
 

 

Abstract—Tech advances like 6G and Industry 4.0 have 

transformed data processing, communication, and industrial 

automation.  Real-time problem detection is difficult due to the 

rising complexity of heterogeneous data environments across 

sectors. Many industries are undergoing this shift, requiring 

reliable fault detection technologies. This research provides a 

deep learning framework for fault identification in Industry 4.0 

scenarios driven by 6G infrastructure using advanced neural 

networks and improved processing techniques. The framework 

uses data from sensors, IoT devices, and industrial machines to 

improve problem identification accuracy, scalability, and 

energy efficiency. A hybrid deep learning model uses CNNs and 

LSTMs to extract spatial and temporal patterns from data.  

Fusing helps the system to investigate complex fault 

characteristics while optimizing computational resources. The 

framework balances resource allocation with detection 

accuracy to create a dependable and intelligent fault 

management solution. Simulation findings show that the 

proposed approach is efficient and suitable for industrial use.  

These findings can improve fault management tactics and help 

build resilient, smart, and sustainable Industry 4.0 systems. 

 
Index Terms—6G, Industry 4.0, Deep learning, Fault 

detection, Convolutional Neural Networks, Long Short-Term 

Memory, sustainability, IoT 

  

I. INTRODUCTION 

HE swift advancement of industrial technology, 

propelled by the integration of 6G networks and 

Industry 4.0, has led to significant changes in production, 

automation, and data processing. The concept of Industry 
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4.0 encompasses the amalgamation of cyber-physical 

systems, Internet of Things-connected devices, artificial 

intelligence, and data analytics. This integration leads to the 

creation of industrial ecosystems characterized by high 

levels of interconnectivity and intelligence. The deployment 

of 6G technology enhances connectivity by providing 

communications that are remarkably swift and exhibit 

minimal latency, while also facilitating the seamless 

integration of diverse devices and data sources [1], [2].  

While the advantages of 6G and Industry 4.0 are clearly 

evident, these developments also introduce a considerable 

array of challenges, especially concerning system reliability, 

fault identification, and sustainability. Identifying faults 

plays a crucial role in maintaining the operational efficiency, 

safety, and longevity of production systems. In standard 

industrial environments, systems for detecting problems rely 

on established rules and thresholds. The existing limitations 

may be inadequate for addressing the complexity and 

dynamism inherent in contemporary smart factories [3], [4].  

The process of identifying faults is further complicated by 

the diverse characteristics of the data produced by Industry 

4.0. The characteristics encompass sensor readings, machine 

logs, image data, and time-series signals. The vast array and 

multitude of data sources necessitate intricate processing 

techniques. It is essential for these methods to accurately 

identify faults in real time, while also reducing the 

occurrence of false positives and optimizing resource 

utilization [5]. 

 This study aims to introduce a deep learning system that 

is sustainable and effectively tackles the challenges 

associated with fault detection in 6G-enabled Industry 4.0 

settings. The framework combines advanced neural networks 

with resource-efficient processing methods to enhance the 

accuracy and speed of problem identification across diverse 

data scenarios. To uncover patterns in spatial and temporal 

data, we employ a hybrid deep learning model that integrates 

Convolutional Neural Networks (CNNs) with Long Short-

Term Memory (LSTM) networks. The system aims to 

enhance resource allocation, thereby minimizing 

computational overhead and energy usage while preserving 

the efficacy of problem detection [6], [7].  This work aims to 

enhance the creation of fault detection systems that are 

precise, resilient, sustainable, and scalable for future 

applications in industrial environments. 

 The integration of cutting-edge digital technology is the 

key factor propelling the notable shift known as Industry 4.0, 

marking a profound transformation in industrial practices.  

