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Abstract—Incomplete Multi-View Weak Multi-Label
Learning (IMVWML) aims to address Multi-View Multi-Label
Learning (MVML) problem with incomplete data. Existing
IMVWML algorithms overlook the problem of unbalanced
sample quantities across different views. However, in real world,
data from varying environments or operational conditions often
exhibits significant imbalance, which makes the model rely on
views with more samples seriously, while neglecting the fewer.
The imbalance leads to a degradation in the performance of the
multi-label classification task. To address the above-mentioned
issue, we propose the VSDW-DDF model, which is based
on a dual-channel learning framework and consists of three
components: the View-Specific Weight (VSVW) module, the
Sample-Guided Graph Regularization (SGR) module, and the
View-Specific Dropout Mechanism (VSDM) module. Firstly,
in the VSVW module, we propose the view-specific weights
dynamically assign appropriate weights to each view based
on their actual contributions, ensuring that important views
receive sufficient attention. Secondly, in the SGR module, we
design a sample-guided graph regularization loss using sample
supervision information, which can effectively preserve the
geometric structure among samples, even if some views are
severe incomplete. Finally, in the VSDM module, we propose
a view-specific dropout mechanism, which is more targeted to
individual view compared to traditional dropout. It adaptively
adjusts the dropout rate based on the information of each view,
preventing overfitting and improving robustness. Experimental
results demonstrate that VSDW-DDF significantly outperforms
existing methods in handling Unbalanced Multi-View Weak
Multi-Label Learning (UMVWML) problems, proving its
effectiveness and advancements.

Index Terms—multi-view learning, multi-label learning, in-
complete views, weak labels, deep learning
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I. INTRODUCTION

MULTI-LABEL learning has become a research hotspot
in recent decades, aiming to solve classification

problems where a sample contains multiple labels
simultaneously [1]. It has a wide range of applications in text,
video, music classification, semantic scene classification,
and other fields [2]. The traditional multi-label classification
problem only uses single-view data, but with the increase
of data sources and feature extraction methods, analyzing
data from a single-view dimension can no longer meet the
increasing complexity and comprehensiveness requirements
in classification tasks [3]. Utilizing multi-view data from
different sources and feature extraction methods can
provide a more comprehensive and accurate description of
the observed object [4]. MVML can utilize information
from multiple views to better capture the diversity and
complementarity of the data, thereby improving classification
performance. Zhao et al. proposed the CDMM [5] model,
which extracts both consistent and diverse information
from multi-view data, learns latent representations via
the Hilbert-Schmidt Independence Criterion (HSIC) [6]
to bridge feature space and label semantics, and achieves
consistent classification through late-stage fusion.

However, the typical MVML approaches often overlook
the challenges posed by incomplete views and weak
labels, limiting their effectiveness when applied to such
data. In recent years, researchers have proposed several
IMVWML models to mitigate the impact of incomplete
views and weak labels. For instance, Liu et al. introduced
the DMVMLC [7] model, which uses matrix factoriza-
tion to synchronize multiple views in the label space,
while embedding both global high-rank and local low-rank
constraints within the predicted multi-label matrix. This
method effectively addresses the issue of incomplete views
and weak labels, but its reliance on matrix factorization may
not fully capture complex non-linear relationships. Therefore,
Wen et al. proposed an MTD [8] model that explicitly
decouples shared features and view-specific features, and
introduced cross-channel contrastive loss to improve the
feature decoupling capability.

However, in numerous real-world scenarios, collected data
often varies due to environmental or operational shifts,
leading to sample size imbalances [9]. For example, when
handling patient records, the number of patient records may
be unbalanced due to personal factors or differences in
laboratory procedures. The imbalance can cause the model to
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rely on views with more samples and ignore views with fewer
samples, resulting in classification results biased towards
views with more samples and reducing the generalization
ability of the model. Traditional methods do not effectively
address this issue.

Therefore, we propose the VSDW-DDF model. VSDW-
DDF consists of three modules based on a dual-channel
framework: VSVW, VSDM, and SGR. Inspired by Zhang et
al. [10], our view-specific representation learning framework
constructs advanced feature extraction and reconstruction
networks. To address these challenges, we propose a novel
cross-channel contrastive loss function that aims to reduce
the distance between positive pairs while increasing the
distance between negative pairs. In addition, considering the
issue of unbalanced views, in the VSVW module, we assign
corresponding weights based on the actual contributions
of each view and incorporate view-specific weights into
the loss function calculation process, which ensures that
important but information-deficient views receive sufficient
attention, thereby mitigating performance degradation caused
by unbalanced views. Meanwhile, we propose a view-specific
dropout mechanism in the VSDM module, which dynam-
ically adjusts the feature dropout probability during the
training process based on the information content of each
view. VSDM not only effectively prevents overfitting, but
also promotes the learning ability of available information
from other views, improving the overall performance of the
model. In summary, the main contributions of this paper are
as follows:

1.We propose a novel VSDW-DDF (as illustrated in Fig.
1) model, based on a dual-channel decoupling framework
that takes into account the problem of sample size imbalance
in different views. In VSDW-DDF, we design three parts:
VSVW, SGR, and VSDM to solve the unbalanced multi-
view weak multi-label classification (UMVWMLC) task.

