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Abstract—Retinal vessel segmentation is vital for diagnosing

eye diseases. Existing models such as U-Net and TransUNet
encounter challenges in feature fusion and interpretability. This
paper introduces TKS-UNet, a novel neural network
architecture that addresses these issues. TKS-UNet
incorporates the Kolmogorov-Arnold Network (KAN) to
improve interpretability and revamps skip connections for
multiscale feature fusion. Through extensive experiments on
three public datasets (DRIVE, CHASE_DB1, and STARE),
TKS-UNet demonstrates superior performance, achieving
F1-scores of 86.09%, 90.89%, and 86.31% respectively.
Ablation studies validate the efficacy of both the KAN module
and the redesigned skip connections. This research presents a
promising method for precise and interpretable retinal vessel
segmentation, contributing to the progress of medical image
analysis.

Index Terms—KAN, Semantic segmentation, Skip
Connection, UNet

I. INTRODUCTION
ETINAL vessel segmentation is crucial in ophthalmic
diagnostics for early detection of diabetic retinopathy,

glaucoma, and other vascular-related eye diseases.
Convolutional neural networks (CNNs), notably U-Net and
its variations, are prominent in medical image segmentation
due to their hierarchical feature extraction capabilities using
encoder-decoder architectures and skip connections [1]. The
original U-Net [2] achieved 97.68% accuracy and 85.01%
sensitivity on the DRIVE dataset [8], comprising 40 color
fundus images. Li et al. (2019) [3] enhanced U-Net with
connection-sensitive loss and attention gates, resulting in an
84.35% F1-score and 96.73% accuracy on STARE. Ren et al.
(2022) [4] further improved U-Net by incorporating Bi-FPN
fusion and data preprocessing techniques such as grayscale
conversion, CLAHE, and gamma correction, achieving SP of
0.8604, SE of 0.9767, ACC of 0.9651, and AUC of 0.9787.
Nevertheless, two primary challenges persist: inefficiencies
in multiscale feature fusion and limited interpretability. The
increase in network depth in U-Net-like structures leads to
the loss of fine-grained details due to repeated downsampling
operations. Additionally, conventional skip connections do
not effectively bridge the semantic gap between encoder and
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decoder layers [7]. Recent advancements like TransUNet
have integrated transformer-based encoders to improve
global context modeling; however, they still rely on
simplistic concatenation-based fusion methods, resulting in
suboptimal performance on datasets with intricate vascular
structures. Moreover, the opaque nature of deep neural
networks impedes clinical acceptance, as healthcare
professionals necessitate transparent decision-making
processes to validate diagnostic outcomes.
This study presents TKS-UNet, a novel architecture that

incorporates KAN into a TransUNet framework and revamps
skip connections for integrating multiscale features.
Traditional MLPs are replaced with KAN modules to
improve interpretability and feature representation, while
skip connections are redesigned based on UNet++ for
hierarchical fusion of multiscale features. The performance
of TKS-UNet is evaluated on three benchmark datasets
(DRIVE, CHASE_DB1, STARE), achieving leading
F1-scores of 86.09%, 90.89%, and 86.31%, respectively. By
amalgamating interpretable neural elements with advanced
feature fusion, TKS-UNet offers a transparent and precise
solution for retinal vessel segmentation, thereby propelling
the practical application of AI in ophthalmology.

II. METHODS

A. MLP replacement
The multilayer perceptron (MLP), a common model in

machine learning for approximating nonlinear functions,
faces interpretability and model forgetting limitations [5].
These hinder broader adoption, particularly in applications
requiring transparency. In contrast, Kolmogorov-Arnold
Networks (KAN) mitigate these limitations. Inspired by the
Kolmogorov-Arnold representation theorem, KAN
structurally resemble MLPs, featuring a fully connected
network design [6]. The key difference lies in activation
function configuration: while MLPs use fixed activation
functions, KAN implement learnable activation functions on
edges (weights). This design obviates the need for a linear
weight matrix, replacing each weight parameter with a
learnable one-dimensional spline function, substantially
enhancing the network's expressive power and flexibility.
Kolmogorov-Arnold Networks (KAN) design nodes to

perform only summation operations on input signals,
avoiding nonlinear activation processing. This design choice
preserves interpretability while maintaining model
complexity, facilitating understanding of the model's
decision-making process. Additionally, KAN exhibit
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significant advantages in small sample learning scenarios.
Their flexible weight representation allows for effective
information extraction from limited training data, resulting in
satisfactory generalization performance crucial for
applications like medical image analysis.
Given these advantages, we propose the TKS-UNet hybrid

structure as a novel approach. This hybrid model seeks to
optimize feature extraction and representation capabilities of
KAN while maintaining interpretability and efficiency. It
addresses limitations of traditional deep learning models and
encourages broader exploration and advancement in related
fields.

