehensive security, especially in cases where
adversaries seek to reverse-engineer local models during the
aggregation process. HE is introduced by the authors in
conjunction with secure multi-party computation for
handling some of the key questions of privacy in healthcare
data sharing and resisting attacks by "honest but curious"
participants. They used this approach on lesion cell type
detection in a medical dataset and achieved a good accuracy
of 76.9%. From the results, one can see a well-balanced
efficiency between computational cost and sufficient
protection of sensitive healthcare data [19].

Later, Guo et al. designed a framework of FL that aimed to
enjoy the twin properties of efficiency and preservation of
privacy. The authors have proposed a model in which FHE
has been embedded into FL to provide even more guaranteed
security for model training and to increase its application to
sensitive domains of healthcare, finance, and biometrics.
This framework treats the authors of horizontal and vertical
FL in the same manner because institutional data may take
various distributions. Experimental results on several
datasets, including one related to breast cancer, showed that
the system can achieve an accuracy of 93.40%. Moreover, the
model allowed a significant reduction in computation
overhead and increased training efficiency for the model by
2x compared with traditional FL models. This approach has
efficiently balanced high accuracy and strong security, using
state-of-the-art encryption techniques that can resist even
quantum computing threats [20].

Highly relevant domains of literature gaps for this review
involve comprehensive performance metrics, problems in

scalability, reevaluation of diverse deep learning architecture
studies, and diversity in datasets. In such a condition, there is
also a requirement for a detailed evaluation of privacy threat
models, hyperparameter optimization strategies, giving due
attention to user or client diversity, and conducting a critical
analysis of ethical and legal implications. By removing these
defects, their applicability in clinical use would increase
greatly, as would their durability and safety.

III. PROPOSED PPFL MODEL FOR SKIN CANCER DETECTION

The execution of this study underlines the ability of both
replication and reliability. This is achieved by detailed
documentation regarding data collection strategies,
preprocessing schemes, model architecture, protocols of
training, homomorphic encryption techniques, techniques
used for avoiding overfitting, criteria for evaluation, and the
experimental setting. Figure 1 indicates the overall
methodology of carrying out the proposed research. Besides,
some of the most used datasets of interest to healthcare
applications are summarized in [21].

Initialize System

{ Collect HAM10000 Data — ]

[Encrypt with HE]

v

[Federated Learning Setup]
- Initialize federated learning
environment using Flower
-Distribute initial model to clients
[Clienl Side: Local Training ]

3 Server Side

Decrypt Data (using

Aggregate Updates
HE context)

(FedAvg)

Augment Data (e.g.,
flips, rotations)

Train ResNet50

Encrypt Updates

Model Converged?

I Evaluate Model

A

Therefore, this paper leveraged the HAM 10000 dataset, as
it is one of the most used datasets, with more emphasis on its
applicability in the field of skin cancer classification and
segmentation. In addition, Algorithm 1 gives the complete
details of the process involved with our proposed model, the
PPFL model for skin cancer detection.

A

Fig. 1. Designed System.
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TABLE I
MoST COMMON USED DATASET IN HEALTHCARE