2.We conducted a large number of experiments on five
benchmark UMVWML datasets, and the experimental results
show that VSDW-DDF outperforms the most advanced
methods.

II. RELATED WORKS

A. Multi-View Multi-Label Learning

MVML is a comprehensive task that enhances
classification performance by leveraging richer descriptive
capabilities. Nevertheless, developing an efficient model to
integrate multiple views and labels remains a significant
challenge. The learning procedure inherently leads to diverse
correlation challenges, including maintaining consistency
and complementarity across multiple views, as well as
tackling the alignment discrepancies between views and
labels [11]. Wang et al. [12] applied non-negative matrix
factorization to explore complementary information from
different views and converted the label of each view into
a coherent consensus label for MVML. Although Wang
et al. examined the complementary relationships present
in multiple views, they overlooked the assumption of
multi-view consistency. Unlike the method proposed by
Wang et al., the M2LD [13] emphasizes the extraction of
consensus information from diverse views. By leveraging

matrix factorization, this approach constructs a cross-view
fused feature space, modeling the consistency relationships
between views and labels to enhance the learning of latent
subspaces with label information. Zhao et al. [14] developed
a partially shared dictionary learning framework that
investigates consistency and complementarity across views
through flexible shared sparse coefficients. Moreover, Zhao
et al. introduced the LVSL [15] model to address asymmetry
in MVML learning. This model primarily extracts structural
information from unaligned views, which improves the
learning of view-specific labels.

B. Incomplete Multi-View Weak Multi-Label Learning

In practical scenarios, multi-view data and label
information are frequently incomplete. For instance, in social
media data, users may share textual descriptions of an event
but fail to upload associated images or videos [16]. Similarly,
in multi-label data, annotators might skip or incorrectly label
certain items due to insufficient prior knowledge or other
influencing factors. To tackle the IMVWML problem, Tan et
al. [17] developed a robust classifier of IMVWML. This ap-
proach employs two matrices derived from incomplete prior
knowledge to tackle calculation problems associated with
IMVWML. Additionally, it breaks down multi-view features
into a hidden joint representation and several view-specific
matrices. By leveraging mapping matrices, the approach
establishes a connection between the joint representation and
label characteristics, which improves the supervision required
for learning semantics in scenarios with weak multi-label
data. However, as IMVWML operates as a semi-supervised
model, it faces difficulties in processing new samples not
seen during training. In contrast to IMVWML, the traditional
matrix factorization approach NAIML [18], introduced by
Li et al., is capable of effectively handling completely
new samples. NAIML adopts a composite indicator matrix
to address issues of incomplete views and weak labels,
combining global high-rank and local low-rank constraints.
Nonetheless, such methods depend on traditional feature
extraction methodologies. As deep learning continues to
evolve rapidly, approaches grounded in deep neural networks
have attracted significant interest in numerous representation
learning areas. For instance, the method proposed in [19]
designs specific encoders and decoders for each view which
embed incomplete view and weak label information into
the network to mitigate the adverse effects of the dual-
incomplete problem. Nevertheless, this approach only carries
out a weighted summation of multiple views in the fusion
process and does not successfully extract complementary
information in high-dimensional feature spaces. Duan et al.
proposed the VCMN [20] model, which designed a View
Channel Mixer module to model complementary relation-
ships in high-dimensional feature spaces. Additionally, it
improves the capacity of network to learn consistent repre-
sentations across multiple views by employing cross-view
and cross-sample contrastive loss, thereby achieving joint
learning of complementarity and consistency. Liu et al. cre-
ated two modules based on the Transformer architecture for
cross-view feature extraction and multi-label classification,
named LMVCAT [21]. LMVCAT leverages self-attention
mechanism to capture complementary information across
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Fig. 1. The Main Framework of VSDW-DDF

different views and applies label-stream shape constraints
using incomplete multi-label data. On this basis, Wen et
al. proposed the AIM [22] model, which uses a cross-
view joint attention mechanism to approximate incomplete
instances based on available information and attention scores
between instance pairs. They also proposed a multi-view
multi-label classification (MVMLC) framework based on
label semantic feature learning, using statistical weak label
correlation matrices and graph attention networks (GATs) to
guide the learning process of label-specific features.

C. Unbalanced Multi-View Clustering Learning

By integrating information from multiple views,
multi-view data can more comprehensively and finely
depict the characteristics of the sample. However, collected
data frequently contains incomplete information. Many
traditional methods either ignore incomplete data or use
basic imputation techniques, such as replacing incomplete
values with the average of available data. For instance,
in [23], an index matrix was introduced to remove the
representation matrix of unpaired data, ensuring a consistent
latent representation matrix. Research [24] introduced a
weight matrix for each view and assigned smaller weights to
incomplete samples to mitigate their impact. However, these
methods find it difficult to accurately recover the information
of incomplete data, which may lead to significant bias,
especially when handling multi-view data with high rates

of incompleteness. In order to extract valuable information
from incomplete samples, reference [25] uses non-negative
matrix factorization techniques to reconstruct incomplete
views and leverages these reconstructions to obtain potential
representations. Reference [26] utilizes a shared graph across
all views and individual incomplete graphs to reconstruct
the complete graph for each view. Another widely used data
imputation technique involves inference. In [27], researchers
developed a reconstruction term to infer incomplete data in
each view and introduced an inverse graph regularization
term to maintain local structural consistency between
multiple views.