B. Redesign of skip Connections
In practical image segmentation applications, the use of

repeated downsampling operations results in the loss of detail
features. The U-Net architecture employs skip connections to
recover lost detail information [2]. However, with deep
learning techniques, researchers propose enhanced
approaches. One such approach is UNet++, which improves
the model's capabilities and optimizes image segmentation
[7].
The UNet++ network enhances the model's capacity to

comprehend local features within a global context through a
convolutional feature fusion approach. This improves
information flow and feature reuse, improving the accuracy
and detail of final segmentation results [7].
In this paper, we present an innovative reconstruction of

traditional skip connections, inspired by the UNet++ network
design concept. In the new network structure, original skip
connections are removed and redesigned skip connections
introduced in the first three encoder convolutional layers.
This permits decoder nodes to receive feature maps at
varying scales, facilitating diverse feature fusion. In
particular, by transmitting feature maps of different scales
between decoder and encoder, the aggregation layer
efficiently fuses information from diverse layers and scales.
This enhances feature representation extracted from input
data.
Convolutional layer feature maps with similar

characteristics are integrated in this design, avoiding data loss
and spatial discrepancies. The network extracts and fuses
features at different scales, improving understanding of
details in complex scenes. This enhances the model's
precision.The scale fusion strategy mitigates issues of
gradient vanishing and information bottleneck in deep
networks, enhancing training efficiency and generalisation. It
addresses challenges of insufficient data and overfitting.

C. Models
The TKS-UNet network architecture, as depicted in Fig. 1,

is a multi-layered design that significantly enhances model
accuracy and generalization. The TKS-UNet model, in
particular, incorporates three key convolutional layers and a
Transformer [23] encoder with the KAN mechanism. These
convolutional layers, a fundamental building block in deep
learning, effectively extract low-level image features in a
progressive, layer-by-layer manner, significantly improving
pattern capture and enabling high-dimensional image

processing, a critical aspect in computer vision. The
Transunet model, another sophisticated model under
discussion, employs the aforementioned decoder component,
which decodes and reconstructs feature information from the
encoder in a manner tailored for image segmentation. The
redesigned skip connections in the decoder integrate the three
initial valid feature layers from the encoder with increased
efficiency through a convolutional feature fusion layer. This
strategic integration enhances the model's expressive ability
and significantly improves its context-awareness, ensuring
accurate image reconstruction. One of the standout features
of this model is its multilevel feature fusion, which
considerably improves vascular segmentation of fundus
images in terms of accuracy and reliability.

III. TECHNICAL DETAILS

As part of this study, the raw input images underwent a
series of pre-processing stages. The primary objective of
these pre-processing steps was to resize the images to a
uniform size of 512 pixels by 512 pixels, ensuring uniformity
in dimensions for efficient further processing. This step is
crucial as it helps maintain aspect ratio while ensuring images
are of a standard size efficiently processable by the machine
learning model.
Beyond resizing, data enhancement techniques were

randomly applied to these pre-processed images to improve
various aspects of the model's performance. The application
of these techniques improves the model's performance by
introducing variability in the training dataset, aiding
generalization and enabling better performance when
exposed to new data. Moreover, it contributes to more
efficient training by exposing the model to diverse
representations of the data, facilitating faster learning.
Applying such preprocessing steps before training the

model has a larger strategic objective of enhancing model
resilience, particularly important for machine learning
models deployed to handle real-world scenarios. Real-world
scenarios are unpredictable and diverse, and the model must
handle variability and perform robustly. Therefore, the aim is
to ensure the model is resilient enough to handle variability
and perform consistently well in real-world situations.
Moving to the core of the model, the encoder component is

critical for downsampling the input image, reducing the
spatial dimensionality of the feature map and enabling the
extraction of more abstract feature representations from the
raw input data. Each individual convolutional block within
the encoder consists of a convolutional layer, a batch
normalization layer, and a ReLU activation layer. The
convolutional layer, combined with the ReLU activation
function, synergistically extracts spatial features from the
input image, critical for understanding image content.
Additionally, batch normalization and residual

connectivity are strategically employed to enhance the
training process. Batch normalization aids in normalizing
layer output, stabilizing and speeding up training, and
reducing internal covariate shift. Meanwhile, residual
connectivity helps improve optimization by allowing the
model to learn residual functions. These components
improve training and optimization efficiency of the model.
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Fig. 1. TKS-UNet Model Structur. (a) Addition of Kan's Transformer layer;
(b) Redesign of the TKS-UNet architecture after skip connections.