Datasets Sample(n) Application area
MIT BIH 109,446 ECG-based prediction
to

identify arrhythmia

Premier_healthcare 1,271,733 PPR

Chest_xray_image 16,148 COVID-19 diagnosis

Chest_xray_image 2 207,130 PD

Hologic and Siemens 1,870 To detect breast cancer or
tumor

COVID-19 4,029 Mortality ~ prediction ~ for
patients with COVID-19

elCU synergetic >200,000 Predict the likelihood of
patient death

HAM10000 [22] 10,015 Skin Cancer classification /
Segmentation

Cancer Genome >200,000 Cancer genomics program

Atlas

Camelyon17 450,000 Breast cancer classification

MedMNIST 718,067 Medical image classification

Retina 35,126 Diabetic Retinopathy
Detection

BraTs series 285 Brain tumor segmentation

ABIDE 1,112 ASD diagnosis

ADN 911 ASD diagnosis

PolypGen 6,282 Polyp detection and
segmentation

MIP 393 Pancreas segmentation

MIL 428 Liver tumor segmentation

MSP 79 Prostate MRI segmentation

A. Data Collection

Skin Cancer MNIST, or more popularly HAM10000
dataset [22], is a collection of 10,015 dermatoscopic images
of pigmented lesions. These come under seven categories.
The classes included are major ones like non-melanocytic
lesions (nv), melanoma (mel), actinic keratoses (akiec), and
basal cell carcinoma (bcc), among many others. This dataset
has a particular significance since it encompasses a full range
of images; hence the model trained will be capable of being
hard enough, enabling thereby high performance in
classifying various skin lesions.

This heterogeneity in the dataset is precisely what is
required for any model to have any practical application.
Training on such a diverse set of data will prepare the model
to generalize well and do appropriately on new data that it has
not seen before. Advanced augmentation techniques are also
done, such as CutMix and MixUp, to further improve the
network. Those have augmented the dataset with large-scale

variance of the images and enhanced the performance and
generalization ability of the model substantially. Thus, Table
I lists the common datasets used in healthcare systems.

B. Data Preprocessing

A series of comprehensive preprocessing procedures were
executed to ready the HAM10000 dataset for utilization in
training deep learning models, namely ResNetl01 and
EfficientNet. Normalization was implemented to adjust pixel
values within the range of 0 to 1, which is an essential
preprocessing measure that standardizes inputs to an ideal
range for neural networks.

The advanced augmentation methodologies were followed
to increase artificially the size and variability of the dataset,
thus enriching the training even more. These included
random horizontal and vertical flips for handling the
variation in dermatoscopic image orientation, random
rotations to mimic different capture angles, and also random
resizing and cropping to make sure that models learn from the
images at different scales. In addition to this, color jittering
was done by changing brightness, contrast, saturation, and
hue to simulate various conditions of lighting, which made
the model more robust. Other techniques used were CutMix
and MixUp, which enhanced this dataset by combining
segments of different images to enhance generalization and
reduce overfitting.

All images were then resized to 224x224 pixels to
standardize them to the input size of both ResNet101 and
EfficientNet, pre-trained on the ImageNet dataset. The final
dataset was split in the ratio 80%-20% for the majority into
the training set. This strong preprocessing scheme allowed
for good generalization by exposing the models to various
augmented scenarios during training, hence enhancing their
ability to handle unseen data.

C. Creating A Model

Architecture selection is a very crucial stage of any model
development, as it forms the very foundation of performance
and capability concerning the model in classifying medical
images. In this paper, we have used an ensemble of two such
architectures, namely ResNetl101 and EfficientNet. Both
architectures are competent feature-extraction frameworks
designed for the accurate detection of skin cancer.

ResNetl101 is a very deep residual network containing 101
layers, which, when transformed into the ResNet50, goes
even deeper. In ResNet, this increased depth can pick out
even more complicated patterns and features in the images.
ResNet has been further enhanced by the incorporation of
EfficientNet due to its outstanding balance between
performance and computational efficiency, allowing the
model to scale well while becoming as accurate as possible.

Algorithm1: Proposed PPFL-E model for skin cancer detection

1. Load HAM10000 dataset on clients
2. Preprocess data on clients:

a. Apply advanced data augmentation (e.g., rotation, scaling,
flipping)

b. Normalize image data
3. Initialize global model parameters on the server using ResNet50
4. Define hyperparameters on the server:

a. Learning rate

b. Batch size

C. Number of epochs

d. Dropout rates
5. For each round of federated learning:

a. Server selects a random subset of clients
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b. Server sends current global model parameters to selected
clients