Technologies such as the Internet of Things (IoT), cloud 
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computing, big data analytics, and machine learning enable 

the development of smart factories. These technologies 

enhance operational efficiency and empower decision-

making by automating processes and enabling data 

exchange. The notion of cyber-physical systems (CPS) is 

fundamental to Industry 4.0.  These systems link physical 

equipment to computational models via Internet of Things 

(IoT) sensors, facilitating real-time data collection and 

analysis [8], [9].  With the advent of the sixth generation of 

wireless connectivity, or 6G, a significant transformation of 

the fourth industrial revolution, or Industry 4.0, is 

anticipated. The emergence of ultra-reliable low-latency 

communication (URLLC), enhanced mobile broadband 

(eMBB), and extensive machine-type communication 

(mMTC) will represent significant advancements that 6G 

will bring to the foundations laid by 5G. These 

characteristics are expected to enable the implementation of 

new capabilities in industrial settings. To effectively handle 

the vast quantities of diverse data produced in smart 

factories, which are outfitted with numerous sensors and 

devices that constantly track industrial processes, the 

bandwidth and speed of 6G are essential. Challenges emerge 

due to the intricate nature stemming from the variety of the 

data.  When handling data from diverse sources, including 

industrial sensors, cameras, and machine logs, it is essential 

to employ effective processing techniques to guarantee the 

prompt detection of flaws and the reliability of the system. 

The importance of sustainable solutions is underscored by 

the need to handle large volumes of data while minimizing 

the strain on processing resources [10] - [12]. 

 To ensure operational efficiency, minimize downtime, 

and avert expensive breakdowns, fault detection plays a 

crucial role in industrial systems. To pinpoint discrepancies 

from the standard performance of the system, traditional 

fault detection techniques, including model-based methods, 

depend on either statistical approaches or physical 

representations of the system. While these strategies may 

yield positive results in straightforward or simplistic 

systems, they often fall short in effectively addressing the 

complexity and variability inherent in contemporary 

industrial environments. The diverse range of data and the 

need for immediate analysis demand the creation of more 

advanced techniques capable of identifying errors across 

different contexts [13], [14]. Recent years have seen a 

growing interest in methodologies that are more adaptive for 

fault identification, including machine learning (ML) and 

deep learning (DL).  The ability of these models to identify 

patterns directly from the data allows for adaptation to the 

constantly evolving dynamics of the system, eliminating the 

necessity for explicit rules or models.  Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory (LSTM) 

networks represent significant advancements in deep 

learning models, recognized for their proficiency in 

understanding spatial and temporal relationships within data.  

Image-based fault detection is a prevalent application of 

convolutional neural networks (CNNs), which have shown 

proficiency in identifying visual patterns linked to machine 

defects or anomalies [15]. LSTMs excel at processing time-

series data, making them well-suited for identifying 

problems in systems that utilize sequential data, like sensor 

readings or machine logs.  Hybrid models can be developed 

by combining CNNs and LSTMs, effectively tackling 

challenges related to both spatial and temporal defect 

detection [16], [17]. It is possible to create hybrid models 

through the integration of CNNs and LSTMs.  The diverse 

range of data available in scenarios associated with Industry 

4.0 presents unique challenges for identifying defects.  Data 

can be presented in multiple forms, such as organized sensor 

data, unstructured text logs, photographs, and videos. The 

presence of this diversity necessitates that fault detection 

algorithms be highly adaptable and proficient in analyzing 

multiple data formats concurrently [18]. Delays in 

identifying or addressing flaws can result in expensive 

system failures, making real-time processing essential for 

fault detection in Industry 4.0.  Delays in recognizing or 

addressing defects can result in significant issues. The vast 

volume of data produced by Internet of Things devices, 

combined with the rapid connectivity enabled by 6G, 

necessitates defect detection systems that are both precise 

and capable of efficient, scalable computation [19].  Several 

frameworks for deep learning have been put forward as a 

promising approach for identifying faults in industrial 

environments. One example illustrates the use of 

convolutional neural networks (CNNs) for detecting 

anomalies in manufacturing processes through visual 

inspection.  Conversely, LSTM networks have demonstrated 

their capability in tracking time-series data from industrial 

sensors.  Conversely, these techniques typically concentrate 

on particular data types and do not possess the flexibility 

required to handle the diverse data sources present in 

systems associated with Industry 4.0. Concerns about 

sustainability emerge due to the energy-intensive nature of 

deep learning models, especially in resource-constrained 

environments [20], [21]. 