Applying such preprocessing steps before training the
model has a larger strategic objective of enhancing model
resilience, particularly important for machine learning
models deployed to handle real-world scenarios. Real-world
scenarios are unpredictable and diverse, and the model must
handle variability and perform robustly. Therefore, the aim is
to ensure the model is resilient enough to handle variability
and perform consistently well in real-world situations.
Moving to the core of the model, the encoder component is

critical for downsampling the input image, reducing the
spatial dimensionality of the feature map and enabling the
extraction of more abstract feature representations from the
raw input data. Each individual convolutional block within
the encoder consists of a convolutional layer, a batch
normalization layer, and a ReLU activation layer. The
convolutional layer, combined with the ReLU activation
function, synergistically extracts spatial features from the
input image, critical for understanding image content.
Additionally, batch normalization and residual

connectivity are strategically employed to enhance the
training process. Batch normalization aids in normalizing
layer output, stabilizing and speeding up training, and
reducing internal covariate shift. Meanwhile, residual
connectivity helps improve optimization by allowing the
model to learn residual functions. These components
improve training and optimization efficiency of the model.

IV. DATASETS AND EXPERIMENTS

A. Database Summary
To comprehensively assess the proposed network structure,

the method is evaluated on three commonly used datasets:
DRIVE [8], CHASE_DB1 [9], and STARE [10]. Key
information is summarized in TABLE I.

TABLE I
A SUMMARY OF THE THREE DATASETS

Dataset Amount Pixels Resized FOV Observers
DRIVE 40 584× 565 512×512 45° 3

CHASE_DB1 28 999 × 960 512×512 30° 2
STARE 20 605 × 700 512×512 35° 2

a. DRIVE
The DRIVE dataset comprises 40 digital fundus images

with a resolution of 584 × 565 pixels, each accompanied by a
meticulously hand-labelled vessel segmentation mask
providing detailed pixel-level information on vessel status.
This data can serve as a reliable ground truth for algorithm
training and performance evaluation. The fundus images
were captured within a 45-degree field of view,
demonstrating the complexity and diversity of the retinal
vascular network.

b. CHASE_DB1
In comparison to the DRIVE dataset, the CHASE_DB1

dataset exhibits higher resolution and more intricate detail
despite fewer images (28 total). The dataset comprises fundus
images with dimensions of 999 × 960 pixels and a field of
view (FOV) of 30 mm, accompanied by manually labelled
vessel segmentation masks. Furthermore, two independent
annotators manually segmented each image, with the first
annotator's segmentation serving as the standard reference.

c. STARE
The STARE dataset provides a fundus image dataset with

fewer false positives than the DRIVE and CHASE_DB1
datasets due to a region-based detection approach. The
STARE dataset contains 20 photographs, each with a
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resolution of 605 × 700. These images demonstrate that half
of the patients have structural blood lesions, while the other
half are normal. The complete dataset was manually labelled
using a tool developed by Hoover et al. (1994) and visualized
with appropriate magnification levels and histogram
transformations.

Fig. 2. images and labels for three datasets

B. Evaluation Methods
This paper comprehensively assesses the effectiveness of

the TKS-UNet model for retinal blood vessel image
segmentation by employing a series of evaluation metrics,
including accuracy, F1 score, sensitivity, specificity, and
others, to compare the proposed network model with a basic
segmentation network model.
Accuracy (Acc): This metric represents the proportion of

samples correctly classified by the model across the entire
dataset. It is calculated by dividing the number of correctly
classified pixels by the total number of pixels, as shown in
(1).