C. For each client:
1. Load local data (with homomorphic encryption)
ii. Initialize local model parameters (copy of global model)
iii. Train local model on augmented data:
- Perform local training using ResNet50
- Apply hyperparameter tuning based on validation set
- Encrypt local model updates using homomorphic
encryption
iv. Send encrypted model updates to the
server
d. Server receives encrypted updates from clients
€. Server aggregates encrypted updates using homomorphic
properties
(e.g., additive aggregation)
f. Update global model parameters based on aggregated results
g. Distribute updated global model back to clients
6. Final evaluation:
a. Clients evaluate the final model on their local test data
b. Clients compute performance metrics (accuracy)
C. Clients send performance metrics back to server for
aggregation
7. Server analyzes overall
hyperparameters if necessary

performance metrics and  adjusts

The following steps were followed in building the model:

1. Loading Pre-trained Models

We used pre-trained versions of ResNetl0l and
EfficientNet, each separately trained with the ImageNet
dataset. Since ImageNet is a big dataset, the pre-trained
models acquire richer feature representations from it, making
transfer learning more effective. In this way, pre-trained
models save large amounts of training data and huge
computation resources to provide the best results.

2. Model Customization

Given this, ResNetl01 and EfficientNet were adapted to
have their last fully connected layers adjusted to output seven
classes of the classes in the HAM10000 skin cancer datasets.
Additional layers were added, including dropout layers to
avoid overfitting, hence improving generalization. The
dropout rate used was 0.5 to make sure that effective
regularization was considered. After that, the models
underwent fine-tuning, where the last layers were unrolled
for performance optimization on the particular datasets.

3. Optimizer and Loss Function

The training was performed using the AdamW optimizer,
an optimization algorithm that efficiently deals with weight
decay and, hence, forces regularization. This optimizer was
used to prevent overfitting and allow stable convergence
during the network training process. For this experiment, the
loss function adopted was the cross-entropy loss, a very
reasonable choice in the multi-class classification task
present in the skin cancer datasets.

4. Transfer Learning

The present study employed transfer learning to fine-tune
both ResNetl01 and EfficientNet, which are pre-trained
models. First, only the terminal layers had undergone
retraining while deriving general features learned from the
ImageNet dataset. Then, deeper layers were gradually
unlocked after that first training step and fine-tuned to further
tune these models to the peculiarities of the HAM10000
dataset.

5. Data Augmentation

Advanced augmentation techniques on the training dataset
included random horizontal and vertical flipping, rotation,
resizing, and color jittering to simulate all sorts of conditions
and variations in the data. Other methods, such as CutMix
and MixUp, further increase the diversity of the training data
by mixing segments of different images. Such augmentation
has contributed much to improving the model's performance
and has become quite instrumental in avoiding overfitting.

This work ensembles large-scale architectures with
state-of-the-art performances using transfer learning and
intensive augmentation techniques to provide a robust model
for classifying skin cancer images with high accuracy,
limiting at the same time the chances of overfitting to ensure
peak performance.

D. Training Procedure

The training methodology was designed to enable the
model to learn from the data efficiently without
compromising privacy and generalizing well to circumvent
overfitting. Each of these steps was executed under a broad
FL framework that allows the training of a model across
multiple clients without requiring access to any form of
centralized datasets. This ensures that the raw data stays
within the client's devices, hence protecting sensitive medical
information. The specific aspects of the training
methodology will be described as follows:

1. Federated Learning Setup

Federated learning architecture was implemented using the
Flower framework, which supports multi-client training. This
work emulates training on 10 clients. Each independently
trains a local model from its subset, ensuring that no raw data
leaves the devices, hence maintaining data privacy. Locally
trained model updates from each client were used to update
the global model, without accessing centrally managed data.

2. Client-Side Local Training

In this regard, each client has separately conducted the
training process of its local datasets using ResNet101 and
EfficientNet architectures. The training ran for 100 epochs
while utilizing the AdamW optimizer with a learning rate of
0.0001 and weight decay of le-4 to avoid overfitting. The
procedure for the local training is as follows:

e Forward Pass: The model received input images, which
were subsequently processed to produce predictions.

e [oss Calculation: In this case, cross-entropy loss was
calculated between predicted and actual labels.

e Backward Pass and Optimization: Gradients shall be
computed and flowed back into model parameters employing
the AdamW Optimizer.