 A major challenge confronting modern industrial systems 

is the need to guarantee the sustained effectiveness of deep 

learning models over time. This is particularly relevant in 

contexts such as Industry 4.0, where access to computational 

resources is often restricted.  This holds particularly true in 

situations where the availability of resources is limited.  In 

systems necessitating real-time data processing at scale, the 

energy consumption associated with the training and 

operation of deep learning models is substantial.  This holds 

particularly in systems lacking scale. To maintain the 

viability of smart factories in their operations, enhancing the 

energy efficiency of deep learning models is crucial [22], 

[23]. The proliferation of 6G technology will lead to an 

enhancement in the capacity of industrial networks for data 

processing.  Recent investigations conducted within the 

frameworks of Industry 4.0 and 6G have explored and 

analyzed various alternative defect detection algorithms.  A 

CNN-based model was implemented to detect surface 

imperfections in manufacturing processes. This was 

achieved by employing image data analysis techniques. The 

aim of performing sensor data analysis for predictive 

maintenance in industrial machinery was achieved by 

employing LSTM networks.  The tests revealed that deep 

learning serves as a highly effective approach for fault 

identification [24], although they also highlighted the 

limitations associated with data diversity and resource 
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requirements. Incorporated into the ongoing projects aimed 

at tackling these challenges are hybrid models that combine 

various deep learning methodologies to effectively handle 

diverse data sources. The implementation of these models 

facilitates the management of diverse data sources.  A CNN-

LSTM hybrid model was utilized to assess both visual and 

time-series data throughout the analysis process.  

Enhancements in fault identification performance were noted 

across various data modalities, as demonstrated by the 

results of this performance evaluation. Conversely, these 

models face challenges regarding sustainability, especially 

when applied in large industrial environments that require 

real-time data processing [25]. This paper contributes to the 

advancement of previous studies by establishing a 

framework for deep learning that aligns with sustainability 

principles. This framework improves the precision of defect 

detection in diverse data scenarios while also incorporating 

resource-efficient algorithms, thereby minimizing energy 

consumption.  Our framework leverages the ability of 6G to 

handle large volumes of diverse data while optimizing 

computational resources for sustainable operation. This 

capability enables 6G to handle a substantially greater 

volume of data compared to conventional networks. 

 

II. METHODOLOGY 

Within the context of G-enabled Industry diverse data 

settings, this part presents a sustainable deep learning 

methodology for defect detection. The framework handles 

important challenges such as the heterogeneity of data, real-

time processing, and resource optimization, which ensures 

that the framework is accurate and sustainable during its 

implementation. In order to efficiently manage the numerous 

data streams that are generated in environments that are part 

of Industry 4.0, the framework that has been presented 

incorporates a number of different deep learning 

components. In order to take advantage of both the spatial 

and temporal characteristics of the data, the design makes 

use of a hybrid deep learning model that blends 

Convolutional Neural Networks (CNNs) with Long Short-

Term Memory (LSTM) networks.  The framework's major 

objective is to facilitate precise problem detection while 

simultaneously reducing the amount of computing overhead 

and energy consumption, with the end goal of enhancing the 

scalability and sustainability of the system [26]. 

 In order to promote fault detection in real time, 

management of resources, and effective communication 

among the multiple devices that comprise the ecosystem, the 

components that are a part of the Industry 4.0 ecosystem 

collaborate with one another. In environments that are a part 

of Industry 4.0, it is vital to have efficient data preparation 

because of the different features that the data possesses.  

This makes it simpler for the deep learning model to 

interpret and analyze a wide range of inputs, which is a 

significant benefit. It is the responsibility of the Data 

Preprocessing Unit to manage a wide range of data types, 

including structured data from sensors connected to the 

Internet of Things, unstructured logs, picture data from 

cameras, and time-series data from machine logs. The unit is 

responsible for a variety of activities, including 

normalization, standardization, and the arrangement of the 

data into formats that are appropriate for input into the 

hybrid deep learning model [27]. 