FNTNFPTP
TNTPACC 


 (1)

Auc（Area Under the Curve）: This metric quantifies the
area under the ROC (Receiver Operating Characteristic)
curve, serving as a comprehensive measure of classifier
performance. It illustrates the relationship between the True
Positive Rate and the False Positive Rate across various
threshold conditions. By encapsulating these relationships,
this metric provides an overall assessment of the model's
ability to distinguish between positive and negative samples
(see (2)).
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F1 Score: The F1 score serves as a comprehensive
evaluation metric that integrates two fundamental
classification metrics: precision and recall. In the domain of
retinal vascular image segmentation, this metric is employed
to systematically assess the model's capability to accurately
identify vascular regions by balancing two critical
performance dimensions (see (3)).

FNFPTP
TPF





2

2
1 (3)

Sensitivity (Se): Also referred to as the true positive rate,
sensitivity measures the proportion of positive samples
correctly identified by the model out of the total number of
actual positive samples. In retinal vascular image
segmentation, sensitivity indicates the model's effectiveness
in accurately recognizing and detecting vascular regions,
capturing and isolating pixels that genuinely belong to the
vascular structure (see (4)).

FNTP
TPS


e (4)

Specificity (Sp): Known as the true negative rate,
specificity measures the proportion of negative samples
(non-vascular regions) correctly identified by the model out
of the total number of actual negative samples. In this
segmentation task, specificity reflects the model's ability to
accurately exclude non-vascular regions, thereby indicating
the accuracy with which the model classifies actual
non-vascular instances as negative cases (see (5)).

FNTN
TNS


p (5)

Precision (Pre): This metric measures the ratio of true
positives (TP) among all positive predictions, including TP
and false positives (FP). It evaluates the reliability of the
model’s positive predictions by quantifying the accuracy of
its affirmative classifications (see (6)).

FPTP
TPP


re (6)

Intersection over Union (IoU): This metric evaluates the
overlap between the predicted region and the ground truth
region. It is calculated by dividing the area of overlap
between the predicted and the actual regions by the area of
their union (see (7)).

BA
BA




IoU (7)

C. Performance Evaluation
A comparative analysis was conducted using the

TKS-UNet model for retinal vessel segmentation across three
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datasets: DRIVE [8], CHASE_DB1 [9], STARE [10]. The
model's robustness and generalizability were
comprehensively evaluated for performance. The model was
compared with established deep learning architectures and
benchmarks in image segmentation.Tables II, III, and
IVprovide a comprehensive analysis of the model's
performance under different datasets and evaluation metrics.
As evidenced in Table Ⅱ, the performance metrics of the

proposed model demonstrate a notable enhancement across
all three public datasets. In the DRIVE dataset, the sensitivity
(Se) metric reached 85.03%, while the specificity (Sp) metric
reached 98.92%. The accuracy (Acc) was 97.65%, while the
area under the curve (AUC) reached 99.21%. The F1-score
value was 86.09%. These results demonstrate that the model

exhibits robust detection performance.
As shown in Table Ⅲ , the model also demonstrated

impressive performance in the CHASE_DB1 dataset, with
sensitivity, specificity, accuracy, AUC value and F1-score
reaching 90.82%, 99.38%, 98.81%, 99.62% and 90.89%,
respectively. These results provide further evidence that the
model is capable of performing well across a range of
datasets.
Furthermore, as illustrated in Table IV, the sensitivity,

specificity, accuracy, AUC, and F1 scores of the TKS-UNet
model demonstrated notable enhancement, reaching 85.01%,
99.03%, 97.97%, 99.29%, and 86.31%, respectively, in the
STARE dataset. In conclusion, the validity and reliability of
the proposed model on various public datasets can be seen.