Due to the randomness of data loss, incomplete multi-view
data is typically categorized as balanced and unbalanced
types (as illustrated in Fig. 2). In the balanced state, the
incomplete rate of each view is the same; in the unbalanced
state, the incomplete rates of each view are different (the
blank areas in the graphics represent incomplete data). In
fact, imbalances are more common. Unbalanced and incom-
plete multi-view data display uneven sample distribution be-
tween different views, leading to the Unbalanced Multi-View
Clustering Learning (UMVL). Reference [28] first proposed
a method to solve UMVL, inspired by the principles of
biological evolution. In addition, reference [29] proposed a
tensor-based approach to address this issue by applying low
rank tensor constraints to similar graph matrices to capture
potential relationships between different view data.
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Fig. 2. Two Typical Incomplete Multi-View Data Examples

III. METHOD

In this section, we provide a detailed introduction to our
model, covering four key components: a dual-channel de-
coupling framework, sample-guided graph regularization, an
adaptive dropout mechanism, and multi-label classification.
For clarity, we first provide a brief overview of the formal
definition of the problem and commonly used notations.

A. Problem Definition

Given a UMVWML dataset {X(v)}mv=1, Y
(m)
v=1 , where

X(v) stands for the feature matrix of the v-th view
encompassing n samples, and m represents the quantity
of views. The matrix X(v) ∈ Rn×dv has its i-th row
depicting the instance of the i-th sample in the v-th view,
with a dimension of dv . The matrix Y ∈ {0, 1}n×c is the
label matrix with c classes, where Yi,j indicates that the
i-th sample is labeled as the j-th class. For unbalanced
views, an unbalanced view index matrix W ∈ {0, 1}n×m

is introduced, where Wi,j = 1 indicates that the j-th view
of the i-th sample is accessible, otherwise Wi,j = 0. For
weak labels, G ∈ {0, 1}n×c is set as the weak-label index
matrix, where Gi,j = 1 implies that the j-th label of the
i-th sample is known, otherwise Gi,j = 0. Finally, in the
data preprocessing stage, the unavailable views and unknown
labels are filled with ‘0’ to obtain the final unbalanced
multi-view feature matrices {X(v)}mv=1 and the weak label
matrix Y . VSDW-DDF aims to train a classifier capable of
conducting multi-label classification inference on unbalanced
multi-view data. Subscripts Bi,j , Bi,:, and B:,j denote the
element, row, and column of any matrix B.

B. VSVW Module Based on Dual-Channel Decoupling
Framework

Due to the diversity of multi-view data acquisition
methods, the original information in each view may have
different feature dimensions, which is not conducive to
the parallel execution of deep networks. To overcome this

challenge, we project heterogeneous raw data into a unified
embedding space with dimension de using encoders. Unlike
conventional deep multi-view networks, we adopt two groups
of multi-layer perceptrons as dual pathways: the shared
pathway and the view-specific pathway. These pathways aim
to extract shared and view-specific information from the
raw data, represented as {Esh

v : X(v) → Sh(v)}mv=1 and
{Esp

v : X(v) → SP (v)}mv=1. Here, Esh
v and Esp

v denote the
shared feature encoder and the view-specific feature encoder
for the v-th view. X(v) refers to the input after dropout
processing. Sh(v) ∈ Rn×de and SP (v) ∈ Rn×de are the
extracted multi-view shared feature matrix and the view-
specific feature matrix. Despite having the same structure, the
two pathways fulfill different roles. Specifically, Esh

v aims
at exploring cross-view common features, maintaining the
fundamental attributes shared by all views, while Esp

v focuses
on extracting distinctive features specific to each view. This
design divides the discriminative information of each view
into two elements, meeting both the consistency and comple-
mentarity assumptions across multiple views. Nonetheless,
accomplishing these goals with only two encoding channels
is difficult because of insufficient guidance. As a result, we
introduce a multi-view cross-channel contrastive loss Lccc to
facilitate the distinction between these two types of features:

Lccc =

n∑
i=1

1

3N2 −N

2
∑m

u=1

∑m
v=1[Υ]S(sh

(u)
i , sp

(v)
i )2∑m

u=1

∑m
v=u[Υ]

(
(S(sh

(u)
i , sh

(v)
i ) + 1)/2

)

+
n∑

i=1

1

N2 −N

∑m
u=1

∑m
v ̸=u[Υ]S(sp

(u)
i , sp

(v)
i )2∑m

u=1

∑m
v=u[Υ]

(
(S(sh

(u)
i , sh

(v)
i ) + 1)/2

) ,
(1)

where S is the similarity measurement function: S(x, y) =
xT y

∥x∥2·∥y∥2
. and [Υ] is the conditional function: if the condition

{Υ : Wi,uWi,v = 1} holds, then [Υ] = 1, otherwise 0. N =∑
u,v Wi,uWi,v represents the number of valid instance pairs.