 Convolutional Neural Networks (CNNs) and Long Short-

Term Memory (LSTM) networks are both utilized in the 

suggested system, which is based on a Hybrid Deep 

Learning Model. This model incorporates the advantages of 

both types of neural networks. This hybrid model is 

designed to manage both geographical and temporal data 

patterns, which makes it suited for a wide variety of data 

sources in the industrial sector. Convolutional Neural 

Networks, often known as CNNs, are applied for the 

purpose of analyzing image data, which also includes 

photographs of production lines and machinery. The ability 

of convolutional neural networks (CNNs) to recognize 

spatial elements, such as patterns and anomalies in visual 

data, is essential for spotting problems in industrial 

equipment, such as fractures, deformities, or surface flaws.  

They are able to capture temporal relationships, which 

enables the model to recognize emerging patterns or 

anomalies over time. For example, strange temperature 

changes or odd vibration patterns in equipment are examples 

of such types of patterns. 

The capability of the hybrid architecture to do 

simultaneous analysis of image and time-series data makes 

the model highly flexible to the different data contexts that 

are associated with the industrial sector. This is because the 

hybrid architecture is able to perform simultaneous analysis 

of both types of data. During the first phase of the 

procedure, information is gathered from a wide range of 

sensors that are dispersed throughout the surrounding region.  

Deep learning allows for the identification of system failures 

and the triggering of alarms that tell the monitoring system 

of Industry 4.0 of the problems that have been found. This is 

performed through the application of deep learning.  In order 

to effectively manage heterogeneous data, this system 

incorporates three distinct deep learning architectures into a 

single configuration. The long short-term memory for time 

series, the convolutional neural network for images, and the 

graph convolutional neural network for graph data are the 

three types of neural networks that are included in these 

designs.  Different kinds of data are handled by each of these 

designs, which are built to handle them.  This research study 

introduces a one-of-a-kind Branch-and-Bound optimization 

strategy with the intention of achieving hyper-parameter 

tweaking in a variety of deep learning models.  One of the 

objectives of this strategy is to achieve the best possible 

performance from the models. In order to analyze the 

enumeration tree and carry out a methodical investigation of 

the hyper-parameter space, the method makes use of a 

heuristic approach rather than applying exhaustive search 

methods. This is carried out in order to accomplish the 

aforementioned goals.  A clear representation of the model 

that was developed as a result of this research is shown in 

Figure 1, which can be viewed by anyone interested in the 

topic.
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Fig. 1. Simplified representation of DL 

 

In terms of continuously monitoring and diagnosing issues 

in real time, the Fault Detection Module is an extremely vital 

component that plays a significant role. After obtaining 

processed data from the hybrid deep learning model, the 

system then recognizes irregularities from the standard 

operating settings in order to identify potential problems. 

This procedure is repeated until the system identifies 

potential issues.  The module is responsible for classifying 

defects, which permits the production of tailored responses 

that are in accordance with the degree and kind of the 

problem that has been identified. On the other hand, if there 

are significant issues, the system might be forced to shut 

down automatically in order to prevent any further damage 

from occurring by [28]. There is a possibility that alarms for 

preventive maintenance or other precautionary measures 

could be triggered by minor deviations. The defect detection 

module has been developed to attain a high level of 

precision while simultaneously reducing the number of 

instances in which it yields a false positive result.  

Consequently, this guarantees that true faults can be 

recognized with total reliability while industrial processes 

continue to function without interruption.  
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  Being an essential part of the system, the Resource 

Optimization Engine is responsible for ensuring that the 

system is both scalable and sustainable. This is 

accomplished through its position as a vital component.   

The efficacy of the computational resources that are utilized 

by deep learning models and tasks that entail data processing 

is improved by the engine through the application of the 

following tactics, which are as follows: 

  When models are reduced and quantified, this is the 

process. Quantization, which needs a reduction in 

computational precision, and model pruning, which involves 

the removal of neurons and weights that are not required, are 

two strategies that can be applied to accomplish the 

objective of reducing the complexity of deep learning 

models.  These tactics not only lower the amount of energy 

that is consumed but also the amount of memory that is 

utilized in an effective manner. Computing duties are 

distributed between central servers and devices situated at 

the edge of the network as a result of the incorporation of 

computers at the edge of the network.   The amount of stress 

that is imposed on central systems is decreased, and the 

amount of data transfer that is necessary is also reduced. 