TABLE Ⅱ
COMPARATIVE ANALYSIS OF OUR MODEL ON THE DRIVE DATASET

Dataset Model Se Sp Acc AUC F1

DRIVE

Att UNet[11] 79.46 97.89 95.64 97.99 82.32

BCDU-Net[12] 79.84 98.03 95.75 98.11 98.49

Bio-Net[13] 82.20 98.04 96.09 82.06 98.26

CTF-Net[14] 78.49 98.13 95.67 97.88 82.41

CSU-Net[15] 80.71 97.82 95.65 98.01 82.51

OCE-Net[16] 80.18 98.26 95.81 98.21 83.02

LDMRes-Net[18] 83.58 98.32 97.02 98.51 83.09

DA-Res2UNet[21] 81.50 98.56 97.04 98.77 82.77

Proposed LMBis-net[22] 83.60 98.83 97.08 98.80 83.43

TKS--UNet 85.03 98.92 97.65 99.21 86.09

TABLE Ⅲ
COMPARATIVE ANALYSIS OF OUR MODEL ON THE CHASE_DB1 DATASET

Dataset Model Se Sp Acc AUC F1

CHASE_DB1

Att UNet[11] 80.10 98.04 96.42 98.4 80.12

BCDU-Net[12] 77.35 98.01 96.18 98.39 79.32

OCE-Net[16] 81.38 98.24 96.78 98.72 81.96

LDMRes-Net[18] 85.95 98.88 97.55 98.61 81.94

DA-Res2UNet[21] 83.18 98.67 97.70 99.12 81.88

Proposed LMBis-net[22] 86.05 98.96 97.75 98.71 83.54

TKS-UNet 90.82 99.38 98.81 99.62 90.89

TABLE Ⅳ
COMPARATIVE ANALYSIS OF OUR MODEL ON THE STARE DATASET

Dataset Model Se Sp Acc AUC F1

STARE

Att UNet[11] 77.09 98.48 96.33 97.00 -

BCDU-Net[12] 78.92 98.16 96.34 98.43 82.30

CC-Net[19] 80.67 98.16 96.32 98.33 81.36
OCE-Net[16] 80.12 98.65 96.72 98.76 83.41
Wave-Net[20] 79.02 98.36 96.41 - 81.40

G-Net Light[17] 81.70 98.56 97.30 - 81.78

LDMRes-Net[18] 84.07 98.75 97.64 98.72 84.24

DA-Res2UNet[21] 82.69 98.85 97.65 98.83 83.96

Proposed LMBis-net[22] 84.37 98.77 97.69 98.82 84.44

TKS-UNet 85.01 99.03 97.97 99.29 86.31
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Fig. 3. A comparison of indicator trends between TKS UNet and other models on the CHASE_DB1 dataset

Fig. 4. Retinal vascular segmentation sample image. (a) Original image. (b) Ground truth. (c) is the segmentation prediction graph of TKS-UNnet neural
network.(d), (e), and (f) represent the comparison of segmentation results between TKS-UNet and UNet, Unet++, and BCDU-Net, respectively. The green

section indicates the segmentation details of our model in comparison to the aforementioned models.

Fig.3 presents a performance comparison between the
TKS-Unet model and other similar models on the
CHASE_DB1 dataset, specifically focusing on key
performance metrics such as accuracy, F1 scores, precision,
and intersection over union. Additionally, Fig.4 demonstrates
the segmentation results of our proposed retinal segmentation
model on both the DRIVE and CHASE_DB1 datasets, along
with comparisons to the segmentation results of other models.
Through comparative analysis, it is evident that our model
exhibits outstanding performance on these two datasets, fully
demonstrating its robust capability in accurately segmenting

retinal structures.

D. Ablation Experiments
Ablation studies were performed on the CHASE_DB1

dataset to assess the impact of each component on the model's
performance. The experiments systematically removed either
the KAN module or the redesigned skip connections to
isolate their specific effects, with results presented in Table V.
The baseline model (TransUNet without modifications)
achieved an F1-score of 88.34%, serving as a reference for
evaluating improvements.
Incorporating the KAN module alongside traditional skip
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connections resulted in a significant improvement in the
F1-score to 90.67%, with sensitivity improved to 90.14% and
AUC to 99.59%. These results indicate that KAN enhances
the model’s ability to capture complex vascular patterns and
generalize from limited data, aligning with its theoretical
advantages in interpretability and small-sample learning.

TABLE Ⅴ
RESULTS OF ABLATION EXPERIMENT

Dataset Kan Skip Se Sp Acc AUC F1

CHASE_DB1

× × 87.55 99.26 98.49 99.44 88.34

√ × 90.14 99.40 98.78 99.59 90.67

× √ 90.66 99.37 98.79 99.62 90.72

√ √ 90.82 99.38 98.81 99.62 90.89

Replacing conventional skip connections with the
UNet++-inspired hierarchical fusion strategy improved the
F1-score to 90.72%, demonstrating the efficacy of multiscale
feature integration. Additionally, the model’s specificity
(99.37%) and accuracy (98.79%) increased, suggesting that
the redesigned connections reduce semantic gaps and
preserve fine-grained details during upsampling.
The full TKS-UNet architecture, integrating both KAN

and redesigned skip connections, achieved the highest
F1-score of 90.89%, surpassing all ablated variants. This
synergistic effect highlights the reciprocal reinforcement of
interpretability from KAN and improved feature fusion.
These findings validate the essential role of both the KAN

module and hierarchical skip connections in improving
TKS-UNet’s performance. The ablation analysis underscores
the importance of architectural innovations in optimizing the
trade-off between interpretability and segmentation precision,
providing empirical evidence for the model’s design choices.