In brief, we focus solely on instance pairs where neither
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sample is unbalanced. sh(v)
i and sp

(v)
i represent the features

of the i-th sample in the shared feature matrix Sh(v) and
the view-specific feature matrix SP (v). Based on Equation
(1), our cross-channel contrastive loss includes two parts: the
numerator reflects the average similarity of negative sample
pairs, while the denominator reflects the average similarity of
positive sample pairs. More precisely, we generate pairs from
the 2N channels, with positive sample pairs being composed
of shared features across different views, while the remaining
pairs are classified as negative samples. Our aim is to increase
the similarity among positive sample pairs in the shared
feature space while reducing the similarity among negative
sample pairs. This approach fulfills the design objective of
the dual-channel model by reinforcing the consistency of
shared features across multiple views while maintaining clear
distinctions between view-specific features and other shared
or view-specific features. To enhance the feature extraction
ability of the encoders further, we integrate stacked decoders
to reconstruct the embedded features extracted by the dual-
channel encoders back into the original feature space, i.e.,
{Dv : S(v) ∈ Rn×de → X

(v) ∈ Rn×do}2v=1, where Dv

indicates the decoder associated with the v-th view, and X
(v)

signifies the reconstructed feature. Finally, we use a weighted
mean squared error loss Lre to measure the reconstruction
quality and incorporate a weight adjustment mechanism
based on unbalanced views during the reconstruction process:

Lre =
1

n

m∑
v=1

n∑
i=1

1

dv

∥∥∥X(v)

i,: −X
(v)
i,:

∥∥∥2
2
WWi,v, (2)

where W represents the view weight determined according
to unbalanced views, and W serves to conceal instances that
are unavailable. By utilizing Sh(v) and SP (v) obtained from
each view, cross-view fusion can be seamlessly conducted
to derive the distinct shared representation and view-specific
representation for all samples:

Shi: =
m∑

v=1

Sh
(v)
i: Wi:v∑
v Wi:v

, SP i: =
m∑

v=1

SP
(v)
i: Wi:v∑
v Wi:v

. (3)

Next, we aim to integrate shared information with view-
specific information to learn a coherent representation of the
samples. In this process, rather than using typical addition or
concatenation operations, we employ a new feature interac-
tion approach. Specifically, reinforcing the shared informa-
tion using the view-specific information:

Zi,j = θ(SP i,j) · Shi,j , (4)

where θ represents the sigmoid activation function, and Z ∈
Rn×de denotes the final fused representation.

C. SGR Module

Numerous unsupervised multi-view learning methods
employ graph regularization to maintain the inherent
structure of the data. This approach is grounded in the
premise that samples which are similar in the original feature
space should also retain their similarity in the latent space, a
technique that has demonstrated its efficacy in unsupervised
scenarios. When we extend this assumption to multi-label
classification tasks with supervised task characteristics, we
propose a new hypothesis: the similarity of samples in

the original feature space should still be preserved in the
embedding space. Based on this hypothesis, we design a
sample-guided graph regularization method that guides the
feature extraction process by constructing a similarity graph
between samples and particularly considers the impact of
unbalanced views on model training. Firstly, we compute
the similarity matrix based on the sample matrix X:

Ti,j =
Ci,j∥X(v)

i −X
(v)
j ∥2

Ci,j∥X(v)
i −X

(v)
j ∥2 + η

, (5)

where T ∈ [0, 1]n×n denotes the sample similarity graph,
which captures the pairwise similarity between samples.
Ci,j = Gi ·GT

j specifies the views available for samples i and
j. The terms X(v)

i and X
(v)
j correspond to the feature vectors

of the i-th and j-th samples in the v-th view. η is a constant,
empirically set to 1000 for simplicity. Given that Ci,j is
typically much larger than the similarity derived from feature
distance ∥X(v)

i −X
(v)
j ∥2 in most datasets. If two samples are

jointly present in a few views, they are deemed more similar
compared to other pairs of samples, even when the number
of views is large. This property ensures that the model can
still uncover potential relationships between samples, even
when data is unbalanced in some views.

By employing this similarity graph, we can adjust the
distance between any two samples in the embedding feature
space using the loss function Lgc, thereby achieving the goal
of retaining structural information.

Lgc =
1

n2

n∑
i=1

n∑
j=1

∥Zi,: − Zj,:∥22 Ti,j . (6)

To boost the computational efficiency of the model on
GPUs, we transform formula (6) into a matrix multiplication
format:

Lgc =
1

n2
Tr(ZTLZ), (7)

where Tr(·) represents the trace operation. The matrix
L indicates the Laplacian matrix, which is determined as
L = D− T , where D is a diagonal matrix with its diagonal
components given by Di,i =

∑n
j=1 Ti,j .