3. Homomorphic Encryption for
Ciphertext

In this respect, in order to provide data privacy during
training, encryption with homomorphic capabilities was
performed. The implementation used the TenSEAL library,
which eases HE operations. Notice that the CKKS scheme
was followed to allow computation on encrypted data
without requiring decryption. The process involved the
following steps:

e Context Initialization: The encryption context was set

Computation on
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with parameters appropriate for the CKKS framework.

e Data Encryption: Before inclusion into the training
process, training data has been encrypted using the CKKS
scheme.

e Encrypted Training: Training is performed on encrypted
data, hence keeping all the information related to clients
confidential throughout the process.

e Data Decryption for Evaluation: Model parameters in
ciphertext obtained after training were decrypted for the
performance evaluation of the trained model.

4. Server-Side Model Aggregation

Accordingly, each client updated its model parameters
locally and then uploaded the updated parameters to a central
server. In return, the server aggregated the model parameters
received from all the clients via the FedAvg strategy. It
calculates the weighted average of the parameters from all the
participating clients to generate an updated global model.

5. Evaluation and Feedback

This again turns into the validation of the overall global
model performance on a different validation dataset. It would
include different metrics in the evaluation, including
accuracy, precision, recall, and F1-score, which will tell how
well the generalized model can perform. The results are then
presented to the clients for the gathering of feedback that
informs further localized training.

6. Iterative Process

This procedure was repeated for several cycles, while
training, aggregating, and evaluating a model until the
performance results showed convergence. In each cycle, it
was ensured that the global model kept improving with
progressive rounds of local training and aggregations while
preserving the privacy of the data. Different regularization
techniques and methods related to federated learning helped
avoid overfitting in this iterative process.

This training framework provides quite an efficient and
private way of learning from distributed data. Privacy can be
guaranteed by homomorphic encryption, while robustness
against overfitting may be considered by taking into account
federated learning and/or regularization techniques.

E. Overfitting Prevention Strategies

Overfitting occurs when it does extremely well on any
given set of training but generalizes poorly to new, unseen
data. To avoid these problems of overfitting, the following
were used during training:

1. Data Augmentation

Various augmentation methods have been used to
artificially increase both the size and diversity of this training
dataset: random flipping, rotation, resizing, cropping, and
color jitters. Even more sophisticated techniques like CutMix
and MixUp have been tried to make them even more varied.
The better diversity of the augmented images positively
influences the model's generalization capability to be more
robust against variation in the input data.

2. Dropout Layers

Dropout is a regularization technique that prevents the
model from relying on specific neurons while training.
Herein, dropout layers with a rate of 0.5 have been utilized
for fully connected layers in ResNetl101 and EfficientNet; it
helped in higher levels of generalization and effectively

prevented overfitting within the network.

3. Early Stopping

Early stopping was adopted to stop the training when the
performance on the validation set had started to deteriorate.
The mentioned technique tracked the loss on the validation
and saved the model only when the performance had
outperformed. In this way, it avoids overfitting on the
training data and can generalize better on unseen data.

4. Regularization Techniques

Another regularization technique used besides dropout
was weight decay. Weight decay adds a penalty term to the
loss that prevents the weights from having too large a value,
hence generalizing better. Weight decay is used by the
AdamW optimizer. An effective overfitting rate of le-4 was
used.

5. Cross-Validation

In this respect, cross-validation allows for estimating the
strength of the model on various splits of available data. It
could be divided into several folds, and different
combinations of such folds were used for training purposes.
In this way, this technique gave a more reliable estimate of
stability for the model and assessed problems with
overfitting.