V. CONCLUSION
This study presents TKS-UNet, a novel neural network

architecture developed for retinal vessel segmentation.
TKS-UNet combines the Kolmogorov-Arnold Network
(KAN) with a TransUNet framework and redesigns skip
connections for effective multiscale feature fusion. This
approach aims to overcome the limitations observed in
conventional U-Net and TransUNet models related to feature
fusion efficiency and interpretability.
The proposed model achieves substantial improvements in

segmentation accuracy on three benchmark datasets: DRIVE,
CHASE_DB1, and STARE. On the DRIVE dataset,
TKS-UNet attained an F1-score of 86.09%, surpassing
leading approaches like Att U-Net and BCDU-Net.
Additionally, on the CHASE_DB1 and STARE datasets, the
model achieved F1-scores of 90.89% and 86.31%,
respectively, demonstrating its robustness and
generalizability.
The key innovations of TKS-UNet involve employing

KAN modules to improve interpretability and feature
representation, as well as the redesigned skip connections
inspired by UNet++ for hierarchical multiscale feature fusion.
These enhancements elevate the model's capacity to capture
complex vascular structures and improve transparency,
rendering it more suitable for clinical scenarios where
interpretability is critical.
Ablation studies have verified the efficacy of both the

KAN module and the redesigned skip connections,
demonstrating their substantial contributions to the model's
performance. The integration of KAN modules enhances the
model's ability to learn intricate patterns from limited data,
while the hierarchical feature fusion strategy improves
retention of fine-grained details and reduces the semantic gap
between encoder and decoder layers.
Despite its success, TKS-UNet has limitations, particularly

in terms of computational complexity that may hinder its
deployment on resource-constrained devices. Future research
will focus on optimizing the architecture to minimize
computational overhead while preserving performance.
Additionally, exploring advanced feature fusion techniques
and enhancing interpretability through visualization tools are
potential avenues for improvement.
In conclusion, TKS-UNet represents a significant

advancement in retinal vessel segmentation by merging high
performance with interpretability. Its effectiveness across
diverse datasets underscores its clinical potential,
contributing to the development of AI-driven diagnostic tools
in ophthalmology.

REFERENCES
[1] J. Chen, Y. Lu, Q. Yu, et al.,“TransUNet: Transformers make strong

encoders for medical image segmentation, ” arXiv, 2021,
doi:10.48550/arxiv.2102.04306.

[2] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in Medical Image
Computing and Computer-Assisted Intervention, vol. 234, 2015, pp.
234–241.

[3] R. Li, M. Li, J. Li, and Y. Zhou, “Connection Sensitive Attention
U-NET for Accurate Retinal Vessel Segmentation,” arXiv, 2019,
doi:10.48550/arxiv.1903.05558v2.

[4] K. Ren, L. Chang, M. Wan, et al., “An improved U-net based retinal
vessel image segmentation method,” Heliyon, 2022,
doi:10.1016/j.heliyon.2022.e11187.

[5] I. Tolstikhin, N. Houlsby, A. Kolesnikov, et al., “MLP-Mixer: An
all-MLP architecture for vision,” arXiv, 2021, doi:null.

[6] Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljačić, T. Y.
Hou, and M. Tegmark, “KAN: Kolmogorov–Arnold networks,” arXiv
preprint, arXiv:2404.19756v4, 2024.

[7] Z. Zhou, M. R. Siddiquee, N. Tajbakhsh, et al.,“UNet++: Redesigning
skip connections to exploit multiscale features in image
segmentation,” IEEE Trans. Med. Imag., vol. 39, no. 6, pp. 1856–
1867, 2020, doi:10.1109/tmi.2019.2959609.

[8] J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van
Ginneken, “Ridge-based vessel segmentation in color images of the
retina,” IEEE Trans. Med. Imag., vol. 23, pp. 501–509, 2004.

[9] M. M. Fraz, et al., “An ensemble classification-based approach applied
to retinal blood vessel segmentation,” IEEE Trans. Biomed. Eng., vol.
59, pp. 2538–2548, 2012.