D. VSDM Module

In multi-view learning, the original data contains a
large amount of redundant information, and there may be
significant differences in the quantity of data across different
views, leading to unbalanced view issues that inevitably
interfere with the feature extraction process of the model. To
address this challenge, we propose a view-specific dropout
mechanism based on feature-level dropout. Unlike traditional
neuron-level dropout, feature-level dropout adaptively dis-
cards input features during training, which can effectively
prevent overfitting and promote the model to learn more
robust feature representations. For this purpose, for any view
v, we dynamically adjust the dropout probability pv based
on its incomplete rate and global parameter σ. This method
ensures that the dropout probability for each view reflects
its own data quality and incomplete situation, thereby better
adapting to the differences between views. Let X(v) be the
original input feature matrix for the v-th view, and Drop(v) be
the corresponding binary dropout matrix, where each element
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is independently set to 0 with probability pv , and kept as 1
with probability 1 − pv . The feature matrix after dropout
processing is denoted as:

{X
′(v)}mv=1 = {X(v) ⊙ Drop(v)}mv=1, (8)

where ⊙ denotes element-wise multiplication. By combining
the incomplete rate of each view and the global parameter
σ, view-specific dropout dynamically adjusts the dropout
probability for each view, ensuring that views with less data
do not overly influence the learning process of the model.
This mechanism effectively balances the contributions of dif-
ferent views to the model, enhances the generalization ability
of the model, prevents overfitting on high-incomplete-rate
views, and enables the model to extract more consistent and
useful feature representations from all views. Experimental
results show that using the view-specific dropout mechanism
significantly improves model performance, especially when
handling multi-view data. This method not only effectively
alleviates unbalanced view issues but also enhances the
stability and generalization ability of the model.

E. Weighted Multi-Label Classification and Overall Loss
Function

P = θ(Zω + ε). (9)

where ω ∈ R2d×c and ε ∈ Rn×c represent the learning
parameters of the classifier, while P ∈ Rn×c denotes our
prediction score matrix.

Algorithm 1: VSDW-DDF Training Process
Input: Unbalanced multi-view data{X(v)}mv=1, unbal-

anced view index matrix W , weak labels Y , weak-label index
matrix G.

Output: Prediction results P .
1) Initialization: Initialize model parameters and set hy-

perparameters (α, β, γ), learning rate and number of
training epochs e.

2) Set t=0.
3) While t < e:
4) Construct the binary dropout matrix Drop(v).
5) repeat:

1. Compute the input data after dropout {X ′(v)}mv=1

according to formula (8);
2. Use dual-channel encoders {Sh(v)}mv=1 and

{SP (v)}mv=1 to extract shared embedding features
{Esh

v }mv=1 and view-specific embedding features
{Esp

v }mv=1;
3. Compute the fused shared embedding features Sh

and fused view-specific features SP according to
formula (3);

4. Compute the final fused representation Z accord-
ing to formula (4);

5. Compute the similarity graph T and its corre-
sponding Laplacian matrix L according to for-
mula (5);

6. Compute the cross-channel contrastive loss Lccc

according to formula (1), the reconstruction loss
Lre according to formula (2), and the graph
embedding loss Lgc according to formula (7);

7. Obtain the prediction P according to formula (9)
and compute the classification loss Lmc accord-
ing to formula (10);

8. Compute the total loss Lall according to formula
(11);

9. Update network parameters;
10. t = t+ 1;

6) End loop.
In single-label classification tasks, the cross-entropy loss
is generally used to guide model training. By contrast,
for multi-label classification tasks, the prediction of each
category is considered as an independent binary classification
issue. Moreover, to handle unknown labels in the label
matrix, we employ the following weighted multi-label cross-
entropy loss as the primary classification loss:

Lmc =− 1

nc

n∑
i=1

c∑
j=1

(Yi,j log(Pi,j)

+ (1− Yi,j) log(1− Pi,j))Gi,j ,

(10)

where G is utilized to conceal the unknown labels.
By combining the cross-channel contrastive loss (equation

1), the reconstruction loss (equation 2), the graph embedding
loss (equation 7), and the weighted multi-label classification
loss (equation 10), our total loss function can be represented
as:

Lall = Lmc + αLgc + βLccc + γLre, (11)

where α, β, and γ indicate the corresponding penalty
parameters. The specific training process is described in
Algorithm 1.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to
evalucate the performance of the proposed model, VSDW-
DDF, across five public datasets.

A. Experimental Settings

1) Dataset: We utilized five classic MVML datasets
to validate our model: Corel5k, ESPGame, IAPRTC12,
Pascal07, and MIRFLICKR. From these datasets, six kinds
of features were obtained to reflect their six distinct views,
such as GIST, HSV, Hue, SIFT, RGB, and LAB features. The
sample count in these datasets ranges from 4,999 to 25,000,
and the number of classes spans from 20 to 291, as presented
in Table I.