This is because jobs that are not critical for important 

operations can be carried out at the periphery of the network.  

In order to reduce the amount of latency and energy 

consumption in large-scale industrial contexts, this is an 

essential necessary step to take.  

  Scaling adaptive models to a larger scale The amount of 

data that is currently being processed and the requirements 

for fault identification can both be taken into consideration 

when adjusting the size and complexity of deep learning 

models.  During periods in which the system is experiencing 

low levels of activity, it is possible to implement a simplified 

model in order to increase the efficiency with which 

resources are utilized.  On the other hand, when the situation 

is extremely critical, the complete model is applied in order 

to carry out an in-depth investigation. Taking this approach 

to resource optimization ensures that the defect detection 

system performs with energy efficiency while also efficiently 

managing the huge data volumes that are typical of situations 

that are associated with Industry 4.0 and 6G. 

  A low-latency data transmission can take place between 

the various components of the framework in a speedy and 

effective manner thanks to the 6G Communication Layer, 

which makes it possible for this connection to take place.   

The fault detection system is able to assess data in real time 

from a broad variety of devices, sensors, and machines that 

are located on the premises thanks to this layer, which is part 

of the Industry 4.0 framework. It is possible for the 

framework to accommodate a large number of connected 

devices while simultaneously ensuring the speed and 

stability of the connection [29]. This is accomplished by 

utilizing the properties of URLLC (Ultra-Reliable Low 

Latency connection) and mMTC (Massive Machine Type 

Communication) in 6G.   In order to reduce the amount of 

energy that is consumed and the carbon footprint that is 

associated with industrial processes, the framework 

combines a number of different sustainability components. 

This is done in order to decrease the carbon footprint.   This 

bundle has the following goods, which are included in it:   

In order to lessen the amount of computational resources 

that are necessary for training deep learning models from the 

ground up, the framework makes use of transfer learning and 

fine-tuning approaches. This is done in order to develop 

theories and models for energy conservation.  The energy 

efficiency of the system is greatly improved as a result of 

this. 

  The process of cognitive data filtration comprises the 

selective processing and management of information with 

the goal of improving decision-making and promoting 

cognitive efficiency. This is accomplished through the 

utilization of selective processing and management.   The 

technique in question necessitates the sifting through of 

extraneous data in order to preserve the information that is 

vital for the goal of carrying out an in-depth analysis and 

interpretation. In order to ensure that only pertinent 

information is processed, preprocessing units eliminate 

duplicate or irrelevant data. This, in turn, decreases the 

amount of computer resources that are required for tasks that 

are not absolutely necessary. The Adaptive Resource 

Allocation optimization engine is in charge of dynamically 

allocating resources in response to the demands that are 

being placed on the system in real time. This guarantees that 

energy is utilized in an efficient manner, particularly in 

situations that entail computation at the edge of the network.   

These components are incorporated into the deep learning 

framework that has been supplied in order to offer a full 

solution for fault identification in environments that are part 

of the 6G Industry 4.0. A balance is achieved between 

performance and sustainability through the use of this 

approach. 

 

III. RESULTS AND DISCUSSION 

This section presents a summary of the findings derived 

from our evaluations that juxtapose the Advanced Deep 

Learning Framework for Fault Diagnosis in Industry 4.0 

(ADL-FDI4) with the leading fault detection techniques. The 

assessment centers on three essential metrics: the fault 

detection rate, computational efficiency (quantified by the 

time required for operation), and energy consumption levels. 

Experiments were carried out in a simulated setting 

representative of Industry 4.0, incorporating a diverse range 

of data inputs. The data inputs comprised sensor time-series, 

visual data, and network graph topologies. ADL-FDI4 has 

demonstrated exceptional capabilities in fault detection 

across various data formats, particularly excelling in 

scenarios involving heterogeneous data. The system 

demonstrated an efficient capability to handle a diverse 

range of data types, leveraging the integration of Long 

Short-Term Memory (LSTM), Convolutional Neural 

Networks (CNN), and Graph Convolutional Networks 

(GCN). This led to enhanced precision in identifying faults. 