[10] A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood
vessels in retinal images by piecewise threshold probing of a matched
filter response,” IEEE Trans. Med. Imag., vol. 19, pp. 203–210, 2000.

[11] O. Oktay, et al., “Attention U-Net: Learning where to look for the
pancreas,” arXiv preprint, arXiv:1804.03999, 2018.

[12] R. Azad, M. Asadi-Aghbolaghi, M. Fathy, and S. Escalera,
“Bi-directional ConvLSTM U-net with densely connected
convolutions,” in IEEE International Conference on Computer Vision
Workshops, 2019.

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2478-2485

 
______________________________________________________________________________________ 



[13] T. Xiang, et al., “BiO-Net: Learning recurrent bi-directional
connections for encoder-decoder architecture,” in Medical Image
Computing and Computer-Assisted Intervention, pp. 74–84, 2020.

[14] K. Wang, X. Zhang, S. Huang, Q. Wang, and F. Chen, “CTF-Net:
Retinal vessel segmentation via deep coarse-to-fine supervision,”
in IEEE International Symposium on Biomedical Imaging, 2020, pp.
1237–1241.

[15] B.Wang, et al.,“CSU-Net: A context spatial U-Net for accurate blood
vessel segmentation in fundus images,” IEEE J. Biomed. Health
Inform., vol. 25, pp. 1128–1138, 2020.

[16] X. Wei, K. Yang, D. Bzdok, and Y. Li, “Orientation and context
entangled network for retinal vessel segmentation,” Expert Systems
with Applications, vol. 217, pp. 119443, 2023.

[17] S. Iqbal, S. S. Naqvi, H. A. Khan, A. Saadat, and T. M. Khan, “G-Net
light: A lightweight modified Google-Net for retinal vessel
segmentation,” Photonics, vol. 9, p. 923, 2022.

[18] S. Iqbal, et al., “LDMRes-Net: A lightweight neural network for
efficient medical image segmentation on IoT and edge devices,” IEEE
J. Biomed. Health Inf., 2023.

[19] S. Feng, Z. Zhuo, D. Pan, and Q. Tian, “CcNet: A cross-connected
convolutional network for segmenting retinal vessels using multi-scale
features,” Neurocomputing, vol. 392, pp. 268–276, 2020.

[20] Y. Liu, J. Shen, L. Yang, H. Yu, and G. Bian, “Wave-Net: A
lightweight deep network for retinal vessel segmentation from fundus
images,” Comput. Biol. Med., p. 106341, 2022.

[21] R. Liu, T. Wang, X. Zhang, et al., “DA-Res2UNet: Explainable blood
vessel segmentation from fundus images,” Alexandria Engineering
Journal, vol. 68, pp. 539–549, 2023, doi:10.1016/j.aej.2023.01.049.

[22] M. Abbasi, S. Iqbal, A. Naveed, et al., “LMBiS-Net: A lightweight
multipath bidirectional skip connection based CNN for retinal blood
vessel segmentation,” arXiv, 2023, doi:10.48550/arxiv.2309.04968.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention Is All You Need
(Journal Paper style),” Neural Information Processing Systems (NIPS),
vol. 30, 2017, pp. 6000–6010.

ZHENYU CHENwas born in Shanxi Province, P.
R. China, received the B.S. degree in
Communication Engineering from University of
Science and Technology Liaoning, Anshan, P. R.
China, in 2026.
He is currently pursuing the M.S. degree in

Electronic Information with University of Science
and Technology Liaoning, Anshan, P. R. China. He
research interest is artificial intelligence.

ZIWEI ZHOU (1974-), male, from Anshan,
Liaoning, associate professor, master's supervisor,
received bachelor's and master's degrees from
Liaoning University of Science and Technology in
1997 and 2007, respectively; Ph.D. from Harbin
Institute of Technology in 2013, with main
research directions in artificial intelligence, 3D
vision, deep learning and robotic system research.
Email: 381431970@qq.com.

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2478-2485

 
______________________________________________________________________________________ 


	I.INTRODUCTION
	II.METHODS
	A.MLP replacement
	B.Redesign of skip Connections
	C.Models

	III.TECHNICAL DETAILS
	IV.DATASETS AND EXPERIMENTS
	A.Database Summary
	a.DRIVE
	b.CHASE_DB1
	c.STARE
	B.Evaluation Methods
	C.Performance Evaluation
	D. Ablation Experiments

	V.CONCLUSION
	REFERENCES