2) Evaluation Indicators: Following the practices of nu-
merous existing works, we selected six evaluation metrics to
assess all comparative methods, specifically Ranking Loss
(RL), Average Precision (AP), Hamming Loss (HL), Area
Under the Curve (AUC), One-Error (OE), and Coverage
(COV). To facilitate a more intuitive comparison of perfor-
mance, we report results concerning AP, 1-HL, 1-RL, AUC,
1-OE, and 1-COV; hence, for all evaluation metrics, higher
values indicate better performance.

3) Implementation Details: In this experiment, the model
was implemented using PyTorch version 1.10.1 and Python
version 3.9.18. The hardware configuration included an RTX
3090 GPU and an i7-12900k CPU. The learning rate was set
to 0.1, and the SGD optimizer was chosen for model training.
For all five datasets, the batch size and momentum were set
to 128 and 0.9.
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TABLE I
STASTICS OF THE EXPERIMENT DATA SET.

Dataset #View #Label #Sample #Label/#Sample

Corel5k 6 260 4999 3.40
ESPGame 6 268 20770 4.69
Iaprtc12 6 291 19627 5.72
Pascal07 6 20 9963 1.47
MirFlickr 6 38 25000 4.72

TABLE II
AVERAGE PRECISION OF THE EXPERIMENTAL RESULTS

Data CDMM DMVMLC VCMN LMVCAT AIM MTD VSDW-DDF

Corel5k 0.312± 0.004 0.351± 0.001 0.388± 0.009 0.369± 0.011 0.391± 0.008 0.398± 0.007 0.414± 0.008
ESPGame 0.255± 0.001 0.291± 0.003 0.290± 0.003 0.283± 0.003 0.259± 0.003 0.296± 0.003 0.304± 0.002
Iaprtc12 0.259± 0.002 0.298± 0.004 0.302± 0.004 0.295± 0.004 0.254± 0.004 0.310± 0.003 0.318± 0.003
Pascal07 0.469± 0.003 0.497± 0.009 0.515± 0.010 0.472± 0.011 0.453± 0.013 0.520± 0.005 0.522± 0.005
MirFlickr 0.479± 0.001 0.565± 0.003 0.585± 0.006 0.566± 0.007 0.509± 0.009 0.583± 0.004 0.588± 0.003

TABLE III
HAMMING LOSS OF THE EXPERIMENTAL RESULTS

Data CDMM DMVMLC VCMN LMVCAT AIM MTD VSDW-DDF

Corel5k 0.985± 0.000 0.987± 0.000 0.988± 0.000 0.986± 0.000 0.988± 0.000 0.988± 0.000 0.988± 0.000
ESPGame 0.980± 0.000 0.983± 0.000 0.983± 0.000 0.982± 0.000 0.983± 0.000 0.982± 0.000 0.983± 0.000
Iaprtc12 0.978± 0.000 0.981± 0.000 0.981± 0.000 0.979± 0.000 0.980± 0.000 0.980± 0.000 0.981± 0.000
Pascal07 0.918± 0.000 0.927± 0.002 0.929± 0.002 0.922± 0.006 0.925± 0.003 0.930± 0.001 0.930± 0.001
MirFlickr 0.870± 0.001 0.885± 0.001 0.887± 0.002 0.877± 0.006 0.878± 0.001 0.887± 0.001 0.887± 0.001

TABLE IV
RANKING LOSS OF THE EXPERIMENTAL RESULTS

Data CDMM DMVMLC VCMN LMVCAT AIM MTD VSDW-DDF

Corel5k 0.881± 0.000 0.875± 0.003 0.886± 0.003 0.866± 0.005 0.886± 0.004 0.884± 0.002 0.891± 0.002
ESPGame 0.817± 0.001 0.837± 0.001 0.825± 0.001 0.816± 0.002 0.811± 0.002 0.826± 0.002 0.834± 0.001
Iaprtc12 0.845± 0.000 0.870± 0.002 0.869± 0.001 0.856± 0.002 0.842± 0.002 0.861± 0.002 0.871± 0.001
Pascal07 0.773± 0.003 0.782± 0.007 0.807± 0.008 0.771± 0.009 0.746± 0.010 0.806± 0.005 0.807± 0.004
MirFlickr 0.827± 0.001 0.855± 0.002 0.865± 0.003 0.852± 0.003 0.835± 0.003 0.864± 0.002 0.866± 0.001

B. Unbalanced Multi-View Weak Multi-Label Dataset Setup

We manually developed the UMVWML datasets based on
the previously mentioned five complete datasets. This was
done with the objective of evaluating the performance of all
methods in situations characterized by unbalanced views and
weak labels. Specifically, we randomly selected 20%, 30%,
40%, 60%, 70%, and 80% of instances from each of the six
views as unavailable instances, which were then replaced
with ‘0’ values. We ensured that no invalid samples existed
in the dataset, meaning every sample retained at least one
available view.

For weak labels, half of the positive and negative labels
for each class were set as unknown. A random selection of
70% of the samples with unbalanced views and weak labels
was used as the training set. To reduce the randomness of
the experiments, the construction process of the UMVWML
datasets was repeated multiple times.