6. Transfer Learning Using Pre-Trained Models

Transfer learning was done considering pre-trained models
ResNet101 and EfficientNet, which had been trained on
ImageNet. Since they already learned feature representation
from such a huge and diverse dataset, their fine-tuning on the
HAM10000 skin cancer dataset was good enough. The
approach strengthened generalization and reduced the
possibility of overfitting compared to training the model from
scratch.

7. Batch Normalization

To stabilize training and accelerate the convergence, batch
normalization was performed. Batch normalization reduces
internal covariate shifts by normalizing the inputs to every
layer. Consequently, higher learning rates are permissible
without the danger of overfitting, which results in a more
efficient and stable training process.

Each of these metrics drastically reduced the overfitting
that was inherent in the model. Because of this, it performed
fantastically on the training dataset and therefore generalized
well to new unseen test data, hence being much more robust
and generalizable.

IV. RESULT AND DISCUSSION

This section shows the performances that could be
obtained from the homomorphic encryption-based
privacy-preserving federated learning model. We will depict
some of the experimental results obtained and then give the
time performance analysis of the model, its validation
accuracy, and loss graphs.

A. Classes

In clinical medicine, models intended for classification
must be unconfusing between the various pathologies at hand.
The model was trained to classify skin lesions into seven
independent classes, which were obtained from the
HAMI10000 dataset. The seven classes, identified by the
labels from 0 to 6, are indicative of the following types of
skin lesions: nv, mel, bkl, bec, akiec, vasc, and df. Since there
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is one class for each pathology, classes such as mel and nv are
so alike that it is really hard to spot the difference between the
two.

Understanding the distribution of these labels, together
with the performance of the model for each one of them, may
provide important information on what aspects the model is
strong at and what needs to be improved. Clinically,
fine-grained classification of similar conditions is important
since different classification leads to different diagnosis and
treatment.

B. Experimental Results

misclassifications, in which the model has predicted a wrong
class.

The key observations from the confusion matrix are:

e nv (melanocytic nevi) Class: 535 correctly classified
with some misclassifications as BKL - 7 instances and DF -
13 instances.

e The class "mel” results in 345 correct classifications
with its major potential misclassifications into classes NV,
DF, and BCC.

o Class "akiec" for actinic keratoses:
sometimes confused with BCC and DF.

187 correct,

Confusion Matrix
2 5 7 14 7 8 13 500
T -
z 6 5 4 8 4 4
400
Z - 2 4 198 2 6 2 3
w 300
[
=)
3 - 1 4 4 212 5 5 1
W =]
=]
=
o =
2 - 5 1 2 3 187 1 6 200
X
o
o)
2 - 1 4 4 ¢} 2 180 3
= - 100
%55~ 5 1 5} 2 5 3 169
\ \ \ ' | ! ) -0
nv mel bkl bcc akiec vasc df
Predicted Labels

Fig. 2. Confusion Matrix of the PPFL-E Model.
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akiec

Fig. 3. Classification Report Metrics.

1. Confusion Matrix

Figure 2: Confusion Matrix - The confusion matrix
elaborates the classification performance for the seven
classes. The rows signify the real class, while the columns
signify the predicted class. The elements on the diagonal
from top left to bottom right show the number of instances in
each class that were correctly classified; all others reflect

In general, it performs well across most classes, except for
the very similar classes, like MEL versus NV, for which there
are inherent complications given the feature overlap. This
means that fine-tuning or extra training if the dataset allows it,
is very important in increasing the capability to differentiate
between the most related conditions.

The confusion matrix depicts the particular domains the
model has a hard time predicting in. For instance, though
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Class "nv" contributes to a high number of correct predictions
at 535, there are still misclassifications into "mel" and "bkl".
Similarly, Class "mel" is majorly misclassified as "nv" and
"df," pinpointing the requirement for better feature extraction
techniques so that these shortcomings can be minimized.

Figure 2 gives an insightful summary of the classification
performance of the model, class-wise, both for correct and
incorrect predictions. Such kinds of analysis help assess the
model's performance and guide further improvements to
reduce misclassifications.