In comparison to conventional deep learning methods, the 

LSTM module exhibited superior accuracy in detecting 

time-series sensor data. The ADL-FDI4 framework 

demonstrated a superior detection rate for faults when 

compared to the existing LSTM-based techniques. This 

framework effectively identified patterns in temporal 
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sequences. The CNN component of ADL-FDI4 enabled 

precise defect identification in visual data sourced from 

industrial systems, proving especially beneficial for 

monitoring machinery and equipment.  The detection rate of 

image-based fault detection surpasses that of competing 

CNN-based models.  One of the crucial factors to evaluate 

when trying to identify errors in real-time industrial 

scenarios is the efficiency of the computation. The 

experimental results indicate that ADL-FDI4 markedly 

decreased the time needed for both training and inference in 

comparison to other models. 

  The primary parameters of the deep learning models 

employed in this study include the number of epochs, the 

learning rate, and the batch size.  By employing the Branch-

and-Bound optimization technique in every execution, 

comprehensive analyses have been conducted to assess these 

hyper-parameters. The batch sizes are modified from [start] 

to [end] in increments of [step], the epochs are altered from 

[start] to [end] in increments of [step], and the learning rate 

is revised from [start] to [end] in increments of 0.1. All of 

these modifications are implemented in increments of [step].  

To identify the optimal parameters for each dataset, Branch-

and-Bound conducts an exploration of the hyperparameter 

space.  An overview of the optimal parameter values can be 

obtained by examining Table 1. In the subsequent two 

sections, we will evaluate our model against prominent 

models using these four benchmark datasets, focusing on 

accuracy and execution time.  This comparison utilizes the 

optimal values of each hyper-parameter employed by our 

model. 
TABLE 1 

OPTIMAL PARAMETERS OF ADL-FDI4 

Dataset Epochs  
Learning 

rate 
Batches 

Microsoft Azure Predictive 

Maintenance 
54  0.66  15 

NASA Milling    66 0.46 31 

Preventive to Predictive 

Maintenance  
74 0.53 9 

CWRU Bearing  32  0.77  17 

 

 
Fig. 2. ADL-FDI4 Accuracy in Comparison to Top-Notch Fault Diagnosis Systems 
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Fig. 3. The ADL-FDI4's runtime in comparison to the most cutting-edge fault diagnosis solutions 

 

 

TABLE II 

 TRAINING EFFICACY OF THE ADL-FDI4 AND CONTEMPORARY FAULT DIAGNOSTIC METHODOLOGIES ON EXTENSIVE DATA SETS. 

 

Dataset X 100 

ADL-FDI4 semi-DCNN FD-SAE GA-SVR 

CPU Acc. CPU Acc. CPU Acc. CPU Acc. 

Micro. Azure Pred. 

Maint. 
1444 99 1433 97 898 93 905 90 

NASA Mil. Data. 16334 96 1231 94 995 91 1075 89 

Prev. Pred. Maint. 1550 98 1261 96 1122 95 999 92 

CWRU Bear. Data. 1206 96 1005 97 878 94 975 93 

 

 

Our objective was to assess the precision of ADL-FDI4 in 

comparison to the foundational fault diagnosis techniques, 

namely semi-DCNN, FD-SAE, and GA-SVR. The objective 

of our initial testing was to achieve this outcome. Employ 

the four datasets referenced previously in this conversation.   

Figure 2 illustrates that ADL-FDI4 exhibits superior 

performance in detection rate compared to the three baseline 

techniques. A method to demonstrate this distinction 

involves modifying the quantity of errors used as input.  The 

ADL-FDI4 achieved a detection rate of 73% in its analysis 

of the Microsoft Azure predictive maintenance dataset. This 

was achieved to address challenges. In the course of 

addressing the identical situation, it has been noted that the 

detection rate for the alternative models falls below 691%.  

The successful integration of the Branch-and-Bound 

technique for fault identification with deep learning enabled 

the achievement of these results. The Branch-and-Bound 

method enables the effective optimization of 

hyperparameters across various deep learning models used 

in ADL-FDI4. 