C. Comparison Methods

To assess the superiority of our model, we selected
six comparison methods in our experiments: DMVMLC
[7], VCMN [20], CDMM [5], LMVCAT [21], AIM [22],
and MTD [8]. These methods were compared with our
proposed VSDW-DDF on the five UMVWML datasets.
Currently, there are very few MVMLC methods that can

simultaneously address both unbalanced views and weak
label issues; therefore, we incorporated several related multi-
label classification methods into our experiments. More
specifically, among these six methods, DMVMLC, VCMN,
LMVCAT, AIM, and MTD are fully applicable to the
UMVWMLC tasks. CDMM is an MVMLC method but
cannot handle any incomplete data problems. Therefore, we
simply used the mean of available instances to fill in the
incomplete views and replaced unknown labels with ‘0’.

D. Experimental Results and Analysis

To evaluate the effectiveness of our approach in situations
featuring unbalanced views and weak labels, we performed
comparisons against six advanced algorithms using five
different datasets. The mean and standard deviation of the
results are presented in Tables II-VIII (the standard deviation
is displayed in decimal form in the bottom-right corner
of each cell.) In addition to the six performance metrics
mentioned earlier, we also computed the average ranking of
each algorithm based on these metrics.

In addition to the intuitive comparison metric "Ave.R",
based on the results presented in Table IX and Fig. 3, we
draw the following observations:

1. The VSDW-DDF, MTD, AIM, LMVCAT, VCMN, and
DMVMLC models generally outperform the CDMM model
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TABLE V
AUC OF THE EXPERIMENTAL RESULTS

Data CDMM DMVMLC VCMN LMVCAT AIM MTD VSDW-DDF

Corel5k 0.882± 0.000 0.878± 0.002 0.889± 0.005 0.869± 0.004 0.889± 0.003 0.887± 0.003 0.894± 0.002
ESPGame 0.818± 0.001 0.842± 0.000 0.830± 0.002 0.821± 0.002 0.816± 0.001 0.831± 0.001 0.840± 0.001
Iaprtc12 0.847± 0.000 0.872± 0.001 0.872± 0.005 0.858± 0.002 0.845± 0.002 0.863± 0.001 0.873± 0.001
Pascal07 0.774± 0.001 0.809± 0.006 0.832± 0.006 0.799± 0.008 0.776± 0.009 0.829± 0.005 0.832± 0.003
MirFlickr 0.792± 0.002 0.841± 0.002 0.854± 0.002 0.839± 0.004 0.826± 0.002 0.851± 0.002 0.854± 0.001

TABLE VI
ONE ERROR OF THE EXPERIMENTAL RESULTS

Data CDMM DMVMLC VCMN LMVCAT AIM MTD VSDW-DDF

Corel5k 0.334± 0.001 0.426± 0.007 0.445± 0.011 0.441± 0.014 0.466± 0.015 0.478± 0.018 0.495± 0.019
ESPGame 0.293± 0.001 0.427± 0.001 0.426± 0.005 0.426± 0.005 0.378± 0.006 0.439± 0.007 0.454± 0.004
Iaprtc12 0.312± 0.006 0.422± 0.008 0.429± 0.011 0.412± 0.010 0.358± 0.009 0.445± 0.006 0.447± 0.008
Pascal07 0.407± 0.006 0.427± 0.010 0.427± 0.013 0.386± 0.019 0.391± 0.015 0.434± 0.007 0.434± 0.008
MirFlickr 0.487± 0.001 0.598± 0.008 0.630± 0.010 0.614± 0.007 0.521± 0.015 0.628± 0.005 0.635± 0.004

TABLE VII
COVERAGE OF THE EXPERIMENTAL RESULTS

Data CDMM DMVMLC VCMN LMVCAT AIM MTD VSDW-DDF

Corel5k 0.720± 0.001 0.709± 0.005 0.712± 0.009 0.700± 0.009 0.731± 0.011 0.726± 0.007 0.747± 0.005
ESPGame 0.538± 0.001 0.609± 0.001 0.588± 0.003 0.426± 0.005 0.378± 0.006 0.439± 0.007 0.454± 0.004
Iaprtc12 0.568± 0.002 0.646± 0.003 0.615± 0.005 0.616± 0.004 0.584± 0.004 0.616± 0.004 0.645± 0.003
Pascal07 0.711± 0.003 0.727± 0.006 0.757± 0.009 0.716± 0.013 0.687± 0.010 0.755± 0.006 0.758± 0.004
MirFlickr 0.603± 0.003 0.647± 0.004 0.662± 0.004 0.648± 0.005 0.614± 0.003 0.659± 0.002 0.665± 0.002

TABLE VIII
AVERAGE RANK OF THE EXPERIMENTAL RESULTS

Data CDMM DMVMLC VCMN LMVCAT AIM MTD VSDW-DDF

Corel5k 5.83 5.83 3.00 6.17 2.17 2.67 1.00
ESPGame 6.33 1.67 3.33 5.00 5.67 3.17 1.50
Iaprtc12 6.50 2.50 2.83 4.83 6.17 3.17 1.17
Pascal07 6.00 3.83 2.17 5.67 6.33 2.17 1.00
MirFlickr 7.00 4.33 1.67 4.67 5.83 2.67 1.00

across five datasets. This superiority can be attributed to the
remarkable feature extraction capabilities of neural networks.