2. Classification Report MetricsThe classification report
displays the precision, recall, and F1 score for all seven
classes in the dataset. All three of these metrics are highly
informative of model performance on a single class and the
total performance metric of the model. A sample is given in
Figure 3.

TABLE II
CLASSIFICATION REPORT OF PPFL-E MODEL

Class Precision Recall Fl-score Support
nv 0.96 0.91 0.94 589
mel 0.95 0.92 0.93 376
bkl 0.88 0.91 0.9 217
bee 0.89 0.91 0.9 232
akiec 0.85 0.91 0.88 205
vasc 0.89 0.93 0.91 194
df 0.85 0.89 0.87 190
Accuracy 0.91 2003
Macro Avg 0.9 091 09 2003
Weighted Avg 0.91 0.91 0.91 2003

Precision: Precision shows how many of the cases
forecasted for a particular class were found out of the total
forecasted, and most of the classes have high precision, hence

quite reducing the number of false positives.

Recall: the ratio of correctly predicted instances of a target
class and overall actual instances of that same target class.
The model has a high recall, hence a minimum number of
false negatives.

F1-Score: This is the harmonic average of precision and
recall, standing for the balance in effectiveness that the model
provides across each class.

Figure 3 shows the metrics of the classification report
along with support values given by the red dashed line,
representing the total number of real instances for each class
present in the data. Classes like NV and MEL are highly
supported, meaning this model has more samples for training
and testing. Classes like DF and BKL have low support. This
disparity in support could partially explain why the metrics
for DF and BKL are low compared to the otA bar chart
showing the classification metrics vis-a-vis support would be
a visual confirmation of the above observations. While the
model receives generally high precision, recall, and
F1-scores across most classes, the generally low support that
some classes receive, such as BKL and DF, indicates where
future improvements should be made. Such improvement
might involve additional data for the lower-supported classes
or further optimization.

It reflects overall model strength but also that garnering
better precision, recall, and F1-score for the minority classes-
namely BKL and DF-may further require more data
gathering or optimization.

The classification report, wrapped up in Table II, shows an
extended evaluation of the performance of the model for each
particular class and indicates the general accuracy rate of
91%, further elaborating several strengths and possible points
for improvement within the classification task, delivering key
insights into how well the model performs on all classes.

C. Validation Set Accuracy Of The Model

Figure 4 summarizes the accuracy of the model on a
validation set for 100 epochs. As might intuitively be
expected, the accuracy goes up and down with different
epochs because this forms part of the natural curve that any

Model Accuracy on Validation Set over 100 Epochs

—— Validation Accuracy

0.90 4

0.85 1

Accuracy

0.80 +

0.75 A

0 20 40

Epochs

60 80 100

Fig. 4. Validation Set Accuracy of the PPFL-E Model.
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model experiences during its learning cycle. The model
improves dramatically in the early phase of training while
adjusting to the training data. Around the midpoint of these,
or at about 40 epochs, it begins to stabilize and gradually
creeps up toward the end of 100 epochs, reaching an
approximate high of 91%.

The fluctuations observed hint that the model is continuous
in the process of learning and enhancing its generalization at
each and every epoch. Still, slight differences may exist
between successive epochs in performance. Generally,
though, this slope upwards signifies that actually, the model
learns something and generalizes well on the validation data
shown.

D. Model Performance Over Time

Figure 5 represents the change in training and validation
loss with time, hence providing a clear view of the model's
learning ability and generalization capability over the epochs.
The blue line reflects the training loss, which decreases with a
slope within the 100 epochs, showing that the model has
picked nicely. In contrast, the orange line representing the
validation loss shows some fluctuations; this fluctuation
consists of periods when it goes up before it eventually comes
down. These minor variations are indicative of slight
overfitting where, sometimes, the model fails to generalize
on the validation set.

Over time, both the training and the validation losses tend
to decrease model trains better with time. Validation loss
does vary but stays at an ultimate accuracy of 91%, which is
significantly higher than in the initial stages of training.
Therefore, this result validates a model that can learn from
the dataset and generalize well into unseen data.