The second round of testing aimed to assess the 

performance of the ADL-runtime FDI4s against the baseline 

fault diagnostic solutions, which comprised semi-DCNN, 

FD-SAE, and GA-SVR. All of these experiments were 

conducted using the identical four datasets that were utilized 

in the previous set of tests.   
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Fig. 4. Federated and centralized system performance 

 
Fig. 5. Latency comparison of federated and centralized frameworks 
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The variability of the input fault count is illustrated in 

Figure 3, which shows that ADL-FDI4 achieves superior 

runtime performance when compared to the three baseline 

models. The dataset for Microsoft Azure Predictive 

Maintenance exhibits significant performance variation 

among the three models; however, it is considered 

insufficient in size. Conversely, the models for Azure exhibit 

a notable performance disparity.  

The objective of the final experiment is to gain experience 

in Big Data by training the proposed framework. The 

effectiveness of the proposed solution compared to existing 

advanced solutions for managing the previously described 

data is illustrated in Table 2, which presents a summary of 

the training process results. The evaluation of training 

performance is conducted through the measurement of 

runtime in seconds and accuracy in percentages. The 

findings of this study demonstrate that, irrespective of the 

data employed, the proposed framework outperformed the 

alternatives in terms of accuracy. For instance, in 

comparison to other competing solutions, it attains a 99% 

accuracy rate with the Preventive to Predictive Maintenance 

dataset, while the other solutions struggle to exceed 95% 

accuracy with the same dataset and size. This outcome can 

be elucidated by the observation that the proposed 

framework demonstrates greater resilience compared to 

alternative frameworks, as it incorporates three distinct deep 

learning architectures.  Moreover, the training accuracy can 

be enhanced by utilizing the Branch-and-Bound 

methodology to select hyper-parameters more effectively.  

Nonetheless, the training process for the proposed 

framework demands considerably more time compared to 

the alternatives. The utilization of three distinct designs 

instead of a single one, along with the duration needed for 

hyper-parameter tuning, are elements that lead to this 

conclusion. 

With CAPs and IIoT devices counted as and, respectively, 

the overall system cost of the federated framework is shown 

in Figure 4, along with several iterations. After convergence, 

the performance of the suggested federated framework for 

efficient and flexible management of IIoT networks is 

comparable to that of the traditional centralized framework, 

according to comparisons with its performance. The 

federated framework and the traditional centralized 

framework both have the potential to experience a 

performance drop of around 0.1.  On the other hand, 

compared to the traditional centralized framework, the 

federated one has a slower convergence speed. Performance 

in the traditional centralized framework and the federated 

framework both converge around the th Epoch. The 

federated and conventional centralized frameworks' system 

performances are shown in Figure 5, respectively, with the 

numbers of CAPs and IIoT devices set to and. Specifically, 

delay and energy use Figure 5 are related.  The results of the 

federated system are comparable to those of the traditional 

centralized system, as seen by these two graphs. In 

particular, the two lines in Figure 5 show a performance 

drop from 0.11 to 0.05, while the two lines in Figure 5 show 

a performance drop from 0.11 to 0.05. In these numbers, 

though, the traditional centralized framework's performance 

converges more quickly than the federated one. 

IV. CONCLUSION 

The ADL-FDI4 architecture marks a notable advancement 

towards realizing effective and sustained fault detection 

within Industry 4.0 environments.   To effectively handle 

diverse data within a unified computational framework, our 

approach integrates LSTM, CNN, and GCN models.  This 

enables a reduction in energy consumption and simplifies the 

computations involved. Additionally, the Branch-and-Bound 

hyper-parameter optimization technique guarantees that 

ADL-FDI4 operates with a reduced computing load. This 

positions it as a scalable solution for the upcoming 

generation of intelligent industries driven by 6G technology.   

The objective is to enhance the scalability and adaptability 

of ADL-FDI4 for future projects by integrating 

reinforcement learning techniques, enabling real-time 

adjustments to evolving industrial contexts.  Furthermore, 

we will investigate the potential for incorporating edge 

computing to reduce the latency encountered by defect 

detection systems and enhance their energy efficiency. 
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