2. Our proposed VSDW-DDF model stands out
convincingly, showing better performance than comparative
methods in almost all metrics across the five datasets.
Whether compared with traditional approaches like CDMM
or deep learning-based methods such as LMVCAT or MTD,
our VSDW-DDF demonstrates excellent compatibility with
unbalanced views and weak labels.

3. Among comparisons within deep learning methods, our
method specifically designed to address unbalanced views
exhibit notable advantages over other methods. This indicates
that it is essential to consider the combined impact of
potential unbalanced views and weak labels during the model
design phase.

E. Ablation Study

Our model integrates several strategies. To obtain a
deeper understanding of the impact of each component,
we carried out ablation analyses on the Corel5k dataset
(which contains 50% weak labels and 50% unbalanced
views) and report the findings in Table X. More precisely,
we used a conventional single-channel framework as the
baseline and further extended it to a dual-channel baseline
architecture. We iteratively added our sample graph reg-

ularization module, view weighting module, and dropout
module to this baseline and performed module removal
operations. From Table X, we observe that all designed
components contributed to performance improvements to
varying degrees, with the dropout mechanism showing the
most significant performance enhancement on the Corel5k
dataset. This confirms the effectiveness of our improved
dropout mechanism. However, the underlying mechanism
behind the effectiveness of this strategy requires further
investigation.

TABLE IX
AN OVERVIEW OF THE FRIEDMAN STATISTIC FF (K = 6, N = 5)

ALONG WITH ITS CRITICAL VALUE BASED ON SIX ASSESSMENT
METRICS.

Evaluation Metric FF Critical Value (0.05)

Average precision 21.925926

2.508189

Hamming Loss 9.461538
Ranking Loss 8.993039

AUC 9.365155
One Error 16.000000
Coverage 5.017773

IAENG International Journal of Computer Science

Volume 52, Issue 7, July 2025, Pages 2498-2507

 
______________________________________________________________________________________ 



TABLE X
ABLATION STUDY RESULTS OF OUR PROPOSED VSDW-DDF MODEL ON THE COREL5K DATASET WITH 50% UNBALANCED VIEWS AND 50% WEAK
LABELS. THE ABBREVIATIONS USED ARE AS FOLLOWS: ‘D_C‘ DENOTES DUAL-CHANNEL DECOUPLING FRAMEWORK, ‘S_G‘ REPRESENTS SAMPLE

GRAPH REGULARIZATION, ‘V_W‘ INDICATES VIEW WEIGHTING, ‘D_O‘ DENOTES DROPOUT MECHANISM.

Method Average precision Hamming loss Ranking loss AUC One error Coverage

d_c 0.398 0.988 0.884 0.887 0.478 0.726
d_c+s_g 0.401 0.988 0.886 0.890 0.478 0.737
d_c+s_g+v_w 0.411 0.988 0.889 0.892 0.488 0.743
d_c+s_g+v_w+d_o 0.414 0.988 0.891 0.894 0.495 0.747

(a) Average precision (b) Hamming loss

(c) Ranking loss (d) AUC

(e) One error (f) Coverage

Fig. 3. CD Values on Six Benchmark Datasets under Different Metrics.
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V. CONCLUSION

In this paper, we address the complex and highly realistic
task of UMVWML. We propose VSDW-DDF that integrates
view-specific weighting and dropout strategies. Our model
effectively mitigates the unbalanced information caused by
unbalanced views by decoupling single-channel view-level
representations into shared and view-specific representations.
Two key strategies are introduced: view-specific weighting
and view-specific dropout mechanism, to enhance model per-
formance under unbalanced view conditions. Extensive ex-
perimental validation demonstrates that our approach signifi-
cantly outperforms existing state-of-the-art methods, showing
excellent performance in handling arbitrary MVML data with
unbalanced views and weak labels.

Ablation studies also confirm the effectiveness of each
component, including dual-channel decoupling framework,
view-specific weights, sample-guided graph regularization
losses, and view-specific dropout mechanism. These results
not only showcase the superior performance of our method in
tackling UMVWMLC tasks but also provide a solid founda-
tion for future research. Despite the significant achievements
in addressing UMVWML problems, there remain several
directions worthy of further exploration. For instance, future
work could investigate more effective methods for incom-
plete data recovery, optimize weighting strategies to adapt to
more complex unbalanced scenarios, or model higher-order
correlations among multiple labels to further improve model
performance. Additionally, exploring how to better utilize
unlabeled data or assessing the generalization capability of
models on larger datasets are also important questions to
consider.

In conclusion, we offer a new perspective and technical
solution for addressing complex UMVWML problems. It
enriches the theoretical intersection of multi-view learning
and multi-label classification while providing robust support
for practical applications.
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