Figures 4 and 5 demonstrate how there are natural
fluctuations in accuracy and loss during the training of the
model. The overall trends, however, show that performance
continues improving with increased time. A final accuracy
result of 91% is something to boast about. There is, however,
a hint of overfitting, as shown by the difference in the
validation loss; this might be taken care of during further
improvement through k-fold cross-validation or higher
regularization.

TABLE III
PERFORMANCE COMPARISON OF FEDERATED LEARNING MODELS
WITH HOMOMORPHIC ENCRYPTION IN HEALTHCARE SYSTEMS

Model ResNet Homomorphic Accuracy
Support Encryption &
Federated
Learning
Zhang et al [6] No Yes 76%
Bian et al [17] Pre-trained Yes 85.06%
models for
COVID-19
detection
Zhou et al [19] ResNet-101 Yes 76.9%
Guo et al [20] No Yes 93.40%
Sun et al [23] ResNet-50 No 1%
Jin et al [24] ResNet-18, Yes 80%
ResNet-34,
ResNet-50
Korkmaz et al DenseNet Yes 90%
[25] ResNet
Our  Model ResNet-101, Yes 91%
(PPFL-E EfficientNet
model  for
skin cancer
detection)

E. K-FOLD CROSS-VALIDATION RESULTS

The K-fold cross-validation is one of the most common
methods to estimate the skill of a machine learning model in
generalizing events on previously unseen data. The idea here
is to split your available dataset into k equal-sized subsets,
training your algorithm on all the k - 1 subsets and using the
remaining subset for validation. Repeat this k times so each
subset gets a chance to serve as the validation set.

Figure 6 presents the accuracies of the model as observed
across the different folds, varying from 90.6% to 91.5%. This
visualization highlights a consistently elevated performance
throughout all folds, with the bar chart revealing negligible
fluctuations in accuracy. The mean accuracy of 91% closely
corresponds to the model's ultimate performance, thereby
affirming its dependability and stability. The bar chart very
clearly shows the high performance achieved, represented by
the almost evenly raised bars of accuracies. This stability of
performance across folds is indicative of the model's strong
generalization capability and further complements its
efficiency in handling unseen data.

Model Performance Over Time
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Fig. 5. PPFL-E Model performance over time.
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Fig. 6. K-fold cross-validation results for PPFL-E Model.

On the other hand, however, the 91% accuracy, combined
with very solid privacy guarantees shown in Figure 7,
constitutes proof of outstanding efficiency in the PPFL-E
method. These results hint at trustworthy performance,
including extremely little variation in it, with much
consistency across all five folds.

Accuracy (%)

Ensemble Federated Learning E
State-of-the-art FedProx -:]
FedAvg Baseline il
Traditional Centralized I
PPFLE moce!

82 83

Federated Learning Models

84 85 8 87 83 8 9% 91 92

Accuracy

Fig. 7. Benchmark Comparison of PPFL-E with other state-of-the-art
federated learning.

V. PERFORMANCE EVALUATION

Performance evaluation forms part of every machine
learning model. It supplies information on how the model is
performing and also pinpoints possible ways it could be
improved. On that note, Table III compares the results of our
proposed PPFL-E model, with homomorphic encryption over
the healthcare dataset with seven results so far reported in the
literature.

VI. DISCUSSION

Our skin cancer detection model realized an accuracy of
91% using the PPFL-E model. The approach from Guo et al.

[20] reported an accuracy of 2% higher than that of our model.

However, this model has key advantages over other works in
terms of enhancing privacy protection via homomorphic
encryption. That is a trade-off between the performances of
the models and the privacy-preserving; thus, our model is a
good choice for applications sensitive to privacy. As
presented in Table III, the PPFL-E model demonstrates
performance comparable to state-of-the-art performance in
competitive, privacy-preserving applications. For instance,
Sun et al. [23] reported 71% accuracy without encryption
using ResNet-50, which gives an idea about the performance
trade-off brought about by privacy-preserving techniques.

The results point out that there is a need to balance model
functionality with privacy requirements.

Future studies should be directed toward further
refinement of the PPFL-E model with its performance
validation over an even wider range of datasets. This could
make it even more generalizable and more competitive
compared to models that do not advocate for privacy
preservation.

In contrast, Jin et al. [24] achieved the best accuracy of
80% upon applying homomorphic encryption on different
variants of ResNet, notably ResNet-18, ResNet-34, and
ResNet-50. These show that homomorphic encryption in
federation could most likely improve model performance,
probably resulting from the improvement in the collaboration
of several data through their interaction and the secure
application of privacy-preserving data.

Similarly, Asad et al. [25] and Zhang et al. [6], using
homomorphic encryption, did not define any ResNet
architectures, and reported accuracy levels of 74% and 76%,
respectively. These results depict that homomorphic
encryption is good for data privacy and has almost no impact
on performance. Besides, they indicate that homomorphic
encryption, regardless of an underlying deep learning
framework, plays a significant role in model accuracy
improvements.

Bian et al. [22] proposed a model that integrated federated
learning with blockchain technology in detecting COVID-19,
using a few pre-trained models. The result showed an
accuracy of 85.06%. This is leveraging the pre-trained
federated models, which can assure data privacy across the
different devices, as no raw data are shared. Such a model can
probably show a way of how it is possible to integrate
federated learning with blockchain technology for the
performance of a non-invasive medical condition
classification example, COVID-19 detection with high
accuracy.

Zhou et al. [19] combined ResNet-101 with homomorphic
encryption and FL to ensure absolute privacy in data
transmission. The accuracy of performance reached 76.9% in
their health data analytical model. It is obvious to conclude
that homomorphic encryption in a federated learning
environment enhanced data security without sacrificing
satisfactory performance. Nevertheless, these promising
results still need more modifications and improvements to
achieve results suitable for practical applications.

Guo et al. [20] developed federated learning frameworks
that integrate homomorphic encryption, achieving an
excellent accuracy of 93.40%. Their work demonstrated that
integrating EfficientNet with multiple deep learning
frameworks and homomorphic encryption thus provides a
strong level of security for the privacy of medical data while
yielding high classification performance. It proves once
again that advanced models such as EfficientNet can achieve
better results by balancing security measures and other
performance metrics.

We obtained an accuracy of 91% using ResNet-101 and
EfficientNet on PPFL-E by introducing federated learning
and homomorphic encryption. The closeness of this result to
those obtained by Guo et al. will actually reveal the value
added from the integration between strong deep learning
models and methods preserving privacy. This slight
difference in performance suggests that the performance may
get even better after further optimization of hyperparameters
and architecture.
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The comparative study depicted here focuses on the
interaction between homomorphic encryption and federated
learning within the healthcare industry. It explains how these
two approaches together cooperate in enhancing data security
and privacy and points toward some key research directions.
In addition, future research is recommended to seek the best
possible trade-offs between the protection of privacy and the
efficiency of systems with good security and the best
operational factors.

VII. CONCLUSION

This paper presents a new approach to skin cancer
diagnosis using the HAM10000 dataset with homomorphic
encryption integrated into a privacy-preserving federated
learning technique. This model used new data augmentation
techniques combined with deep learning architectures such as
ResNet-101 and EfficientNet; these will further yield higher
accuracy with assured confidentiality and privacy in sensitive
health data.

This greatly improves the standard of data privacy, as
homomorphic encryption applies during the training process;
hence, it identifies some key problems related to healthcare
data security. Results provide evidence of an excellent
performance of the developed model with privacy as an
important stride toward the realization of a secure and
efficient healthcare system. This research underlines that a
balance of high performance and strong security is possible
for driving future progress by privacy-preserving
technologies in  privacy-focused machine learning
applications.
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